Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.2. Infrared Measurements
2.3. Fat Determination and Gas Chromatographic Analysis
2.4. Dietary Indicators
C14:0 + C16:0).
2.5. Reference Values
2.6. Statistical Analysis
2.7. Ethical Statement
3. Results and Discussion
- For the band at 3450 cm−1: I2 > I1 ≥ I3 > I4;
- For the band at 3106 cm−1: I2 > I1 ≥ I3 > I4;
- For the band at 1663 cm−1: I1 ≥ I3 > I2 > I4;
- For the band at 1116 cm−1: I1 > I4 > I2 ≥ I4;
- For the band at 1074 cm−1: I1 > I2 > I3 > I4;
- For the band at 1027 cm−1: I1 > I2 > I3 > I4.
- For the band at 3007 cm−1: I4 > I3 > I1 ≥ I2;
- For the band at 1740 cm−1: I4 > I3 ≥ I1 > I2;
- For the band at 1173 cm−1: I4 > I3 > I1 ≥ I2;
- For the band at 716 cm−1: I4 > I3 > I1 ≥ I2.
- For the band at 3278 cm−1: I3 > I1 > I2 > I4;
- For the band at 1664 cm−1: I1 > I3 > I2 > I4;
- For the band at 1623 cm−1: I1 > I3 > I2 > I4;
- For the band at 1533 cm−1: I2 > I3 > I1 > I4;
- For the band at 1513 cm−1: I1 > I2 > I3 > I4.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key of good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef] [PubMed]
- Krongdang, S.; Phokasem, P.; Venkatachalam, K.; Charoenphun, N. Edible Insects in Thailand: An Overview of Status, Properties, Processing, and Utilization in the Food Industry. Foods 2023, 12, 2162. [Google Scholar] [CrossRef] [PubMed]
- Ruskova, M.; Petrova, T.; Goranova, Z. Edible insects—New meat alternative: A review. J. Cent. Eur. Agric. 2023, 24, 260–267. [Google Scholar] [CrossRef]
- Mann, N. Dietary lean red meat and human evolution. Eur. J. Nutr. 2000, 39, 71–79. [Google Scholar] [CrossRef]
- Biesalski, H.K. Meat as a component of a healthy diet—Are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Merten, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Fao Forestry Papers 2013; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef]
- Jongema, Y. LIST2017 avh.xls (wur.nl). List of Edible Insects of the World-WUR. 2017. Available online: https://www.wur.nl/en/research-results/chair-groups/plant-sciences/laboratory-of-entomology/edible-insects/worldwide-species-list.htm (accessed on 11 December 2023).
- van Huis, A.; van Gurp, H.; Dicke, M. The Insect Cookbook. Food for a Sustainable Planet; Columbia University Press: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Loganathan, R.; Haldhar, S.M. Utilization of edible insect as food in Northeast India. Indian Entomol. 2020, 1, 25–31. [Google Scholar]
- European Parliament and Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliam. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- EFSA Scientific Committee. Risk profile related to production and consumption of insects as food and feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Scientific Opinion on the safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06343. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Knutsen, H.K.; et al. Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06667. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Knutsen, H.K.; et al. Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, e06779. [Google Scholar] [CrossRef]
- EFSA NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Knutsen, H.K.; et al. Safety of frozen and freeze-dried formulations of the lesser mealworm (Alphitobius diaperinus larva) as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07325. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2021/882 of 1 June 2021. Authorising the Placing on the Market of Dried Tenebrio molitor larva as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L194/16. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/882/oj (accessed on 9 December 2023).
- Commission Implementing Regulation (EU) 2022/169 of 8 February 2022. Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Yellow Mealworm (Tenebrio molitor larva) as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L 28/10. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/169/oj (accessed on 9 December 2023).
- Commission Implementing Regulation (EU) 2021/1975 of 12 November 2021. Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Locusta migratoria as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council and Amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L 402/10. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1975 (accessed on 9 December 2023).
- Commission Implementing Regulation (EU) 2022/188 of 10 February 2022. Authorising the Placing on the Market of Frozen, Dried and Powder Forms of Acheta domesticus as a Novel Food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and Amending Commission Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L 30/108. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0188 (accessed on 9 December 2023).
- Commission Implementing Regulation (EU) 2023/5 of 3 January 2023. Authorising the Placing on the Market of Acheta domesticus (House Cricket) Partially Defatted Powder as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L 2/9. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/5/oj (accessed on 9 December 2023).
- Commission Implementing Regulation (EU) 2023/58 of 5 January 2023. Authorising the Placing on the Market of the Frozen, Paste, Dried and Powder Forms of Alphitobius diaperinus Larvae (Lesser Mealworm) as a Novel Food and Amending Implementing Regulation (EU) 2017/2470. Official Journal of the European Union L 5/10. Available online: https://eur-lex.europa.eu/eli/reg_impl/2023/58/oj (accessed on 9 December 2023).
- Ververis, E.; Bou’, G.; Poulsen, M.; Monteiro Pires, S.; Niforou, A.; Thomsen, S.T.; Tesson, V.; Federighi, M.; Naska, A. A systematic review of the nutrient composition, microbiological and toxicological profile of Acheta domesticus (house cricket). J. Food Compos. Anal. 2022, 114, 104859. [Google Scholar] [CrossRef]
- Gkinali, A.A.; Matsakidou, A.; Vasileiou, E.; Paraskevopoulou, A. Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends Food Sci. Technol. 2022, 119, 495–507. [Google Scholar] [CrossRef]
- Van Huis, A. Edible crickets, but which species? J. Insects Food Feed. 2020, 6, 91–94. [Google Scholar] [CrossRef]
- Abdel-Moniem, A.S.H.; El-Kholy, M.Y.; ElSheikh, W.E.A. The Red Palm Weevil, Rhynchophorus ferrugineus Olivier, As Edible Insects for Food and Feed a Case Study in Egypt. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 1653. [Google Scholar]
- Dymińska, L.; Calik, M.; Albegar, A.M.M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative Determination of the Iodine Values of Unsaturated Plant Oils Using Infrared and Raman Spectroscopy Methods. Int. J. Food Prop. 2017, 20, 2003–2015. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. In Agricultural Chemicals, Contaminants; William, H., Ed.; AOAC International: Gaithersburg, MD, USA, 2010; Volume I, ISBN 0-935584-67-6. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemistry Society, 2nd ed.; American Oil Chemistry Society: Champaign, IL, USA, 1997; pp. 1–2. [Google Scholar]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary disease seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordonez, J.A.; Cambero, I.; Santos, C.; Pin, C.; De la Hoz, L. Fatty acid compositions of selected varieties of Spanish dry ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Official Journal of the European Union L 304/18. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj (accessed on 9 December 2023).
- StatSoft, Inc. Statistica Software Program, version 13.0; StatSoft, Inc.: Tulsa, OK, USA, 2013.
- Li, Y.H.; Cheng, Y.; Zhang, Z.L.; Wang, Y.; Mintah, B.K.; Dabbour, M.; Jiang, H.; He, R.H.; Ma, H.L. Modification of rapeseed protein by ultrasound-assisted pH shift treatment: Ultrasonic mode and frequency screening, changes in protein solubility and structural characteristics. Ultrason. Sonochemistry 2020, 69, 105240. [Google Scholar] [CrossRef] [PubMed]
- Waśko, A.; Bulak, P.; Polak-Berecka, M.; Nowak, K.; Polakowski, C.; Bieganowski, A. The frst report of the physicochemical structure of chitin isolated from Hermetia illucens. Int. J. Biol. Macromol. 2016, 92, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Zając, A.; Hanuza, J.; Wandas, M.; Dymińska, L. Determination of N-acetylation degree in chitosan using Raman spectroscopy. Spectrochim. Acta-Part A 2015, 134, 114–120. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chalmers, J.M.; Griffiths, P.R. Handbook of Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- De Castro, R.J.S.; Ohara, A.; Aguilar, J.G.S.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Importance of the ratio of omega-6/ to omega-3 essential fatty acids: Evoluationary aspects. World Rev. Nutr. Diet. 2003, 92, 1–22. [Google Scholar]
- Kolobe, S.D.; Manyelo, T.G.; Malematja, E.; Sebola, N.A.; Mabelebele, M. Fats and major fatty acids present in edible insects utilised as food and livestock feed. Vet. Anim. Sci. 2023, 22, 100312. [Google Scholar] [CrossRef]
- Kavle, R.R.; Pritchard, E.T.M.; Carne, A.; Bekhit, A.E.D.A.; Agyei, D. Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus). Appl. Sci. 2023, 13, 363. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019, 272, 267–272. [Google Scholar] [CrossRef]
- Kulma, M.; Plachý, V.; Kouřimská, L.; Vrabec, V.; Bubová, T.; Adámková, A.; Hučko, B. Nutritional value of three Blattodea species used as feed for animals. J. Anim. Feed Sci. 2016, 25, 354–360. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van der Poel, A.F.B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 2011, 30, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Harsányi, E.; Juhász, C.; Kovács, E.; Huzsvai, L.; Pintér, R.; Fekete, G.; Varga, Z.I.; Aleksza, L.; Gyuricza, C. Evaluation of Organic Wastes as Substrates for Rearing Zophobas morio, Tenebrio molitor, and Acheta domesticus Larvae as Alternative Feed Supplements. Insects 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Ademolu, K.O.; Simbiat, E.S.; Concilia, I.I.; Adeyinka, A.A.; Abiodun, O.J.; Adebola, A.O. Gender variations in nutritive value of adult variegated grasshopper, Zonocerus variegatus (L) (Orthoptera: Pygomorphidae). J. Kans. Entomol. Soc. 2017, 90, 117–121. [Google Scholar] [CrossRef]
- Akhtar, Y.; Isman, M.B. Insects as an Alternative Protein Source. Proteins in Food Processing. In Food Science, Technology and Nutrition; Woodhead Publishing Series: Cambridge, UK, 2018; pp. 263–288. [Google Scholar]
- Ghosh, S.; So-Min, L.; Chuleui, J.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. Asia Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- FAO. Fats and Fatty Acids in Human Nutrition; Report of an Expert Consultation; Food and Nutrition Paper 91; FAO: Rome, Italy, 2010; pp. 11–17. [Google Scholar]
- WHO/FAO. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization Technical Report Series 916; WHO: Geneva, Switzerland, 2003.
- Schwingshackl, L.; Zähringer, J.; Beyerbach, J.; Werner, S.S.; Heseker, H.; Koletzko, B.; Meerpohla, J.J. Total Dietary Fat Intake, Fat Quality, and Health Outcomes: A Scoping Review of Systematic Reviews of Prospective Studies. Ann. Nutr. Metab. 2021, 77, 4–15. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Zähringer, J.; Beyerbach, J.; Werner, S.S.; Nagavcia, B.; Heseker, H.; Koletzko, B.; Meerpohla, J.J. A Scoping Review of Current Guidelines on Dietary Fat and Fat Quality. Ann. Nutr. Metab. 2021, 77, 65–82. [Google Scholar] [CrossRef]
Parameter | Acheta domesticus (A) | Gryllus bimaculatus (A) | Tenobrio molitor (L) | Rhynchophorus ferrugineus (L) |
---|---|---|---|---|
Protein | 56.8 | 53.4 | 56.0 | 25.8 |
Fat | 22.8 | 26.4 | 26.6 | 40.8 |
Fibre | 3.3 | 6.6 | 5.3 | * ns |
Energy | 518.0 | 466.7 | 511.0 | 583.0 |
Fatty Acids and Dietary Indicators | Acheta domesticus (A) | Gryllus bimaculatus (A) | Tenobrio molitor (L) | Rhynchophorus ferrugineus (L) |
---|---|---|---|---|
SFA | 37.29 b ± 1.70 | 35.13 b ± 1.86 | 27.06 a ± 1.44 | 43.60 c ± 3.56 |
C 12:0 | - | 0.60 ± 0.03 | - | - |
C 14:0 | 0.44 a ± 0.02 | 0.91 b ± 0.05 | 2.97 c ± 0.16 | 2.89 c ± 0.24 |
C 16:0 | 25.02 b ± 1.14 | 25.46 b ± 1.35 | 18.99 a ± 1.01 | 34.49 c ± 2.82 |
C 17:0 | - | - | 0.19 ± 0.01 | 0.17 ± 0.01 |
C 18:0 | 10.69 d ± 0.49 | 7.06 c ± 0.37 | 3.87 a ± 0.21 | 5.26 b ± 0.43 |
C 20:0 | 0.61 c ± 0.03 | 0.53 b ± 0.03 | 0.41 a ± 0.02 | 0.39 a ± 0.03 |
C 22:0 | 0.22 b ± 0.01 | - | - | 0.15 a ± 0.01 |
MUFA | 28.22 a ± 1.29 | 38.57 b ± 2.04 | 46.13 c ± 2.46 | 38.92 b ± 3.18 |
C 16:1 | 0.57 a ± 0.03 | 2.30 c ± 0.12 | 1.46 b ± 0.08 | 2.40 c ± 0.20 |
C 18:1 | 24.28 a ± 1.11 | 32.15 b ± 1.70 | 40.20 c ± 2.14 | 32.36 b ± 2.64 |
C 24:1 | - | 0.26 ± 0.01 | 0.23 ± 0.01 | - |
PUFA | 34.49 c ± 1.57 | 26.29 b ± 1.39 | 26.76 b ± 1.43 | 17.48 a ± 1.43 |
C 18:2 n − 6 | 32.82 c ± 1.50 | 24.29 b ± 1.29 | 25.41 b±1.35 | 16.18 a ± 1.32 |
C 18:3 n − 3 | 0.88 b ± 0.04 | 0.91 bc ± 0.05 | 0.68 a ± 0.04 | 1.05 c ± 0.09 |
UFA | 62.71 a ± 2.86 | 64.83 ab ± 3.43 | 72.94 b ± 3.89 | 56.40 a ± 4.61 |
PUFA/SFA | 0.92 c ± 0.04 | 0.75 b ± 0.02 | 0.99 c ± 0.05 | 0.40 a ± 0.02 |
PUFA n − 3 | 1.10 b ± 0.05 | 1.13 b ± 0.06 | 0.75 a ± 0.04 | 1.08 b ± 0.09 |
PUFA n − 6 | 32.91 c ± 1.50 | 24.33 b ± 1.29 | 25.41 b ± 1.35 | 16.18 a ± 1.32 |
PUFA n − 6/PUFA n − 3 | 29.91 c ± 0.56 | 21.53 b ± 0.44 | 33.88 d ± 0.62 | 14.98 a ± 0.35 |
AI | 0.43 a ± 0.00 | 0.46 a ± 0.01 | 0.43 a ± 0.00 | 0.82 b ± 0.01 |
TI | 1.07 b ± 0.02 | 0.96 b ± 0.00 | 0.68 a ± 0.00 | 1.38 c ± 0.01 |
h/H | 2.28 b ± 0.01 | 2.13 b ± 0.01 | 3.02 c ± 0.02 | 1.33 a ± 0.01 |
Nutrients | Energy Percentage (%E) from the Diet Recommended by FAO b | g/Day (for a 2000 kcal Diet) c | % Coverage for a 2000 kcal Diet | |||
---|---|---|---|---|---|---|
Acheta domesticus (A) | Gryllus bimaculatus (A) | Tenobrio molitor (L) | Rhynchophorus ferrugineus (L) | |||
Protein | 10–15 | 50–75 | 75.7–113.6 | 71.2–106.8 | 66.7–100.0 | 34.4–51.6 |
Fat | 20–35 | 44–78 | 29.3–51.9 | 33.9–60.2 | 34.2–60.5 | 52.3–92.8 |
SFA | <10 | <22 | 38.7 | 42.3 | 32.80 | 81.0 |
MUFA | 15–20 | 33–44 | 14.6–19.5 | 23.2–30.9 | 27.9–37.2 | 36.1–48.2 |
PUFA | 6–11 | 13–24 | 32.8–60.5 | 29.0–53.5 | 29.7–54.9 | 29.8–54.9 |
n − 6 | 2.5–10 | 5.6–22 | 34.1–134.1 | 29.3–115.0 | 30.8–120.9 | 30.0–118.0 |
n − 3 | 0.5–2 | 1.1–4.4 | 5.7–22.7 | 6.8–27.3 | 4.5–18.2 | 10.0–40.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orkusz, A.; Dymińska, L.; Banaś, K.; Harasym, J. Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus. Foods 2024, 13, 32. https://doi.org/10.3390/foods13010032
Orkusz A, Dymińska L, Banaś K, Harasym J. Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus. Foods. 2024; 13(1):32. https://doi.org/10.3390/foods13010032
Chicago/Turabian StyleOrkusz, Agnieszka, Lucyna Dymińska, Karol Banaś, and Joanna Harasym. 2024. "Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus" Foods 13, no. 1: 32. https://doi.org/10.3390/foods13010032
APA StyleOrkusz, A., Dymińska, L., Banaś, K., & Harasym, J. (2024). Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus. Foods, 13(1), 32. https://doi.org/10.3390/foods13010032