Quality Characteristics of Raspberry By-Products for Sustainable Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Material and Samples Preparation
2.3. Determination of Weight
2.4. Determination of Moisture
2.5. Determination of Peroxide Value
2.6. Color Measurement
2.7. Determination of the Amount of Macro- and Microelements
2.8. Statistical Analysis
3. Results and Discussion
3.1. Raspberry Seeds Characteristics before Oil Extraction
3.2. Comparison of Raspberry Seed Characteristics before and after Oil Pressure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frías-Moreno, M.N.; Parra-Quezada, R.A.; González-Aguilar, G.; Ruíz-Canizales, J.; Molina-Corral, F.J.; Sepulveda, D.R.; Salas-Salazar, N.; Olivas, G.I. Quality, Bioactive Compounds, Antioxidant Capacity, and Enzymes of Raspberries at Different Maturity Stages, Effects of Organic vs. Conventional Fertilization. Foods 2021, 10, 953. [Google Scholar] [CrossRef] [PubMed]
- Krivokapić, S.; Vlaović, M.; Damjanović Vratnica, B.; Perović, A.; Perović, S. Biowaste as a Potential Source of Bioactive Compounds—A Case Study of Raspberry Fruit Pomace. Foods 2021, 10, 706. [Google Scholar] [CrossRef] [PubMed]
- Vulić, J.; Velićanski, A.; Ćetejević Simin, D.; Tumbas Šaponjac, V.; Djilas, S.; Cvetković, D.; Markov, S. Antioxidant, antiproliferative and antimicrobial activity of freeze-dried raspberry. Acta Period. Technol. 2014, 45, 99–116. [Google Scholar] [CrossRef]
- Zhang, X.; Ahuja, J.K.C.; Burton-Freeman, B.M. Characterization of the nutrient profile of processed red raspberries for use in nutrition labeling and promoting healthy food choices. Nutr. Healthy Aging 2019, 5, 225–236. [Google Scholar] [CrossRef]
- Schulz, M.; Chim, J.F. Nutritional and bioactive value of Rubus berries. Food Biosci. 2019, 31, 31. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Kieliszek, M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl. Microbiol. Biotechnol. 2023, 107, 2169–2208. [Google Scholar] [CrossRef] [PubMed]
- Alba, K.; Campbell, G.M.; Kontogiorgos, V. Dietary fibre from berry processing waste and its impact on bread structure: A review. J. Sci. Food Agric. 2019, 99, 4189–4199. [Google Scholar] [CrossRef] [PubMed]
- Grzelak-Błaszczyk, K.; Karlińska, E.; Grzęda, K.; Rój, E.; Kołodziejczyk, K. Defatted strawberry seeds as a source of phenolics, dietary fiber and minerals. LWT 2017, 84, 18–22. [Google Scholar] [CrossRef]
- De Souza, V.R.; Pereira, P.A.P.; Da Silva, T.L.T.; De Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, F.; Wu, W.; Lyu, L.; Li, W. Proteins from Blackberry Seeds: Extraction, Osborne Isolate, Characteristics, Functional Properties, and Bioactivities. Int. J. Mol. Sci. 2023, 24, 15371. [Google Scholar] [CrossRef]
- Sławińska, N.; Prochoń, K.; Olas, B. A Review on Berry Seeds—A Special Emphasis on Their Chemical Content and Health-Promoting Properties. Nutrients 2023, 15, 1422. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef]
- Cristobal, J.; Caldeira, C.; Corrado, S.; Sala, S. Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresour. Technol. 2018, 259, 244–252. [Google Scholar] [CrossRef]
- Liu RH, Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [CrossRef]
- Brodowska, A. Raspberry Pomace—Composition, Properties and Application. Eur. J. Biol. Res. 2017, 7, 86–96. [Google Scholar]
- Singh, B.; Pavithran, N.; Rajput, R. Effects of Food Processing on Nutrients. Curr. J. Appl. Sci. Technol. 2023, 42, 34–49. [Google Scholar]
- ISTA Rules 2024. Available online: https://www.seedtest.org/en/publications/international-rules-seed-testing.html (accessed on 2 April 2024).
- Ward, D.; Marini, R.; Byers, R. Relationships among Day of Year of Drop, Seed Number, and Weight of Mature Apple Fruit. HortScience Publ. Am. Soc. Hortic. Sci. 2001, 36, 45–48. [Google Scholar] [CrossRef]
- Sera, B.; Sery, M. Number and weight of seeds and reproductive strategies of herbaceous plants. Folia Geobot. 2004, 39, 27–40. [Google Scholar] [CrossRef]
- Dimić, E.B.; Vujasinovic, V.; Radočaj, O.F.; Pastor, O.P. Characteristics of blackberry and raspberry seeds and oils. Acta Period. Technol. 2012, 43, 1–9. [Google Scholar] [CrossRef]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhé, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Raczyk, M.; Bryś, J.; Brzezińska, R.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Górska, A. Quality assessment of coldpressed strawberry, raspberry and blackberry seed oils intended for cosmetic purposes. Acta Sci. Pol. Technol. Aliment. 2021, 20, 127–133. [Google Scholar] [CrossRef]
- Hay, F.R.; Rezaei, S.; Wolkis, D.; McGill, C. Determination and control of seed moisture. Seed Sci. Technol. 2023, 51, 267–285. [Google Scholar] [CrossRef]
- Ispiryan, A.; Bobinaite, R.; Urbonaviciene, D.; Sermuksnyte-Alesiuniene, K.; Viskelis, P.; Miceikiene, A.; Viskelis, J. Physico-Chemical Properties, Fatty Acids Profile, and Economic Properties of Raspberry (Rubus idaeus L.) Seed Oil, Extracted in Various Ways. Plants 2023, 12, 2706. [Google Scholar] [CrossRef]
- Oomah, B.D.; Ladet, S.; Godfrey, D.V.; Liang, J.; Girard, B. Characteristics of raspberry (Rubus idaeus L.) seed oil. Food Chem. 2000, 69, 187–193. [Google Scholar] [CrossRef]
- Saiedirad, M.H.; Tabatabaeefar, A.; Borghei, A.; Mirsalehi, M.; Badii, F.; Ghasemi Varnmakhasti, M. Effect of moisture content; seed size; loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum Linn.) under quasi-static loading. J. Food Eng. 2008, 86, 565–572. [Google Scholar] [CrossRef]
- Abiola Oso, A.; Omotayo Ashafa, A. Nutritional Composition of Grain and Seed Proteins; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Sutton, M.A.; Howard, C.M.; Erisman, J.W.l. Assessing our nitrogen inheritance. In The European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.W., Eds.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Górska-Warsewicz, H.; Kaczorowska, J.; Laskowski, W. Nutritional Significance of Fruit and Fruit Products in the Average Polish Diet. Nutrients 2021, 13, 2079. [Google Scholar] [CrossRef]
- Vicente, A.; Manganaris, G.; Sozzi, G.; Crisosto, C. Nutritional Quality of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. J. Food Compos. Anal. 2010, 23, 554–560. [Google Scholar] [CrossRef]
- Górecka, D.; Pachołek, B.; Dziedzic, K.; Górecka, M. Raspberry pomace as a potential fiber source for cookies enrichment. ACTA Scien Tiarum Pol. Technol. Aliment. 2010, 9, 451–462. [Google Scholar]
- Šarić, B.; Dapčević-Hadnađev, T.; Hadnađev, M.; Sakač, M.; Mandić, A.; Mišan, A.; Škrobot, D. Fiber concentrates from raspberry and blueberry pomace in gluten-free cookie formulation: Effect on dough rheology and cookie baking properties. J. Texture Stud. 2019, 50, 124–130. [Google Scholar] [CrossRef]
- Ahnen, R.T.; Jonnalagadda, S.S.; Slavin, J.L. Role of plant protein in nutrition, wellness, and health. Nutr. Rev. 2019, 77, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.N.; Zou, M.M.; Wang, Y.S.; Cao, F.L.; Su, E.Z. Ginkgo Seed Proteins: Characteristics, Functional Properties and Bioactivities. Plant Foods Hum. Nutr. 2021, 76, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Sa, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Vahapoglu, B.; Erskine, E.; Gultekin Subasi, B.; Capanoglu, E. Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules 2021, 27, 108. [Google Scholar] [CrossRef] [PubMed]
Quality Parameters | Values |
---|---|
Weight | 1000 seeds = 2.17 g |
Peroxide value | 5.64 mEq/kg |
Moisture | 9.2% |
Nutritional energy value | 475.25 Kcal |
L* | a* | b* | C* | h | |
---|---|---|---|---|---|
Raspberry seeds | 44.65 ± 1.04 b | 12.65 ± 0.45 a | 13.26 ± 1.43 b | 18.35 ± 0.77 a | 46.23 ± 4.01 c |
Raspberry seeds after CO2 subcritical extraction | 45.63 ± 1.93 b | 11.54 ± 0.67 a | 19.06 ± 1.58 a | 22.29 ± 1.70 a | 58.78 ± 0.61 b |
Raspberry seeds after CO2 supercritical extraction | 45.81 ± 1.96 b | 11.51 ± 0.65 a | 19.11 ± 1.59 a | 22.27 ± 1.69 a | 58.81 ± 0.62 b |
Raspberry seeds after cold pressing | 55.66 ± 4.78 a | 7.72 ± 0.51 b | 17.71 ± 1.73 a | 19.33 ± 1.64 a | 66.35 ± 2.31 a |
Research Parameter | RS before Oil Pressure | RS after Extraction with Hexane | RS after Cold Pressing of Oil | RS after Subcritical Extraction of CO2 | RS after Supercritical Extraction of CO2 |
---|---|---|---|---|---|
Humidity % | 5.9 ± 0.30 c | 8.6 ± 0.43 a | 4.7 ± 0.24 d | 6.0 ± 0.30 bc | 6.9 ± 0.34 b |
Nitrogen (N) % | 1.2 ± 0.06 c | 1.2 ± 0.06 c | 1.4 ± 0.07 b | 1.6 ± 0.08 a | 1.5 ± 0.08 ab |
Proteins % | 7.4 ± 0.37 c | 7.6 ± 0.38 c | 8.8 ± 0.44 b | 10.1 ± 0.50 a | 9.4 ± 0.47 ab |
Crude fiber content % | 22.1 ± 1.11 ab | 21.6 ± 1.08 ab | 19.3 ± 0.97 b | 23.9 ± 1.20 a | 23.1 ± 1.15 a |
Crude fat and oil content % | 11.0 ± 0.55 a | 2.0 ± 0.1 c | 5.0 ± 0.25 b | 0.8 ± 0.04 d | 0.9 ± 0.04 d |
Sugar % | 2.8 ± 0.14 b | 0.9 ± 0.05 c | 1.4 ± 0.09 a | 0.9 ± 0.05 c | 0.6 ± 0.03 d |
Research Parameter | RS before Oil Pressure | RS after Extraction with Hexane | RS after Cold Pressing of Oil | RS after Subcritical Extraction of CO2 | RS after Supercritical Extraction of CO2 |
---|---|---|---|---|---|
Phosphorus % | 0.2 ± 0.01 c | 0.2 ± 0.01 c | 0.3 ± 0.01 b | 0.3 ± 0.02 a | 0.3 ± 0.02 a |
Potassium (K) | 0.2 ± 0.01 c | 0.3 ± 0.01 ab | 0.3 ± 0.01 a | 0.3 ± 0.01 ab | 0.2 ± 0.01 bc |
Calcium content (Ca) % | 0.2 ± 0.01 c | 0.1 ± 0.01 c | 0.2 ± 0.01 a | 0.2 ± 0.01 b | 0.2 ± 0.01 b |
Magnesium content (Mg) % | 0.1 ± 0.00 b | 0.1 ± 0.01 b | 0.1 ± 0.01 a | 0.1 ± 0.01 a | 0.1 ± 0.00 c |
Boron (B) mg/kg | 12.4 ± 0.62 b | 26.2 ± 1.31 a | 27.9 ± 1.4 a | 12.1 ± 0.61 b | 11.2 ± 0.56 b |
Zinc content (Zn) mg/kg | 17.4 ± 0.87 c | 27.0 ± 1.35 a | 20.9 ± 1.05 b | 26.6 ± 1.33 a | 26.0 ± 1.30 a |
Copper content (Cu) mg/kg | 5.1 ± 0.25 b | 158.8 ± 7.94 a | 6.3 ± 0.31 b | 6.3 ± 0.31 b | 5.8 ± 0.29 b |
Iron content (Fe) mg/kg | 29.2 ± 1.46 b | 33.8 ± 1.69 b | 43.4 ± 2.17 a | 41.3 ± 2.07 a | 40.8 ± 2.04 a |
Manganese content (Mn) mg/kg | 45.3 ± 2.27 b | 48.1 ± 2.41 b | 57.4 ± 2.87 a | 60.9 ± 3.05 a | 61.8 ± 3.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ispiryan, A.; Kraujutiene, I.; Viskelis, J. Quality Characteristics of Raspberry By-Products for Sustainable Production. Foods 2024, 13, 1436. https://doi.org/10.3390/foods13101436
Ispiryan A, Kraujutiene I, Viskelis J. Quality Characteristics of Raspberry By-Products for Sustainable Production. Foods. 2024; 13(10):1436. https://doi.org/10.3390/foods13101436
Chicago/Turabian StyleIspiryan, Audrone, Ingrida Kraujutiene, and Jonas Viskelis. 2024. "Quality Characteristics of Raspberry By-Products for Sustainable Production" Foods 13, no. 10: 1436. https://doi.org/10.3390/foods13101436
APA StyleIspiryan, A., Kraujutiene, I., & Viskelis, J. (2024). Quality Characteristics of Raspberry By-Products for Sustainable Production. Foods, 13(10), 1436. https://doi.org/10.3390/foods13101436