High Tartronic Acid Content Germplasms Screening of Cucumber and Its Response to Exogenous Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Exogenous Agent Treatment
2.3. Determination of Tartronic Acid Content
2.4. Statistical Analysis
3. Result
3.1. Significant Variation in Tartronic Acid Content among Different Cucumber Germplasms
3.2. Influence of Fruit Developmental Stages on Tartronic Acid Content
3.3. The Impact of Harvesting Period on Tartronic Acid Content in Fruits
3.4. The Tartronic Acid Content in Different Parts of the Fruit
3.5. Influence of Exogenous Agents on the Tartronic Acid Content of Cucumber Fruits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, S.; Cai, Y.; Liu, X.; Dong, M.; Zhang, Y.; Chen, S.; Zhang, W.; Li, Y.; Tang, M.; Zhai, X.; et al. A csmyb6-cstry module regulates fruit trichome initiation in cucumber. J. Exp. Bot. 2018, 69, 1887–1902. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zhang, J.; Mu, Z.; Wang, Y.; Wen, C.; Wu, T.; Yu, C.; Li, Z.; Wang, H. Recent progress on the molecular breeding of Cucumis sativus L. in China. Theor. Appl. Genet. 2020, 133, 1777–1790. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Shan, N.; Gan, Z.; Nie, J.; Liu, H.; Wang, Z.; Sui, X. Comprehensive characterization of fruit volatiles and nutritional quality of three cucumber (Cucumis sativus L.) Genotypes from different geographic groups after bagging treatment. Foods 2020, 9, 294. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liang, K.; Li, M.; Zhang, Y.; Zhou, S.; Chen, X.; Lang, J. Nutritional content and function of cucumber and grafting technique. Shanghai Agric. Sci. Technol. 2015, 1, 89–131. [Google Scholar]
- You, Y.; Qin, Z.; Zhou, X.; Xin, M. Analysic on combing ability of tartronic acid content in cucumber. North. Hortic. 2014, 10, 19–21. [Google Scholar]
- Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L. Burden of cardiovascular diseases in china, 1990–2016. JAMA Cardiol 2019, 4, 342. [Google Scholar] [CrossRef]
- Pikula, A.; Beiser, A.S.; Wang, J.; Himali, J.J.; Kelly-Hayes, M.; Kase, C.S.; Yang, Q.; Seshadri, S.; Wolf, P.A. Lipid and lipoprotein measurements and the risk of ischemic vascular events. Neurology 2015, 84, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Wesson, L.G. The effect of tartronic acid on abnormal fat formation from carbohydrate. Endocrinology 1950, 47, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Iakusheva, T. Effect of sodium tartronate on weight and content of fat and glycogen in the livers of rats and mice. Biulleten’ Eksperimental’noi Biol. I Meditsiny 1958, 45, 51–53. [Google Scholar]
- Liu, X.; Wang, R.; Xu, F.; Zhang, M.; Zou, W.; Wang, Q. Research on tartronic acid reduce body fat content in caenorhabditis elegans. Food Nutr. China 2023, 29, 66–71. [Google Scholar]
- Savitha, J. Identification of morin and other compounds as inhibitors of the malic enzyme of Mucor circinelloides in vitro but not in vivo. World J. Microbiol. Biotechnol. 2000, 16, 513–518. [Google Scholar] [CrossRef]
- Lu, S.; Fu, M.; Xu, Y.; Xie, D.; Yu, Y.; Wen, J.; Xiao, G. Chemical composition analysis of wax gourd pith based on ultra performance liquid chromatography-triple quadrupole mass spectrometry technology. Food Ferment. Ind. 2023, 23, 307–314. [Google Scholar]
- Liu, N.; Du, X.; Lu, B.; Tian, S.; Li, D. Optimization of extracting tartronic acid from chieh-qua by response surface method. Acta Agric. Shanghai 2021, 37, 39–46. [Google Scholar]
- Qin, Z.; Gao, J.; Zhou, X.; Xin, M.; Wu, T. Qualitative and Quantitative Method for the Determination of Tartronic Acid in Cucumber Fruits. China Patent CN201210211489.8, 25 December 2013. [Google Scholar]
- Yang, L.; Wang, J.; Yang, R.; Qin, X.; Zhang, Q.; Yan, B. Quantitative Measurement of Tartronic Acid in Cucumber by Ion Chromatography. China Patent CN202110898508.8, 3 December 2021. [Google Scholar]
- Gao, J.; Qin, Z.; Zhou, X.; Xin, M. Screening of germplasm with high content of tartronic acid in cucumber. China Veg. 2012, 22, 30–34. [Google Scholar]
- Lian, H.; Ma, G.; Qin, Z.; Li, D.; Wang, M. A Method of Nitrogen Fertilizer Use to Increase the Content of Tartronic Acid in Cucumber. China Patent CN201510868672.9, 24 February 2016. [Google Scholar]
- Lian, H.; Li, R.; Ma, G.; Zhang, F.; Zhang, J. Effect of nitrogen fertilizer application patterns on physiological characteristics, yield and quality of high tartronic acid cucumber. Agric. Res. Arid Areas 2021, 39, 171–178. [Google Scholar]
- Feng, X.; Lian, H.; Sun, G.; Cao, Y.; Ma, G. Effect of different organic acids on physiological characteristics and yield quality of cucumber. Mod. Agric. 2023, 3, 41–43. [Google Scholar]
- Li, X.; Song, Y.; Wang, J.; Yang, F.; Wang, X.; Wei, M.; Shi, Q. Effects of Exogenous Sucrose on Growth and Antioxidant Enzyme Activities of Cucumber Seedlings under NO3− Stres. Shandong Agric. Sci. 2011, 7, 30–34. [Google Scholar]
- Song, M.; Liao, Y.; Fang, K.; Wang, J.; He, C. Effects of foliar spraying sucrose on growth and photosynthetic characteristics of pumpkin seedlings under weak light stress. Zhongguo Gua-Cai 2021, 34, 21–26. [Google Scholar]
- Weselowski, B.; Nathoo, N.; Eastman, A.W.; Macdonald, J.; Yuan, Z. Isolation, identification and characterization of paenibacillus polymyxa cr1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 2016, 16, 244. [Google Scholar] [CrossRef]
- Wu, Q.; Tian, S.; Li, Y.; Pan, Y.; Zhang, Y. Effects of microbial fertilizer on Cucumis sativus L. Growth, yield and quality. Biotechnol. Bull. 2022, 38, 125–131. [Google Scholar]
- Mi, S.; Zhang, X.; Wang, Y.; Ma, Y.; Sang, Y.; Wang, X. Effect of different fertilizers on the physicochemical properties, chemical element and volatile composition of cucumbers. Food Chem. 2022, 367, 130667. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Chang, P.; Zhang, Y.; Kizer, J.R.; Best, L.G.; Howard, B.V. Triglyceride and hdl-c dyslipidemia and risks of coronary heart disease and ischemic stroke by glycemic dysregulation status: The strong heart study. Diabetes Care 2017, 40, 529–537. [Google Scholar] [CrossRef]
- Xi, Y.; Niu, L.; Cao, N.; Bao, H.; Xu, X.; Zhu, H.; Yan, T.; Zhang, N.; Qiao, L.; Han, K.; et al. Prevalence of dyslipidemia and associated risk factors among adults aged ≥35 years in northern china: A cross-sectional study. BMC Public Health 2020, 20, 1068. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, R.; Zhao, S.; Lu, G.; Zhao, D.; Li, J. 2016 Chinese guidelines for the management of dyslipidemia in adults joint committee for guideline revision. J. Geriatr. Cardiol. 2018, 15, 1–29. [Google Scholar]
- Zhang, Y.; Li, P.; Cheng, L. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘honeycrisp’ apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Hertog, M.L.A.T.M.; Van de Poel, B.; Ampofo-Asiama, J.; Geeraerd, A.H.; Nicolai, B.M. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 2011, 62, 7–16. [Google Scholar] [CrossRef]
- Tarrach, F.; Herrmann, K. Organic-acids of vegetables 4. Changes in acids and sugars during development and ripening to tomatoes, sweet-pepper, and cucumber. Z. Fur Lebensm.-Unters. Und-Forsch. 1986, 183, 410–415. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Jin, X.; Liu, Y.; Zhang, H.; Niu, H.; Lan, H. Comprehensive evaluation of korla fragrant pears and optimization of plucking time during the harvest period. Int. J. Agric. Biol. Eng. 2022, 15, 242–250. [Google Scholar] [CrossRef]
- Li, J.; Yao, B.; Song, Y.; Li, L. Sugar accumulation and the relevant enzymes activities in different parts of fruit of three jujube cultivars. Sci. Silvae Sin. 2017, 53, 30–40. [Google Scholar]
- Chen, X.; Li, H.; Pang, Y.; Zhu, X.; Lu, M.; Jia, H. Qualitative character comparisons of different fruit sizes and parts in red pitaya. J. Anhui Agric. Sci. 2018, 46, 59–61. [Google Scholar]
- Ostadi, A.; Javanmard, A.; Machiani, M.A.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Cui, B.; Niu, W.; Du, Y.; Zhang, Q. Response of yield and nitrogen use efficiency to aerated irrigation and n application rate in greenhouse cucumber. Sci. Hortic. 2020, 265, 109220. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. Recent advancements for microorganisms and their natural compounds useful in agriculture. Appl. Microbiol. Biotechnol. 2021, 105, 891–897. [Google Scholar] [CrossRef]
- Ramirez-Perez, L.J.; Morales-Diaz, A.B.; Benavides-Mendoza, A.; De-Alba-Romenus, K.; Gonzalez-Morales, S.; Juarez-Maldonado, A. Dynamic modeling of cucumber crop growth and uptake of n, p and k under greenhouse conditions. Sci. Hortic. 2018, 234, 250–260. [Google Scholar] [CrossRef]
North China Type | North China Type | North China Type | European Greenhouse Type | European Greenhouse Type |
---|---|---|---|---|
3631-1 | 3667 | 3599-2 | 2125 | 2127 |
5569-9 | 3661 | 3599-1 | 2073-2 | 2091 |
3577 | 3658 | 5553-1 | 2089-11 | 2086-2 |
3554-6 | 3595-2 | 3611-1 | 2126 | 2109 |
3541-1 | 3630-1 | 3660 | 2119 | 2098 |
3611-2 | 3542-1 | 3569-8 | 2079-1 | 2079-10 |
3634-1 | 3628-1 | 5634-1 | 2105 | 6101-5 |
3549-1 | 5552-1 | 5667 | 2102 | 2073-1 |
3595-6 | 3594-1 | 3569-16 | 6101-4 | 2128 |
3548-1 | 3610-4 | 2103 | 6101-11 | |
3467-1 | 5594-5 | 2113 |
Serial Number | Content (mg/g) | Fruit Shape | Fruit Color | Melon Tumor Size | Melon Tumor Density | Fruit Ribbing | Melon Gloss |
---|---|---|---|---|---|---|---|
2125 | 0.09 ± 0.01 | round | Green | Small | Sparse | no fruit ribbing | light |
2073-2 | 0.11 ± 0.00 | Short cylinder | Dark Green | None | None | no fruit ribbing | glossy |
2089-11 | 0.28 ± 0.10 | Short cylinder | Green | None | None | no fruit ribbing | light |
2126 | 0.32 ± 0.03 | Short cylinder | Green | None | None | no fruit ribbing | light |
2119 | 0.40 ± 0.09 | Long cylinder | Yellow | Small | Sparse | tiny fruit ribbing | light |
2079-1 | 0.40 ± 0.02 | round | Green | Small | Sparse | no fruit ribbing | light |
2105 | 0.40 ± 0.05 | Long cylinder | Yellow–Green | Small | Sparse | tiny fruit ribbing | light |
2102 | 0.41 ± 0.08 | round | Green | Small | Middle | no fruit ribbing | light |
6101-4 | 0.41 ± 0.01 | Short cylinder | Green | None | None | no fruit ribbing | light |
2103 | 0.43 ± 0.04 | Short cylinder | Dark Green | None | None | no fruit ribbing | light |
2113 | 0.46 ± 0.04 | Short cylinder | Green | Small | Sparse | no fruit ribbing | dull |
2127 | 0.47 ± 0.02 | Short cylinder | Green | None | None | no fruit ribbing | light |
2091 | 0.48 ± 0.10 | Long cylinder | White | Small | Sparse | tiny fruit ribbing | light |
2086-2 | 0.48 ± 0.04 | Short cylinder | Green | None | None | no fruit ribbing | light |
2109 | 0.48 ± 0.03 | Short cylinder | Green | Small | Sparse | no fruit ribbing | dull |
2098 | 0.49 ± 0.00 | Long cylinder | Green | Middle | Sparse | tiny fruit ribbing | light |
2079-10 | 0.54 ± 0.05 | round | Yellow | None | None | no fruit ribbing | light |
6101-5 | 0.55 ± 0.04 | Short cylinder | Yellow–Green | None | None | no fruit ribbing | light |
2073-1 | 0.59 ± 0.15 | Long cylinder | Green | None | None | no fruit ribbing | light |
2128 | 0.63 ± 0.09 | Short cylinder | Green | None | None | no fruit ribbing | light |
6101-11 | 0.76 ± 0.06 | Long cylinder | Yellow–Green | None | None | no fruit ribbing | light |
Average Content | 0.44 |
Serial Number | Content (mg/g) | Fruit Shape | Fruit Color | Melon Tumor Size | Melon Tumor Density | Fruit Ribbing | Melon Gloss |
---|---|---|---|---|---|---|---|
3631-1 | 0.06 ± 0.01 | Elongate | Green | Small | Middle | Scanty fruit ribbing | glossy |
5569-9 | 0.07 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3577 | 0.07 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3554-6 | 0.08 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3541-1 | 0.10 ± 0.02 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3611-2 | 0.11 ± 0.03 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3634-1 | 0.17 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3549-1 | 0.17 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | dull |
3595-6 | 0.18 ± 0.07 | Elongate | Green | Small | Middle | Scanty fruit ribbing | glossy |
3548-1 | 0.18 ± 0.02 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3467-1 | 0.19 ± 0.06 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3667 | 0.20 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3661 | 0.20 ± 0.04 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3658 | 0.21 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3595-2 | 0.21 ± 0.07 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3630-1 | 0.23 ± 0.07 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3542-1 | 0.24 ± 0.08 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3628-1 | 0.27 ± 0.11 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
5552-1 | 0.29 ± 0.01 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3594-1 | 0.31 ± 0.08 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3610-4 | 0.31 ± 0.04 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
5594-5 | 0.32 ± 0.02 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3599-2 | 0.32 ± 0.16 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3599-1 | 0.33 ± 0.03 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
5553-1 | 0.39 ± 0.08 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
3611-1 | 0.45 ± 0.16 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3660 | 0.48 ± 0.16 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3569-8 | 0.49 ± 0.14 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
5634-1 | 0.61 ± 0.20 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
5667 | 0.76 ± 0.22 | Elongate | Green | Middle | Middle | distinct fruit ribbing | light |
3569-16 | 0.81 ± 0.13 | Elongate | Green | Middle | Middle | Scanty fruit ribbing | light |
Average Content | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qu, Y.; Wang, R.; Wang, Y.; Yang, S.; Sun, L.; Li, S.; Gao, Y.; Dong, Y.; Liu, X.; et al. High Tartronic Acid Content Germplasms Screening of Cucumber and Its Response to Exogenous Agents. Foods 2024, 13, 1484. https://doi.org/10.3390/foods13101484
Zhang Z, Qu Y, Wang R, Wang Y, Yang S, Sun L, Li S, Gao Y, Dong Y, Liu X, et al. High Tartronic Acid Content Germplasms Screening of Cucumber and Its Response to Exogenous Agents. Foods. 2024; 13(10):1484. https://doi.org/10.3390/foods13101484
Chicago/Turabian StyleZhang, Zhongren, Yixin Qu, Ruijia Wang, Yaru Wang, Songlin Yang, Lei Sun, Sen Li, Yiming Gao, Yuming Dong, Xingwang Liu, and et al. 2024. "High Tartronic Acid Content Germplasms Screening of Cucumber and Its Response to Exogenous Agents" Foods 13, no. 10: 1484. https://doi.org/10.3390/foods13101484
APA StyleZhang, Z., Qu, Y., Wang, R., Wang, Y., Yang, S., Sun, L., Li, S., Gao, Y., Dong, Y., Liu, X., & Ren, H. (2024). High Tartronic Acid Content Germplasms Screening of Cucumber and Its Response to Exogenous Agents. Foods, 13(10), 1484. https://doi.org/10.3390/foods13101484