Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology
Abstract
:1. Introduction
2. Spectral Technology
2.1. Hyperspectral Imaging Technology
2.2. Other Spectroscopic Technologies
3. Hyperspectral Information Analysis Method for Tea Fresh Leaf Quality Testing
3.1. Spectral Information Analysis
3.1.1. Spectral Data Preprocessing
3.1.2. Characteristic Band Screening
3.1.3. Model Building
3.1.4. Model Evaluation
3.2. Image Information Parsing
3.3. Information Analysis for Fusion of Image and Spectral
4. Application of Spectroscopic Techniques in Tea Fresh Leaf Quality Testing
4.1. Application of Hyperspectral Reflectance Information in Fresh Tea Leaf Quality Testing
4.1.1. Quantitative Analysis Applications
4.1.2. Qualitative Analysis Applications
4.2. Application of Image and Spectral Information Fusion for Tea Fresh Leaf Quality Detection
4.3. Application of Other Spectroscopic Techniques in the Quality Testing of Fresh Tea Leaves
5. Discussion
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, X.; Wu, Q.Y.; Yang, J.F. Research on the Effect Evaluation and Dynamic Mechanism of the Integrated Development of Tea and Tourism Industry. J. Tea Sci. 2023, 43, 718–732. [Google Scholar]
- Zou, Y.; Hu, J.Q.; Wang, J.; Liu, S.; Wang, S. Studies of the Basic Components and Probiotic Properties of Tea Powder. Food Res. Dev. 2021, 42, 20–26. [Google Scholar]
- He, L.; Chen, L.X.; Wang, N.; Zhang, F.J.; Chen, Y.N.; Jia, Z.; Han, B.; Chen, W.M.; Huang, Z.B. Medicinal property, taste, efficacy and prescriptions of tea from the perspective of TCM literature. China J. Tradit. Chin. Med. Pharm. 2021, 36, 5630–5634. [Google Scholar]
- Ou, Y.L.; Zhang, Y.N.; Qin, L.; Miao, Y.C.; Xiao, L.Z. Research Advances on Quality Evaluation Methods of Tea Color, Aroma and Taste. Sci. Technol. Food Ind. 2019, 40, 342–347+360. [Google Scholar]
- Liang, X.; Li, L.; Han, C.; Dong, Y.; Xu, F.; Lv, Z.; Zhang, Y.; Qu, Z.; Dong, W.; Sun, Y. Rapid Limit Test of Seven Pesticide Residues in Tea Based on the Combination of TLC and Raman Imaging Microscopy. Molecules 2022, 27, 5151. [Google Scholar] [CrossRef]
- Wei, Y.Z.; Li, X.L.; He, Y. Generalisation of tea moisture content models based on VNIR spectra subjected to fractional differential treatment. Biosyst. Eng. 2021, 205, 174–186. [Google Scholar] [CrossRef]
- Liu, Q.; Ouyang, J.; Liu, C.W.; Chen, H.Y.; Li, J.; Xiong, L.M.; Liu, Z.H.; Huang, J.A. Research Progress of Tea Quality Evaluation Technology. J. Tea Sci. 2022, 42, 316–330. [Google Scholar]
- Romers, T.; Saurina, J.; Sentellas, S.; Núñez, O. Targeted HPLC-UV Polyphenolic Profiling to Detect and Quantify Adulterated Tea Samples by Chemometrics. Foods 2023, 12, 1501. [Google Scholar] [CrossRef]
- Wang, Y.J.; Hu, X.; Jin, G.; Hou, Z.W.; Ning, J.M.; Zhang, Z.Z. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging. J. Sci. Food Agric. 2019, 99, 1997–2004. [Google Scholar] [CrossRef]
- Li, T.; He, C.L.; Cai, Y.L.; Li, M.H. Effects of Different Tenderness Materials on the Main Quality and Aroma of Tibetan Tea. Sci. Technol. Food Ind. 2019, 40, 76–81+321. [Google Scholar]
- Wang, F.; Zhao, C.J.; Xu, B.; Xu, Z.; Li, Z.H.; Yang, H.B.; Duan, D.D.; Yang, G.J. Development of a portable detection device for the quality of fresh tea leaves using spectral technology. Trans. Chin. Soc. Agric. Eng. 2020, 36, 273–280. [Google Scholar]
- Long, W.J.; Lei, G.H.; Guan, Y.T.; Chen, H.Y.; Hu, Z.K.; She, Y.B.; Fu, H.Y. Classification of Chinese traditional cereal vinegars and antioxidant property predication by fluorescence spectroscopy. Food Chem. 2023, 424, 136406. [Google Scholar] [CrossRef] [PubMed]
- Prey, L.; Hanemann, A.; Ramgraber, L.; Seidl-Schulz, J.; Noack, P.O. UAV-Based Estimation of Grain Yield for Plant Breeding: Applied Strategies for Optimizing the Use of Sensors, Vegetation Indices, Growth Stages, and Machine Learning Algorithms. Remote Sens. 2022, 14, 6345. [Google Scholar] [CrossRef]
- Wang, N.; Xing, K.W.; Zhang, W.; Jiang, L.Z.; Elfalleh, W.; Cheng, J.J.; Yu, D.Y. Combining multi–spectroscopy analysis and interfacial properties to research the effect of ultrasonic treatment on soybean protein isolate–tannic acid complexes. Food Hydrocoll. 2023, 145, 109136. [Google Scholar] [CrossRef]
- Qian, L.Y.; Wu, D.C.; Liu, D.; Zhou, X.J.; Wei, W.; Zhong, L.J.; Wang, W.J.; Wang, Y.J.; Gong, W. Analysis and Design of Hyperspectral lmaging LiDAR Scanning Mirror. Acta Opt. Sin. 2021, 41, 232–238. [Google Scholar]
- Zhang, Y.; Zhou, J.H.; Wang, S.M.; Wang, Y.Y.; Zhang, Y.H.; Zhao, S.; Liu, S.Y.; Yang, J. Identification of Xinhui Citri Reticulatae Pericarpium of Different AgingYears Based on Visible Near Infrared Hyperspectral lmaging. Spectrosc. Spectral Anal. 2023, 43, 3286–3292. [Google Scholar]
- Wang, Y.W.; Ren, Y.Q.; Kang, S.Y.; Yin, C.B.; Shi, Y.; Men, H. Identification of tea quality at different picking periods: A hyperspectral system coupled with a multibranch kernel attention network. Food Chem. 2023, 433, 137307. [Google Scholar] [CrossRef]
- Luo, X.L.; Sun, C.J.; He, Y.; Zhu, F.L.; Li, X.L. Cross-cultivar prediction of quality indicators of tea based on VIS-NIR hyperspectral imaging. Ind. Crops Prod. 2023, 202, 117009. [Google Scholar] [CrossRef]
- Li, X.N.; Li, T.P.; Gao, X.B.; Cui, Y. Shielding performance evaluation of smoke screens and revision of the smoke screen mass extinction coefficient. J. Ordnance Equip. Eng. 2023, 44, 187–194. [Google Scholar]
- Zhang, D.; Liang, P.; Ye, J.; Xia, J.; Zhou, Y.; Huang, J.; Ni, D.; Tang, L.; Jin, S.; Yu, Z. Detection of systemic pesticide residues in tea products at trace level based on SERS and verified by GC–MS. Anal Bioanal Chem. 2019, 411, 7187–7196. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, Z.H.; Zhao, X.Y.; Zhang, H.; Zhang, T.Y.; Yu, Y. Review of Terahertz Time Domain and Frequency Domain Spectroscopy. Spectrosc. Spectral Anal. 2019, 46, 118–137. [Google Scholar]
- Zhang, L.H.; Iburaim, A. The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence. Spectrosc. Spectral Anal. 2016, 36, 755–758. [Google Scholar]
- Tang, J.L.; Ma, J. Synthesis and properties of thermo-sensitive and pH-sensitive poly(N-isopropyl acrylamide)/AAC. J. Funct. Mater. 2017, 48, 9157–9161+9166. [Google Scholar]
- Li, Z.; Hu, H.M.; Zhang, W.; Pu, S.L.; Li, B. Spectrum Characteristics Preserved Visible and Near-Infrared Image Fusion Algorithm. IEEE Trans. Multimed. 2021, 23, 306–319. [Google Scholar] [CrossRef]
- Tong, D.W.; Kong, M.; Xiang, Y.B. Synthesis, Photophysical Properties, Theoretical Calculation and Cell Imaging of a Tetraphenylethene Imidazole Compound with Methoxy Group. Chin. J. Appl. Chem. 2023, 40, 1322–1333. [Google Scholar]
- Huang, X.Y.; Sun, Z.Y.; Tian, X.Y.; Yu, S.S.; Wang, P.C.; Joshua, H.A. Early Detection of Potato Rot Disease Caused by Fungal Based on Electronic Nose Technology. Sci. Technol. Food Ind. 2018, 39, 97–101. [Google Scholar]
- Liu, X.S.; Zhang, S.Y.; Si, L.T.; Lin, Z.L.; Wu, C.Y.; Luan, L.J.; Wu, Y.J. A combination of near infrared and mid-infrared spectroscopy to improve the determination efficiency of active components in Radix Astragali. J. Near Infrared Spectrosc. 2020, 28, 10–17. [Google Scholar] [CrossRef]
- Lu, X.J.; Ge, H.Y.; Jiang, Y.Y.; Zhang, Y. Application Progress of Terahertz Technology in Agriculture Detection. Spectrosc. Spectral Anal. Spectrosc. Spectral Anal. 2022, 42, 3330–3335. [Google Scholar]
- Choi, G.C.; Lee, D.H.; Park, I.; Kang, D.; Lee, H.K.; Rhie, J.; Bahk, Y.M. Evaluation of moisturizing cream using terahertz time-domain spectroscopy. Curr Appl Phys. 2022, 39, 84–89. [Google Scholar] [CrossRef]
- Xu, S.; Huang, X.; Lu, H. Advancements and Applications of Raman Spectroscopy in Rapid Quality and Safety Detection of Fruits and Vegetables. Horticulturae 2023, 9, 843. [Google Scholar] [CrossRef]
- Baratto, C.; Ambrosio, G.; Faglia, G.; Turina, M. Early Detection of Esca Disease in Asymptomatic Vines by Raman Spectroscopy. IEEE Sens. J. 2022, 22, 23286–23292. [Google Scholar] [CrossRef]
- Liu, D.P.; Gao, H.J.; Cui, B.; Yu, H.B.; Yang, F. Fluorescence spectra and multivariate statistical model characterization of DOM composition structure of Baitapu River sediment. J. Environ. Eng. Technol. 2021, 11, 249–257. [Google Scholar]
- Zhang, Y.L.; Yan, K.T.; Wang, L.L.; Chen, P.C.; Han, X.F.; Lan, Y.B. Research Progress of Pesticide Residue Detection Based on FluorescenceSpectrum Analysis. Spectrosc. Spectral Anal. 2021, 41, 2364–2371. [Google Scholar]
- Ye, W.; Xu, W.; Yan, T.; Yan, J.; Gao, P.; Zhang, C. Application of Near-Infrared Spectroscopy and Hyperspectral Imaging Combined with Machine Learning Algorithms for Quality Inspection of Grape: A Review. Foods 2023, 12, 132. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Yu, Z.; Zhang, J.; Chen, Z.; Liang, H.; Chen, J. An Improved Dual Asymmetric Penalized Least Squares Baseline Correction Method for High-Noise Spectral Data Analysis. Nucl. Sci. Eng. 2023, 197, 589–600. [Google Scholar] [CrossRef]
- Liu, D.Y.; Sun, X.R.; Liu, C.L.; Du, X.; Ye, Z.S. Design of on-line detection system for wheat flour quality based on microNIR. Food Sci. Technol. 2019, 44, 333–337. [Google Scholar]
- Dong, C.; Liu, Z.; Yang, C.; An, T.; Hu, B.; Luo, X.; Jin, J.; Li, Y. Rapid detection of exogenous sucrose in black tea samples based on near-infrared spectroscopy. Infrared Phys. Technol. 2021, 119, 103934. [Google Scholar] [CrossRef]
- Sun, H.; Lv, G.; Mo, J.; Lv, X.; Du, G.; Liu, Y. Application of KPCA combined with SVM in Raman spectral discrimination. Optik 2019, 184, 214–219. [Google Scholar] [CrossRef]
- Tan, B.; You, W.; Huang, C.; Xiao, T.; Tian, S.; Luo, L.; Xiong, N. An Intelligent Near-Infrared Diffuse Reflectance Spectroscopy Scheme for the Non-Destructive Testing of the Sugar Content in Cherry Tomato Fruit. Electronics 2022, 11, 3504. [Google Scholar] [CrossRef]
- Kang, Y.S.; Ryu, C.; Suguri, M.; Park, S.B.; Kishino, S.; Onoyama, H. Estimating the catechin concentrations of new shoots in green tea fields using ground-based hyperspectral imagery. Food Chem. 2021, 370, 130987. [Google Scholar] [CrossRef]
- Dai, C.X.; Liu, F.; Ge, X.F. Detection and Analysis of Moisture Content in Fresh Tea Leaves Based on Hyperspectral Technology. J. Tea Sci. 2018, 38, 281–286. [Google Scholar]
- Mao, Y.L.; Li, H.; Wang, Y.; Fan, K.; Song, Y.J.; Han, X.; Zhang, J.; Ding, S.B.; Song, D.P.; Wang, H.; et al. Prediction of Tea Polyphenols, Free Amino Acids and Caffeine Content in Tea Leaves during Wilting and Fermentation Using Hyperspectral Imaging. Foods 2022, 11, 2537. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Li, L.Q.; Shen, S.S.; Liu, Y.; Ning, J.M.; Zhang, Z.Z. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging. J. Sci. Food Agric. 2020, 100, 3803–3811. [Google Scholar] [CrossRef] [PubMed]
- Amneh, A.A. Application of Moving Average Filter for the Quantitative Analysis of the NIR Spectra. J. Anal. Chem. 2019, 74, 686–692. [Google Scholar] [CrossRef]
- Xue, Y.W.; Wang, Y.; Wang, Y.; Ding, S.B.; Wang, Q.M.; Chen, S.Z.; Ding, Z.T.; Zhao, L.Q. Establishment of a Hyperspectral Spectroscopy-Based Biochemical Component Detection Model for Green Tea Processing Materials. Sci. Technol. Food Ind. 2023, 44, 280–289. [Google Scholar]
- Li, H.D.; Li, J.Z.; Chen, Y.L.; Huang, Y.J.; Shen, X.T. Establishing Support Vector Machine SVM Recognition Model to IdentifyJadeite Origin. Spectrosc. Spectral Anal. 2023, 43, 2252–2257. [Google Scholar]
- Yang, K.; An, C.Q.; Zhu, J.L.; Guo, W.C.; Lu, C.; Zhu, X.H. Comparison of near-infrared and dielectric spectra for quantitative identification of bovine colostrum adulterated with mature milk. J. Dairy Sci. 2022, 105, 8638–8649. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.B.; Wei, Q.Y.; Sun, D.W. Recent advances in muscle food safety evaluation: Hyperspectral imaging analyses and applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1297–1313. [Google Scholar] [CrossRef]
- Kozinov, I.A.; Maltsev, G.N. Development and processing of hyperspectral images in optical–electronic remote sensing systems. Opt. Spectrosc. 2016, 121, 934–946. [Google Scholar] [CrossRef]
- Ball, K.R.; Liu, H.; Brien, C.; Berger, B.; Power, S.A.; Pendall, E. Hyperspectral imaging predicts yield and nitrogen content in grass–legume polycultures. Precision Agric. 2022, 23, 2270–2288. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, T.H.; Jin, G.; Wei, Y.M.; Li, L.Q.; Kalkhajeh, Y.K.; Ning, J.M.; Zhang, Z.Z. Qualitative and quantitative diagnosis of nitrogen nutrition of tea plants under field condition using hyperspectral imaging coupled with chemometrics. J. Sci. Food Agric. 2019, 100, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chen, L.Y.; Duan, D.D.; Cao, Q.; Zhao, Y.; Lan, W.R. Estimation of Total Nitrogen Content in Fresh Tea Leaves Based on Wavelet Analysis. Spectrosc. Spectral Anal. 2022, 42, 3235–3242. [Google Scholar]
- Mao, Y.L.; Li, H.; Wang, Y.; Fan, K.; Sun, L.T.; Wang, H.; Song, D.P.; Shen, J.Z.; Ding, Z.T. Quantitative Judgment of Freezing Injury of Tea Leaves Based on Hyperspectral Imaging. Spectrosc. Spectral Anal. 2023, 43, 2266–2271. [Google Scholar]
- Zhang, Y.; Xia, C.Z.; Zhang, X.Y.; Cheng, X.H.; Feng, G.Z.; Wang, Y.; Gao, Q. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecol. Indic. 2021, 129, 107985. [Google Scholar] [CrossRef]
- Essa, A.; Sidike, P.; Asari, V. Volumetric Directional Pattern for Spatial Feature Extraction in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1056–1060. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wang, P.; Wang, Y.F.; Hu, L.; Luo, X.W.; Mao, H.P.; Shen, B.G. Cucumber powdery mildew detection method based on hyperspectra-terahertz. Front. Plant Sci. 2022, 13, 488–498. [Google Scholar] [CrossRef]
- Li, X.L.; Wei, Z.X.; Peng, F.F.; Liu, J.F.; Han, G.H. stimating the distribution of chlorophyll content in CYVCV infected lemon leaf using hyperspectral imaging. Comput. Electron. Agric. 2022, 198, 107036. [Google Scholar] [CrossRef]
- Qin, F.L.; Wang, X.C.; Ding, S.R.; Li, G.S.; Hou, Z.C. Prediction of Peking duck intramuscle fat content by near-infrared spectroscopy. Poult. Sci. 2021, 100, 101281. [Google Scholar] [CrossRef]
- Paul, A.; Bhattacharya, S.; Dutta, D.; Sharma, J.R.; Dadhwal, V.K. Band selection in hyperspectral imagery using spatial cluster mean and genetic algorithms. GIsci Remote Sens. 2015, 52, 643–659. [Google Scholar] [CrossRef]
- Wang, Z.L.; Huang, W.Q.; Tian, X.; Long, Y.; Li, L.J.; Fan, S. Rapid and Non-destructive Classification of New and Aged Maize Seeds Using Hyperspectral Image and Chemometric Methods. Front. Plant Sci. 2022, 13, 849495. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Mi, C.; Wu, N.; Liu, F.; He, Y. Rapid Classification of Wheat Grain Varieties Using Hyperspectral Imaging and Chemometrics. Appl. Sci. 2019, 9, 4119. [Google Scholar] [CrossRef]
- Faqeerzada, M.A.; Lohumi, S.; Joshi, R.; Kim, M.S.; Baek, I.; Cho, B.-K. Non-Targeted Detection of Adulterants in Almond Powder Using Spectroscopic Techniques Combined with Chemometrics. Foods 2020, 9, 876. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.R.; Wang, J.; Li, N.; Yang, J.; Ren, Z.H. Predicting soluble solids content in “Fuji” apples of different ripening stages based on multiple information fusion. Pattern Recognit Lett. 2021, 151, 76–84. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Xu, L.; Liang, D.; Xu, C.; Jin, X.L.; Weng, S.Z. Fast Prediction of Sugar Content in Dangshan Pear (Pyrus spp.) Using Hyperspectral Imagery Data. Food Anal. Methods 2018, 11, 2336–2345. [Google Scholar] [CrossRef]
- Huang, X.D.; Wang, C.Y.; Fan, X.M.; Zhang, J.L.; Yang, C.; Wang, Z.D. Oil source recognition technology using concentration-synchronous-matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network. Sci. Total Environ. 2018, 616, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Deng, C.; Lu, Y.Y.; Shen, Q.Y.; Zhao, H.F.; Tao, Y.T.; Pan, X.Z. Evaluating the characteristics of soil vis-NIR spectra after the removal of moisture effect using external parameter orthogonalization. Geoderma 2020, 376, 114568. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Gui, D.D.; Sha, M.; Liu, J.; Wang, H.Y. Raman chemical feature extraction for quality control of dairy products. J. Dairy Sci. 2019, 102, 68–76. [Google Scholar] [CrossRef]
- Abdolmaleki, M.; Consens, M.; Esmaeili, K. Ore-Waste Discrimination Using Supervised and Unsupervised Classification of Hyperspectral Images. Remote Sens. 2022, 14, 6386. [Google Scholar] [CrossRef]
- Chen, F.; Tang, T.F.; Wang, K. Sparse smoothing preprocessing of hyperspectral images for improved classification performance. Remote Sens Lett. 2015, 6, 276–285. [Google Scholar] [CrossRef]
- Munera, S.; Hernández, F.; Cubero, S.; Blasco, C. Maturity monitoring of intact fruit and arils of pomegranate cv. ‘Mollar de Elche’ using machine vision and chemometrics. Postharvest Biol. Technol. 2019, 156, 110936. [Google Scholar] [CrossRef]
- Akbarzadeh, S.; Paap, A.; Ahderom, S.; Apopei, B.; Alameh, K. Plant discrimination by Support Vector Machine classifier based on spectral reflectance. Comput. Electron. Agric. 2018, 148, 250–258. [Google Scholar] [CrossRef]
- Li, H.G.; Yu, Y.H.; Feng, Y.; Shen, X.F. Study on Near-Infrared Spectrum Acquisition Method of Non-UniformSolid Particles. Spectrosc. Spectral Anal. 2021, 41, 2748–2753. [Google Scholar]
- Wang, F.; Qiong, C.; Zhao, C.J.; Duan, D.D.; Chen, L.Y.; Meng, X.Y. Non-destructive determination of taste-related substances in fresh tea using NIR spectra. J. Food Meas. Charact. 2023, 17, 5874–5885. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.H.; Yuan, Q.C.; Li, J.; Dai, S.H.; Liu, Z.H.; Li, M. Polyphenols inspecting method of living tea leaves based on hyperspectral reflection. J. Hunan Agric. Univ. 2015, 41, 450–454. [Google Scholar]
- Dai, F.S.; Shi, J.; Yang, C.S.; Li, Y.; Zhao, Y.; Liu, Z.Y.; An, T.; Li, X.L.; Peng, Y.; Dong, C.W. Detection of anthocyanin content in fresh Zijuan tea leaves based on hyperspectral imaging. Food Control 2023, 152, 109839. [Google Scholar] [CrossRef]
- Ong, P.L.; Chen, S.M.; Tsai, C.Y.; Chuang, Y.K. Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119657. [Google Scholar] [CrossRef]
- Yamashita, H.; Sonobe, R.; Hirono, Y.H.; Morita, A.; Ikka, T.S. Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves. Sci. Rep. 2021, 11, 4169. [Google Scholar] [CrossRef]
- Hu, H.Q.; Wei, Y.P.; Xu, X.H.; Zhang, L.; Mao, X.B.; Zhao, Y.P. Identification of the Age of Puerariae Thomsonii Radix Based on Hyperspectral lmaging and Principal Component Analysis. Spectrosc. Spectral Anal. 2023, 43, 1953–1960. [Google Scholar]
- Jiang, Y.P.; Chen, S.F.; Bian, B.; Li, Y.H.; Sun, Y.; Wang, X.C. Discrimination of Tomato Maturity Using Hyperspectral Imaging Combined with Graph-Based Semi-supervised Method Considering Class Probability Information. Food Anal. Methods 2021, 14, 968–983. [Google Scholar] [CrossRef]
- Sendin, K.; Williams, P.J.; Manley, M. Near infrared hyperspectral imaging in quality and safety evaluation of cereals. Crit Rev. Food Sci. Nutr. 2018, 58, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yu, A.Z.; Zou, X.B.; Xue, Z.X.; Gao, K.L.; Guo, W.Y. Spatial-spectral feature classification of hyperspectral image using a pretrained deep convolutional neural network. Eur. J. Remote Sens. 2021, 54, 385–397. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Yang, S.; Zhang, K.; Jiao, L. Hierarchical Feature Fusion and Selection for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar]
- Yang, B.H.; Gao, Y.; Li, H.M.; Ye, S.B.; He, H.X.; Xie, S.R. Rapid prediction of yellow tea free amino acids with hyperspectral images. PLoS ONE 2019, 14, 0210084. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Guo, Z.H.; Jin, Z.Y.; Bai, J.C.; Yu, F.H.; Xu, T.Y. Inversion Method Research of Phosphorus Content in Rice LeavesProduced in Northern Cold Region Based on WPA-BP. Spectrosc. Spectral Anal. 2023, 43, 1442–1449. [Google Scholar]
- Hou, C.Y.; Wang, Y.; Li, F.; Yuan, X.H.; Yang, X.Z.; Zhang, Z.T.; Chen, J.Y.; Li, X.W. Hyperspectral inversion of water-soluble salt ion contents in frozen saline soil. Chin. Soc. Agric. Eng. 2023, 39, 100–107. [Google Scholar]
- Ren, G.; Wang, Y.; Ning, J.; Zhang, Z. Using near-infrared hyperspectral imaging with multiple decision tree methods to delineate black tea quality. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118407. [Google Scholar] [CrossRef]
- Feng, J.; Jiao, L.; Liu, F.; Sun, T.; Zhang, X. Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images. Pattern Recognit. 2016, 51, 295–309. [Google Scholar] [CrossRef]
- Liang, N.; Duan, P.; Xu, H.; Cui, L. Multi-View Structural Feature Extraction for Hyperspectral Image Classification. Remote Sens. 2022, 14, 1971. [Google Scholar] [CrossRef]
- Sonobe, R.; Miura, Y.; Sano, T.; Horie, H. Estimating leaf carotenoid contents of shade-grown tea using hyperspectral indices and PROSPECT-D inversion. Int. J. Remote Sens. 2018, 39, 1306–1320. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, X.; Hu, Y.G.; Wu, X.H.; Zhang, X.D.; Wang, P. Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging. Comput. Electron. Agric. 2019, 160, 153–159. [Google Scholar] [CrossRef]
- Cao, Q.; Yang, G.J.; Duan, D.D.; Chen, L.Y.; Wang, F.; Xu, B.; Zhao, C.J.; Niu, F.F. Combining multispectral and hyperspectral data to estimate nitrogen status of tea plants (Camellia sinensis (L.) O. Kuntze) under field conditions. Comput. Electron. Agric. 2022, 198, 107084. [Google Scholar] [CrossRef]
- Sonobe, R.; Hirono, Y.; Oi, A. Non-Destructive Detection of Tea Leaf Chlorophyll Content Using Hyperspectral Reflectance and Machine Learning Algorithms. Plants 2020, 9, 368. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Pang, L.; Wang, H.; Xiao, J. Recognition of different Longjing fresh tea varieties using hyperspectral imaging technology and chemometrics. J. Food Process Eng. 2020, 43, 13378. [Google Scholar] [CrossRef]
- Tu, Y.X.; Bian, M.; Wan, Y.K.; Fei, T. Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV. PeerJ. 2018, 6, e4858. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Sun, J.; Yang, N.; Wu, X.H.; Zhou, X. Identification of tea white star disease and anthrax based on hyperspectral image information. J. Food Process Eng. 2021, 44, 13584. [Google Scholar] [CrossRef]
- Yuan, L.; Yan, P.; Han, W.Y.; Huang, Y.B.; Wang, B.; Zhang, J.C.; Zhang, H.B.; Bao, Z.Y. Detection of anthracnose in tea plants based on hyperspectral imaging. Comput. Electron. Agric. 2019, 167, 105039. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhang, J.C.; Huang, Y.B.; Tian, Y.Y.; Yuan, L. Detection and discrimination of disease and insect stress of tea plants using hyperspectral imaging combined with wavelet analysis. Comput. Electron. Agric. 2022, 193, 106717. [Google Scholar] [CrossRef]
- Ning, J.M.; Sun, J.J.; Zhu, X.Y.; Li, S.H.; Zhang, Z.Z.; Huang, C.W. Discriminant of withering quality of Keemun black tea based on information fusion of image and spectrum. Chin. Soc. Agric. Eng. 2016, 32, 303–308. [Google Scholar]
- Wang, S.; Wu, Z.; Cao, C.; An, M.; Luo, K.; Sun, L.; Wang, X. Design and Experiment of Online Detection System for Water Content of Fresh Tea Leaves after Harvesting Based on Near Infra-Red Spectroscopy. Sensors 2023, 23, 666. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yang, C.S.; Yuan, C.B.; Li, Y.; An, T.; Dong, C.W. Moisture content monitoring in withering leaves during black tea processing based on electronic eye and near infrared spectroscopy. Sci. Rep. 2022, 12, 20721. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Dong, W.T.; Sanaeifar, A.; Wang, X.M.; Luo, W.; Zhan, B.S.; Liu, X.M.; Li, R.L.; Zhang, H.L.; Li, X.L. Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy. Comput. Electron. Agric. 2020, 173, 105388. [Google Scholar] [CrossRef]
- Li, X.L.; Zhang, D.Y.; Dong, Y.L.; Jin, J.J.; He, Y. Spectral rapid detection of phytochemicals in tea (Camellia sinensis) based on convolutional neural network. J. China Agric. Univ. 2021, 26, 113–122. [Google Scholar]
- Luo, W.; Tian, P.; Fan, G.Z.; Dong, W.T.; Zhang, H.L.; Liu, X.M. Non-destructive determination of four tea polyphenols in fresh tea using visible and near-infrared spectroscop. Infrared Phys. Technol. 2022, 123, 104037. [Google Scholar] [CrossRef]
- Guo, J.M.; Huang, H.; He, X.L.; Cai, J.W.; Zeng, Z.X.; Ma, C.Y.; Lue, E.L.; Shen, Q.Y.; Liu, Y.H. Improving the detection accuracy of the nitrogen content of fresh tea leaves by combining FT-NIR with moisture removal method. Food Chem. 2023, 405, 134905. [Google Scholar] [CrossRef]
- Hazarika, A.K.; Chanda, S.; Sabhapondit, S.; Sanyal, S.; Tamuly, P.; Tasrin, S.; Sing, D.; Tudu, B.; Bandyopadhyay, R. Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy. J. Food Sci. Technol. 2018, 55, 4867–4876. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.X.; Tan, Z.F.; Li, Y.J.; Yang, Z.L. Rapid monitoring of flavonoid content in sweet tea (Lithocarpus litseifolius (Hance) Chun) leaves using NIR spectroscopy. Plant Methods. 2022, 18, 44. [Google Scholar] [CrossRef]
- Ye, S.; Weng, H.; Xiang, L.; Jia, L.; Xu, J. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier Transform–Near-Infrared Spectroscopy and Machine Learning. Molecules 2023, 28, 5379. [Google Scholar] [CrossRef]
- Sanaeifar, A.; Zhang, W.K.; Chen, H.T.; Zhang, D.Y.; Li, X.L.; He, Y. Study on effects of airborne Pb pollution on quality indicators and accumulation in tea plants using Vis-NIR spectroscopy coupled with radial basis function neural network. Ecotoxicol. Environ. Saf. 2022, 229, 113056. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Q.W.; Yu, J.C.; Tang, Y.L. Identification of tea based on CARS-SWR variable optimization of visible/near-infrared spectrum. J. Sci. Food Agric. 2020, 100, 371–375. [Google Scholar]
- Wang, S.; Feng, L.; Liu, P.; Gui, A.; Teng, J.; Ye, F.; Wang, X.; Xue, J.; Gao, S.; Zheng, P. Digital Prediction of the Purchase Price of Fresh Tea Leaves of Enshi Yulu Based on Near-Infrared Spectroscopy Combined with Multivariate Analysis. Foods 2023, 12, 3592. [Google Scholar] [CrossRef] [PubMed]
- Sanaeifar, A.; Zhu, F.L.; Sha, J.J.; Li, X.L.; He, Y.; Zhan, Z.H. Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra. Sci. Total Environ. 2022, 802, 149824. [Google Scholar] [CrossRef]
- Li, C.L.; Zong, B.Z.; Guo, H.W.; Luo, Z.; He, P.M.; Gong, S.Y.; Fan, F.Y. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117697. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cheng, H.; Zeng, J.M.; Wang, L.Y.; Wei, K.; He, W.; Wang, W.F.; Liu, X. Study on Identification and Traceability of Tea Material Cultivar byCombined Analysis of Multi-Partial Least Squares Models Based onNear Infrared Spectroscopy. Spectrosc. Spectral Anal. 2010, 30, 2650–2653. [Google Scholar]
- Chen, Y.; Deng, J.; Wang, Y.X.; Liu, B.P.; Ding, J.; Mao, X.J.; Zhang, J.; Hu, H.T.; Li, J. Study on discrimination of white tea and albino tea based on near-infrared spectroscopy and chemometrics. J. Sci. Food Agric. 2014, 94, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Zheng, P.C.; Gong, Z.M.; Zhang, Z.Z.; Teng, J.; Wang, X.P.; Lu, S.F. Establishment of discrimination model for different elevationfresh tea leaves based on near infrared spectroscopy. J. Huazhong Agric. Univ. 2018, 37, 89–94. [Google Scholar]
- Li, X.L.; Luo, L.B.; He, Y.; Xu, N. Determination of dry matter content of tea by near and middle infrared spectroscopy coupled with wavelet-based data mining algorithms. Comput. Electron. Agric. 2013, 98, 46–53. [Google Scholar] [CrossRef]
- Pielorz, S.; Fecka, I.; Bernacka, K.; Mazurek, S. Quantitative Determination of Polyphenols and Flavonoids in Cistus × incanus on the Basis of IR, NIR and Raman Spectra. Molecules 2023, 28, 161. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Mei, W.J.; Wu, X.H.; Feng, Y.J.; Wu, B. Classification of Tea Varieties Using Fuzzy Covariance Learning Vector Quantization. Spectrosc. Spectral Anal. 2023, 43, 638–643. [Google Scholar]
- Wu, D.M.; Guo, J.; Sun, M.M.; Zhang, Y. Infrared and Terahertz Spectra of Pu’er White Tea with Different Degrees of Oxidation. J. Food Process. Preserv. 2023, 2023, 3290917. [Google Scholar] [CrossRef]
- Sun, X.D.; Xu, C.; Luo, C.G.; Xie, D.F.; Fu, W.; Gong, Z.Y.; Wang, X.P. Non-destructive detection of tea stalk and insect foreign bodies based on THz-TDS combination of electromagnetic vibration feeder. Food Qual. Saf. 2023, 7, fyad004. [Google Scholar] [CrossRef]
- Lu, Y.; Asante, E.A.; Duan, H.; Hu, Y. Quantitative Assessment of Cold Injury in Tea Plants by Terahertz Spectroscopy Method. Agronomy 2023, 13, 1376. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gao, W.J.; Cui, C.J.; Zhang, Z.Z.; He, L.L.; Zheng, J.K.; Hou, R.Y. Development of a method to evaluate the tenderness of fresh tea leaves based on rapid, in-situ Raman spectroscopy scanning for carotenoids. Food Chem. 2020, 308, 125648. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Xu, K.W.; He, Y. Determination of Carotenoids Contents in Tea Leaves Based on Raman Spectroscopy. Spectrosc. Spectral Anal. 2017, 37, 3465–3470. [Google Scholar]
- Zeng, J.J.; Ping, W.; Sanaeifar, A.; Xu, X.; Luo, W.; Sha, J.J.; Huang, Z.X.; Huang, Y.F.; Liu, X.M.; Zhan, B.S.; et al. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods 2021, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Shi, X.Z.; Li, Q.; Liu, Z.W. Detection of fresh tea leaves of Zhuye by Raman spectroscopy. Chin. J. Quantum Electron. 2017, 34, 513–517. [Google Scholar]
- Li, X.L.; Luo, L.B.; Hu, X.Q.; Lou, B.G.; He, Y. Revealing the Chemical Changes of Tea Cell Wall Induced by Anthracnose with Confocal Raman Microscopy. Spectrosc. Spectral Anal. 2014, 34, 1571–1576. [Google Scholar]
- Liu, Y.D.; Lin, X.D.; Gao, H.G.; Gao, X.; Wang, S. Quantitative Analysis of Chlorophyll Content in Tea Leaves byFluorescence Spectroscopy. Laser Optoelectron. Prog. 2021, 58, 452–461. [Google Scholar]
- Zheng, J.P.; Wu, R.M.; Xiong, J.F.; Wang, P.W.; Xiao, H.G.; Fan, Y.; Ai, S.R. Nondestructive Detection of Pesticide Residues on Fresh Tea Leave usingFluoresce Hyperspectral Imaging Combined with Spectral Angle Algorithm. Laser J. 2016, 37, 57–60. [Google Scholar]
- Liu, Y.D.; Lin, X.D.; Gao, H.G.; Wang, S.; Gao, X. Research on Tea Cephaleuros Virescens Kunze Model Based onChlorophyll Fluorescence Spectroscopy. Spectrosc. Spectral Anal. 2021, 41, 2129–2134. [Google Scholar]
Spectral Technology | Wavelength (nm) | Technical Principle | Benefits | Shortcomings |
---|---|---|---|---|
NIRS | 780–2500 | multiple- and combined-frequency absorption of vibrations of hydrogen-containing groups X-H (X = C, N, O) [24]. | high penetration depth, weak background signal interference, high spatial, and temporal resolution [25]. | spectral data processing is complex and susceptibleto moisture interference [26]. |
MIRS | 2500–25,000 | absorption of functional groups in molecules that exhibit violent fundamental frequency vibrations in the mid-infrared band [27]. | high absorption intensity, high sensitivity, no sample pretreatment required. | shallow penetration depth, susceptible to moisture interference. |
THz | 30,000–3,000,000 | absorption of molecular vibrations and rotations in the terahertz band [28]. | low photon energy, good penetration, wide frequency range, and high characterization capability. | time-consuming and expensive equipment [29]. |
RS | / | molecular vibration information is obtained by utilizing the frequency shift and intensity change of scattered light when the sample interacts with the laser light source [30]. | efficient, non-destructive and moisture free. | susceptible to fluorescence, high background signal interference, weak signal [31]. |
FS | 200–800 | characterization of fluorescence and its intensity based on the phenomenon of photoluminescence of a substance. | high sensitivity, selectivity and ease of use [32]. | not widely enough applied, environmentally sensitive [33]. |
Preprocessing | Methodologies | Specificities | Advantages | Disadvantages |
---|---|---|---|---|
normalization | MMN | linear scale | simple calculation | sensitivity to outliers |
VN | resizing vectors | maintaining spectral features | dependent on the selected spectral range | |
baseline correction | MSC | detection and correction of multiple scattering signals in spectra | eliminating the effect of multiple scattering on spectral data | computationally complex |
SNV | linear transformation | data standardized and easily interpretable | not applicable to non-normal distributions | |
DT | eliminating trend | reducing the interference of trends in analysis | information loss | |
OSC | orthogonal transform | elimination of cross-interference | higher real-time requirements | |
MA | calculation of the average value | trend identification, noise reduction | produce lagged effect | |
noise reduction | SG | polynomial fitting | excellent fitting effect | computationally complex |
FD | calculating the rate of change | highlighting trends and changes in data | increased noise in the data | |
SD | calculating curvature | highlighting curvature and variation in data | enhanced noise sensitivity | |
FT | frequency and time domain transformation | ability to handle cyclical data | computationally complex | |
WT | wavelet functions converted to different scales | capable of handling non-stationary and non-linear signals | complexity of processing |
Method | Specificities | Advantages | Disadvantages |
---|---|---|---|
SDA | stepwise selection and exclusion of variables | reduced data dimensions | data sensitivity |
SPA | continuous-projection iterative computation | elimination of redundant information | noise sensitivity |
CARS | dynamically adjusting feature weights | enhances image contrast and detail | sensitivity to noise and artifacts |
GA | simulation of biological evolutionary processes | For high-dimensional data | higher computational costs, results dependent on parameterization |
PCA | linear transformation | reduced data dimensions | loss of partial detail information |
RF | simulating a frog jumping randomly to find an optimal solution | reduced computational complexity and risk of overfitting | unstable results |
MC-UVE | simulation of Monte Carlo Sampling | no a priori information required | noise sensitivity |
Types | Method | Specificities | Advantages | Disadvantages |
---|---|---|---|---|
classification modeling | LD | finding linear decision boundaries | effective dimensionality reduction and categorization of data | sensitivity to outliers |
KNN | voting mechanism based on neighboring samples | for multi-category and non-linear problems | noise sensitivity | |
RF | integration based on multiple decision trees | high accuracy and overfitting resistance | high memory and computing resource usage | |
SVM | maximum margin criterion | ideal for handling high-dimensional data | computationally complex | |
ELM | single hidden layer feed-forward neural network | fast training speed | handling nonlinear problems poorly | |
NB | based on bayes theorem | simple and fast calculation | assumptions of independence of characteristics may not be realistic | |
regression Modeling | PLSR | minimizing the covariance | reducing dimensionality and multicollinearity | easily overfitted and sensitive to noise |
MLR | minimize the residual sum of squares | simple, highly interpretable | easily influenced by collinearity | |
SVMR | maximum margin criterion | suitable for handling high-dimensional data | computationally complex | |
ELM | single hidden layer feed-forward neural network | fast training speeds | handling nonlinear problems poorly | |
KELM | single-layer neural networks combined with kernel tricks | efficient handling of non-linear problems | computationally complex | |
GPR | based on Bayesian theory and statistical learning theory | suitable for dealing with high-dimensional data, nonlinear problems | computationally complex | |
SGB | Integration based on several decision trees | efficient handling of large-scale data | noise sensitivity | |
RFR | Integration based on multiple decision trees | high robustness | noise sensitivity |
Spectroscopy | Quantitative Analysis | Qualitative Analysis |
---|---|---|
NIRS | moisture content [100,101], catechin, caffeine [102,103], theanine [104], nitrogen content [105], tea polyphenol [106], flavonoids [107], EGCG [108], Heavy metals [109]. | Tea varieties [110], Tea quality grade [111,112], Tea maturity [113], Traceability of Tea Raw Materials [114], diseases [115], Tea tree growing environment [116]. |
MIRS | Dry Matter of Tea [117], Tea polyphenols, flavonoids [118] | Tea varieties identification [106,119] |
THz | Tea tree cold injury detection [120]. | Separation of tea leaves from foreign matter [121], Determination of the degree of oxidation of tea leaves [122]. |
RS | Carotenoid measurement [123,124], Chlorophyll measurement [125] | Quality Identification [126], Anthracnose Identification [127] |
FS | Chlorophyll measurement [128] | Pesticide Residue Determination [129], Diagnosis of leaf spot disease [130]. |
Appliance | Pre-Process | Feature Extraction | Modeling | Best Result | Reference |
---|---|---|---|---|---|
Estimation of tea polyphenols | SG, FT, Polynomial smoothing, Neighbor average method, FD, SD | PCA | LSR, MLR, Polynomial regression | Neighbor average method-FD-PCA-LSR Rc = 0.99 | [75] |
Detection of anthocyanin content | MSC, SNV, SG, FD | CARS, VCPA, VCPA-IRIV | PLSR, SVR | MSC-SG-FD-VCPA-SVR Rc = 0.96 | [76] |
Prediction of chlorophylls and carotenoids content | MSC, SNV, FD | Second derivative and regression coefficient | PLSR | SNV-PLSR Rp = 0.96, Rp = 0.93 | [9] |
Detection of chlorophylls | Splice correction | Vegetation index | PROSPECT–D | Splice correction-Vegetation index-PROSPECT–D R2 = 0.83 | [90] |
Estimating the catechin concentrations | / | / | PLSR, Mutual prediction | PLSR R2 = 0.87 | [40] |
Estimation of water content | SG, MSC, SNV | SR | MLR, PLSR | SG-OSC-SW-PLSR Rc = 0.83 | [41] |
Prediction of tea polyphenols, | SG, MSC, FD | CARS, SPA, UVE | SVM, PLSR, RF | MSC-FD-SG-CARS-PLSR R2 = 0.91 | [42] |
Estimation of crude fiber contents | / | SPA, CARS | PLSR, MLR | SPA-MLR, R2 = 0.84 | [43] |
Estimation of water content | SG, MSC, OSC | SPA, CARS, SPA-SR, CARS-SR | MLR | SG-MSC-CARS-SR-MLR R2 = 0.86 | [91] |
Detection of nitrogen content | SNV | Vegetation index, VCPA, CARS | PLSR, SVM, RF | SNV-CARS-SVMR R2 = 0.91 | [92] |
Prediction of nitrogen content | MSC, SNV, FD, SD | / | PLSR, PLS-DA, LS-VM | SNV-PLSR Rc = 0.92 | [52] |
Estimation of nitrogen content | SG, Detrending, FD, MSC, SNV, CWT | SPA, CARS, VCPA | PLSR | CWT-VCPA-PLSR R2 = 0.95 | [53] |
Detection of chlorophyll content | FD | / | RF, SVM, DBN, KELM | KELM RMSE = 8.94 ± 3.05 | [93] |
Detection of REC | MSC, SG, FD | SPA, UVE | PLSR, SVMR, CNN | MSC-FD-SG-UVE-SVMR R2 = 0.80 | [54] |
Longjing fresh tea Variety identification | MSC, SNV, MSC+SNV | vegetation index, PCA | SVM, BP neural network | MSC+SNV-PCA-BP neural network Recognition accuracy = 98% | [94] |
Identification of tea variety | MNF | PCA, ICA | MLC, MDC, ANN, SVM | MNF-SVM-PCA accuracy = 95% | [95] |
Identification of tea quality | SNV, SG | / | MBKA-Net | SNV-MBKA-Net accuracy = 96.18% | [11] |
Identification of white star disease | SG, SNV, SD, Semantic segmentation | SPA | PLS-DA, SVM, ELM | SG-SPA-ELM accuracy = 95.77% | [96] |
Detection of anthracnose | color image extraction ROI | vegetation index | ISODATA, 2D thresholding | ISODATA Kappa = 0.91 | [97] |
Detection of anthracnose | extraction ROI, Continuum removal analysis, CWA | vegetation index | SVM, FLDA, RF | CWA- vegetation index- FLDA accuracy = 94.28% | [98] |
Discriminant of withering quality | / | SPA, GLCM, PCA | LDA, SVM, ELM, PLS | PCA-LDA accuracy = 94.64% | [99] |
Appliance | Pre-Process | Feature Extraction | Modeling | Beat Result | Reference |
---|---|---|---|---|---|
Detection of Water content | SNV, Noise reduction, Normalization | RF, PCA, Pearson correlation analysis | SVR | RF-Pearson correlation analysis-SVR Rp = 0.99 | [100] |
Detection of catechin, caffeine | SG, SNV, MSC | CARS-SPA | MLR, LDA | SG-CARS-SPA-MLR Rp = 0.97 | [102] |
Determination of tea polyphenols | SG, SNV, Baseline | CARS, SPA, RF | PLS, MLR, LS-SVM | SNV-SPA-LS-SVM Rp = 0.98 | [103] |
Detection of nitrogen content | FD, External parameter orthogonalization | SPA, Ordered prediction selection, VCPA-IRIV | PLSR | EPO-VCPA-IRIV-PLSR Rp = 0.97 | [105] |
Estimation of total polyphenols | SNV, MSC, FD, SD | / | PLSR | MSC-PLSR R2 = 0.93 | [106] |
Monitoring of flavonoid content | Remove noise and baseline, MA, SG, SNV, MSC, FD, SD | / | PLSR | SG-SD-PLSR Rp = 0.95 | [107] |
Prediction of EGCG | SG, SNV, VN, MSC, FD | CARS, RF | PLSR, LS-SVR | CARS-LS-SVR Rp = 0.98 | [108] |
Detection of heavy metals | / | correlation-based feature selection | PLS, RBFNN | CFS-PLS-RBFNN Rp = 0.94 | [109] |
Identification of tea varieties | MSC | CARS, SWR | GRNN, PNN | MSC-CARS-SWR-PNN Accuracy = 100% | [110] |
Prediction of tea quality grade | SNV, SD, FD, SD, MSC | si-PLS, GA, PCA | BP-ANN | SNV-SD-si-PLS-GA-PCA-BP-ANN Rp = 0.99 | [112] |
Discrimination of tea maturity | FD, SD, Mean centering, SNV, MSC, SG | PCA | BPNN, GS-SVM, PSO-SVM | SG-PCA-PSO-SVM Accuracy = 98.92% | [113] |
Traceability of Tea Raw Materials | Smoothing, MSC, FD, SD | / | PLS | MSC-PLS R2 = 0.82 | [114] |
Discrimination of diseases | MSC, SNV, SG, KND, FD, SD | / | DPLS, DA | MSC-FD-SG-DA Accuracy = 100% | [115] |
Identification of tea growing environment | Norris filter, SG, MSC, FD, Mean | / | SMLR, PCR, Si-PLS | Mean-Si-PLS Rc = 0.96 | [116]. |
Appliance | Pre-Process | Feature Extraction | Modeling | Beat Result | Reference |
---|---|---|---|---|---|
Determination of dry matter content | Smoothing, MSC, SNV | KPCA, WPT–SA | LS-SVM, PLS | SNV-WPT-LS-SVM Rp = 0.96 | [117] |
Determination of polyphenols and flavonoids | / | PCA | PLS | PCA-PLS R = 0.98 | [118] |
Detection of tea stalk and insect foreign bodies | / | / | KNN | KNN Accuracy = 100% | [119] |
Appliance | Pre-Process | Feature Extraction | Modeling | Beat Result | Reference |
---|---|---|---|---|---|
Degrees of oxidation | / | PCA | Hierarchical cluster analysis | PCA-HCA | [120] |
Detection of tea stalk and insect foreign bodies | / | / | KNN | KNN Accuracy = 100% | [121] |
Assessment of cold injury | / | / | two-dimensional correlation spectroscopy-PLSR, average intensity-PLSR | 2DCOS-PLSR R = 0.91 | [122] |
Appliance | Pre-Process | Feature Extraction | Modeling | Beat Result | Reference |
---|---|---|---|---|---|
Detection of carotenoid content | Smooting, Normalization, MSC, Baseling, WT | SPA | PLSR | WT-SPA-PLS Rp = 0.87 | [124] |
Detection of photosynthetic pigments | MSC, WT, SNV, RCF, airPLS | CARS | PLSR | RCF-CARS-PLSR Rp = 0.89 | [125] |
Identification of tea Quality | Smooting, Normalization | PCA | LDA | Smooting-Normalization-PCA-LDA Accuracy = 100% | [126] |
Anthracnose Identification | Baseline correction | PCA | / | Baseline correction-PCA Accuracy = 95% | [127] |
Appliance | Pre-Process | Feature Extraction | Modeling | Beat Result | Reference |
---|---|---|---|---|---|
Detection of chlorophyll content | SG | SPA, UVE | PLSR, BiPLS | SG-SPA-BiPLS Rp = 0.96 | [128] |
Determination of Pesticide Residue | Black and white correction | PCA | Spectral angle mappe | Black and white correction-PCA-SAM Accuracy = 100% | [129] |
Diagnosis of leaf spot disease | SG | PCA | PLS-DA, SVM, LDA | SG-PCA-LDA Accuracy = 98.9% | [130] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Luo, Q.; Yang, L.; Gao, C.; Ling, C.; Wu, W. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology. Foods 2024, 13, 25. https://doi.org/10.3390/foods13010025
Tang T, Luo Q, Yang L, Gao C, Ling C, Wu W. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology. Foods. 2024; 13(1):25. https://doi.org/10.3390/foods13010025
Chicago/Turabian StyleTang, Ting, Qing Luo, Liu Yang, Changlun Gao, Caijin Ling, and Weibin Wu. 2024. "Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology" Foods 13, no. 1: 25. https://doi.org/10.3390/foods13010025
APA StyleTang, T., Luo, Q., Yang, L., Gao, C., Ling, C., & Wu, W. (2024). Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology. Foods, 13(1), 25. https://doi.org/10.3390/foods13010025