Whole Black Rice Flour Improves the Physicochemical, Glycemic, and Sensory Properties of Cracker Snacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Preparation of Rice Crackers
2.3. Characterization of Rice Crackers
2.3.1. Proximate Analysis
2.3.2. Carbohydrates
2.3.3. Dimensions
2.3.4. Energy
2.3.5. Total Starch and Amylose Content
2.3.6. Polyphenol Extraction and Measurement
2.3.7. Total Proanthocyanidin Content (TPA)
2.3.8. Total Flavonoid Content (TFV)
2.3.9. Determination of Individual Phenolic Compounds and Anthocyanins
2.3.10. Color Analysis
2.3.11. Texture Profile Analysis
2.3.12. Blood Glucose Level Measurement
2.3.13. Sensory Study Protocol
2.4. Statistic Analysis
3. Results and Discussion
3.1. Proximate Composition of Rice Crackers
3.2. Color Analysis of Rice Crackers
3.3. Physical Properties and Texture Profile Analysis
3.4. Total Phenolic Composition of Rice Crackers
3.5. Individual Phenolic Content
3.6. Principal Component Analysis (PCA) of Data
3.7. Impact of the Consumption of Rice Flour-Based Crackers on Postprandial Blood Glucose Levels
3.8. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced Properties of Gluten-Free Cookies, Cakes, and Crackers: A Review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Saberi, F.; Kouhsari, F.; Abbasi, S.; Rosell, C.M.; Amini, M. Effect of Baking in Different Ovens on the Quality and Structural Characteristics of Saltine Crackers. Int. J. Food Sci. Technol. 2021, 56, 6559–6571. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Lim, P.T.; Muhammad, K. Quality of Gluten-Free Cookies from Germinated Brown Rice Flour. Food Res. 2018, 3, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of Pulse Flours on the Physiochemical Characteristics and Sensory Acceptance of Baked Crackers. Int. J. Food Sci. Technol. 2017, 52, 1155–1163. [Google Scholar] [CrossRef]
- Njume, C.; Donkor, O.; Vasiljevic, T.; McAinch, A.J. Consumer Acceptability and Antidiabetic Properties of Flakes and Crackers Developed from Selected Native Australian Plant Species. Int. J. Food Sci. Technol. 2021, 56, 4484–4495. [Google Scholar] [CrossRef]
- Goubgou, M.; Songré-Ouattara, L.T.; Bationo, F.; Lingani-Sawadogo, H.; Traoré, Y.; Savadogo, A. Biscuits: A Systematic Review and Meta-Analysis of Improving the Nutritional Quality and Health Benefits. Food Prod. Process. Nutr. 2021, 3, 26. [Google Scholar] [CrossRef]
- Ziegler, V.; Ferreira, C.D.; Göebel, J.T.S.; Halal, S.L.M.E.; Santetti, G.S.; Gutkoski, L.C.; Da Rosa Zavareze, E.; Elias, M.C. Changes in Properties of Starch Isolated from Whole Rice Grains with Brown, Black, and Red Pericarp after Storage at Different Temperatures. Food Chem. 2017, 216, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Al-Okbi, S.Y.; Hussein, A.A.; Hamed, I.; Mohamed, D.A.; Helal, A.M. Chemical, Rheological, Sensorial and Functional Properties of Gelatinized Corn- Rice Bran Flour Composite Corn Flakes and Tortilla Chips. J. Food Process. Preserv. 2012, 38, 83–89. [Google Scholar] [CrossRef]
- Kushwaha, U.K.S. Black Rice; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Kadan, R.S.; Robinson, M.G.; Thibodeaux, D.P.; Pepperman, A.B. Texture and Other Physicochemical Properties of Whole Rice Bread. J. Food Sci. 2001, 66, 940–944. [Google Scholar] [CrossRef]
- Juliano, B. Rice: Chemistry and Technology; American Association of Cereal Chemists: St. Paul, MN, USA, 1985. [Google Scholar]
- Hartsook, E.T. Celiac Sprue: Sensitivity to gliadin. Cereal-Foods-World 1984, 29, 157–158. [Google Scholar]
- Nakov, G.; Brandolini, A.; Estivi, L.; Bertuglia, K.; Ivanova, N.; Jukić, M.; Komlenić, D.K.; Lukinac, J.; Hidalgo, A. Effect of Tomato Pomace Addition on Chemical, Technological, Nutritional, and Sensorial Properties of Cream Crackers. Antioxidants 2022, 11, 2087. [Google Scholar] [CrossRef] [PubMed]
- AOAC 920.39.C; The Soxhlet Method for Cereal Fat. AOAC: Rockville, MD, USA, 1995.
- AOAC 936.07; Ash in Flour. AOAC: Rockville, MD, USA, 2013.
- AOAC 945.18-B; Kjeldahl’s Method for Protein Determination in Cereals and Feed. Determination of Total Fat in Flour, Bread, Bakery Product and Pasta with Preliminary Acid Hydrolysis. Determination of Ash in Animal Feed. UDK 127 Operating Manual. AOAC: Rockville, MD, USA, 1995.
- Commission Regulation (EC) 152/2009 Laying Down the Methods of Sampling and Analysis for the Official Control of Feed. Off. J. Eur. Union 2009, 52.
- AOAC 925.10-1925; Solids (Total) and Loss on Drying (Moisture). AOAC: Rockville, MD, USA, 1925.
- Cereals and Grains Association. AACC Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Annex XIV of EU Regulation No 1169/2011 of the European Parliament and of the Council, of 25 October 2011. Off. J. Od Eur. Union 2011, 54.
- AACC Method 76-13; Assay for Analysis of Total Starch in Cereal Products. AOAC: Rockville, MD, USA, 1997.
- Juliano, B.O. A simplified assay for milled rice amylose. Cereal Sci. Today 1971, 16, 334–338. [Google Scholar]
- IIIаманин, B.; Tekin-Çakmak, Z.H.; Gordeeva, E.; Karasu, S.; Pototskaya, I.V.; Чурсин, А.С.; Pozherukova, V.; Özülkü, G.; Morgounov, A.; Sağdıç, O.; et al. Antioxidant Capacity and Profiles of Phenolic Acids in Various Genotypes of Purple Wheat. Foods 2022, 11, 2515. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Xu, Z. Lipophilic and Hydrophilic Antioxidants and Their Antioxidant Activities in Purple Rice Bran. J. Agric. Food Chem. 2009, 57, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-J.; Ng, L. Antioxidant and Free Radical Scavenging Activities of Wild Bitter Melon (Momordica Charantia Linn. Var. Abbreviata Ser.) in Taiwan. LWT-Food Sci. Technol. 2008, 41, 323–330. [Google Scholar] [CrossRef]
- Skerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, Proanthocyanidins, Flavones and Flavonols in Some Plant Materials and Their Antioxidant Activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Martinović, J.; Lukinac, J.; Jukić, M.; Ambrus, R.; Planinić, M.; Šelo, G.; Klarić, A.-M.; Perković, G.; Bucić-Kojić, A. Physicochemical Characterization and Evaluation of Gastrointestinal In Vitro Behavior of Alginate-Based Microbeads with Encapsulated Grape Pomace Extracts. Pharmaceutics 2023, 15, 980. [Google Scholar] [CrossRef]
- Fernández-Artigas, P.; Guerra-Hernández, E.; Garcia-Villanova, B. Browning Indicators in Model Systems and Baby Cereals. J. Agric. Food Chem. 1999, 47, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Kyriakoudi, A.; Klimantakis, K.; Kalaitzis, P.; Βiliaderis, C.G.; Mourtzinos, I. Enrichment of Sunflower Oil with Tomato Carotenoids and Its Encapsulation in Ca-Alginate Beads: Preparation, Characterization and Chemical Stability upon in Vitro Digestion. Food Hydrocoll. 2024, 151, 109855. [Google Scholar] [CrossRef]
- Qadri, T.; Ah, R.; Hussain, S.; Amin, T. Evaluation of Techno Functional, Nutritional and Storage Stability of Wheat Based Crackers Incorporated with Brown Rice Flour and Carboxymethyl Cellulose. J. Food Process. Technol. 2018, 9, 6. [Google Scholar] [CrossRef]
- Saito, Y.; Watanabe, T.; Sasaki, T.; Watanabe, K.; Hirayama, M.; Fujita, N. Effects of Single Ingestion of Rice Cracker and Cooked Rice with High Resistant Starch on Postprandial Glucose and Insulin Responses in Healthy Adults: Two Randomized, Single-Blind, Cross-over Trials. Biosci. Biotechnol. Biochem. 2020, 84, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-Y.; Janz, J.A.M.; Gerlat, M. Development of Gluten-Free Cracker Snacks Using Pulse Flours and Fractions. Food Res. Int. 2010, 43, 627–633. [Google Scholar] [CrossRef]
- De Kock, H.L.; Magano, N. Sensory Tools for the Development of Gluten-Free Bakery Foods. J. Cereal Sci. 2020, 94, 102990. [Google Scholar] [CrossRef]
- Giannoutsos, K.; Zalidis, A.P.; Koukoumaki, D.I.; Menexes, G.; Mourtzinos, I.; Sarris, D.; Gkatzionis, K. Production of Functional Crackers Based on Non-Conventional Flours. Study of the Physicochemical and Sensory Properties. Food Chem. Adv. 2023, 2, 100194. [Google Scholar] [CrossRef]
- Melini, V.; Panfili, G.; Fratianni, A.; Acquistucci, R. Bioactive Compounds in Rice on Italian Market: Pigmented Varieties as a Source of Carotenoids, Total Phenolic Compounds and Anthocyanins, before and after Cooking. Food Chem. 2019, 277, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Drakos, A.; Andrioti-Petropoulou, L.; Evageliou, V.; Mandala, I. Physical and Textural Properties of Biscuits Containing Jet Milled Rye and Barley Flour. J. Food Sci. Technol. 2018, 56, 367–375. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White Grape Pomace as a Source of Dietary Fibre and Polyphenols and Its Effect on Physical and Nutraceutical Characteristics of Wheat Biscuits. J. Sci. Food Agric. 2012, 93, 389–395. [Google Scholar] [CrossRef]
- Saeed, S.M.G.; Ali, S.A.; Ali, R.; Sayeed, S.A.; Mobin, L.; Ahmed, R. Exploring the Potential of Black Gram (Vigna Mungo) Flour as a Fat Replacer in Biscuits with Improved Physicochemical, Microstructure, Phytochemicals, Nutritional and Sensory Attributes. SN Appl. Sci. 2020, 2, 2083. [Google Scholar] [CrossRef]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M. Production Trials to Improve the Nutritional Quality of Biscuits and to Enrich Them with Natural Anthocyanins. CYTA—J. Food 2013, 11, 301–308. [Google Scholar] [CrossRef]
- Purlis, E. Browning Development in Bakery Products—A Review. J. Food Eng. 2010, 99, 239–249. [Google Scholar] [CrossRef]
- Broyart, B.; Trystram, G.; Duquenoy, A. Predicting Colour Kinetics during Cracker Baking. J. Food Eng. 1998, 35, 351–368. [Google Scholar] [CrossRef]
- Purlis, E.; Salvadori, V.O. Bread Browning Kinetics during Baking. J. Food Eng. 2007, 80, 1107–1115. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Thermal Degradation of Acylated and Nonacylated Anthocyanins. J. Food Sci. 2006, 71, C504–C512. [Google Scholar] [CrossRef]
- Goto, T.; Hoshino, T.; Takase, S. A Proposed Structure of Commelinin, a Sky-Blue Anthocyanin Complex Obtained from the Flower Petals of commelina. Tetrahedron Lett. 1979, 20, 2905–2908. [Google Scholar] [CrossRef]
- Islam, M.Z.; Taneya, M.; Shamsuddin, M.; Syduzzaman, M.; Hoque, M.M. Physicochemical and Functional Properties of Brown Rice (Oryza sativa) and Wheat (Triticum aestivum) Flour and Quality of Composite Biscuit Made Thereof. Agriculturists 2012, 10, 20–28. [Google Scholar] [CrossRef]
- Kuchtová, V.; Minarovičová, L.; Kohajdová, Z.; Karovičová, J. Effect of Wheat and Corn Germs Addition on the Physical Properties and Crackers Sensory Quality. Potravin. Slovak J. Food Sci. 2016, 10, 543–549. [Google Scholar] [CrossRef]
- Bolea, C.-A.; Turturică, M.; Enachi, E.; Vizireanu, C.; Stănciuc, N. Development and Characterization of Added Value Appetizer Biscuits Based on Black Rice Flour. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2021, 45, 48–61. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic Acids, Anthocyanins, Proanthocyanidins, Antioxidant Activity, Minerals and Their Correlations in Non-Pigmented, Red, and Black Rice. Food Chem. 2018, 239, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F.; Blanco, A. Production and Characterization of Functional Biscuits Obtained from Purple Wheat. Food Chem. 2015, 180, 64–70. [Google Scholar] [CrossRef]
- Sari, D.R.T.; Cairns, J.R.K.; Safitri, A.; Fatchiyah, F. Virtual Prediction of the Delphinidin-3-O-glucoside and Peonidin-3-O-glucoside as Anti-inflammatory of TNF-α Signaling. Acta Inform. Med. 2019, 27, 152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Luna-Vital, D.A.; De Mejía, E.G. Anthocyanins from Colored Maize Ameliorated the Inflammatory Paracrine Interplay between Macrophages and Adipocytes through Regulation of NF-κB and JNK-Dependent MAPK Pathways. J. Funct. Foods. 2019, 54, 175–186. [Google Scholar] [CrossRef]
- Elhemely, M.A.; Omar, H.A.; Ain-Shoka, A.A.; El-Latif, H.a.A.; Abo-Youssef, A.M.; Sherbiny, G.a.E. Rosuvastatin and Ellagic Acid Protect against Isoproterenol-Induced Myocardial Infarction in Hyperlipidemic Rats. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 239–246. [Google Scholar] [CrossRef]
- Elbandrawy, M.; Sweef, O.; Elgamal, D.; Mohamed, T.M.; EhabTousson; Elgharabawy, R.M. Ellagic Acid Regulates Hyperglycemic State through Modulation of Pancreatic IL-6 and TNF- α Immunoexpression. Saudi J. Biol. Sci. 2022, 29, 3871–3880. [Google Scholar] [CrossRef] [PubMed]
- Favarin, D.C.; Teixeira, M.M.; De Andrade, E.L.; De Freitas Alves, C.; Chica, J.E.L.; Sorgi, C.A.; Faccioli, L.H.; De Paula Rogério, A. Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice. Mediat. Inflamm. 2013, 2013, 164202. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of Phenolic Compounds in White Rice, Brown Rice, and Germinated Brown Rice. J. Agric. Food. Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef]
- Suzuki, H.; Watanabe, K.; Ikeda, I.; Takeda, Y.; Hatta, M.; Horikawa, C.; Ferreira, E.D.; Sijia, W.; Laymon, K.; Sone, H. Effect of Dietary Fiber-Enriched Brown Rice Crackers on Suppressing Elevation of Blood Glucose Level. Funct. Foods Health Dis. 2023, 13, 595. [Google Scholar] [CrossRef]
- Watanabe, K.; Hirayama, M.; Arumugam, S.; Sugawara, M.; Kato, H.; Nakamura, S.; Ohtsubo, K.; Matsumoto, H.; Nomi, Y.; Homma, N.; et al. Effect of Heat-Moisture Treated Brown Rice Crackers on Postprandial Flow-Mediated Dilation in Adults with Mild Endothelial Dysfunction. Heliyon 2022, 8, e10284. [Google Scholar] [CrossRef]
Raw Material | Cracker Code (Black Rice Flour Ratio *) | ||||
---|---|---|---|---|---|
WRC | 25-BRC | 50-BRC | 75-BRC | BRC | |
Whole brown rice flour, g | 122.5 | 91.90 | 61.25 | 30.63 | - |
Whole black rice flour, g | - | 30.6 | 61.25 | 91.87 | 122.5 |
Whey protein, g | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 |
Xanthan gum, g | 3 | 3 | 3 | 3 | 3 |
Margarine, g | 30 | 30 | 30 | 30 | 30 |
Sugar, g | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Salt, g | 3 | 3 | 3 | 3 | 3 |
Baking powder, g | 3.74 | 3.74 | 3.74 | 3.74 | 3.74 |
Water (distilled), g | 65 | 65 | 65 | 65 | 65 |
Parameter | WRC | 25-BRC | 50-BRC | 75-BRC | BRC | “Croco” Crackers |
---|---|---|---|---|---|---|
Moisture, % | 5.55 ± 0.27 b | 5.20 ± 0.16 b | 5.60 ± 0.26 b | 5.40 ± 0.09 b | 6.19 ± 0.16 a | - |
aw | 0.38 ± 0.04 a | 0.34 ± 0.16 a | 0.28 ± 0.07 a | 0.37 ± 0.01 a | 0.42 ± 0.02 a | - |
Protein, g/100 g | 9.54 ± 0.19 c | 10.11 ± 0.25 bc | 10.68 ± 0.22 ab | 11.16 ± 0.34 a | 11.44 ± 0.46 a | 8.30 |
Total lipids, g/100 g | 12.70 ± 0.26 b | 13.04 ± 0.40 ab | 13.28 ± 0.34 ab | 13.44 ± 0.43 ab | 13.90 ± 0.30 a | 25.40 |
Ash, g/100 g | 4.38 ± 0.02 b | 4.33 ± 0.14 b | 4.32 ± 0.10 b | 4.15 ± 0.09 b | 4.64 ± 0.08 a | - |
Crude fiber, g/100 g | 2.51 ± 0.30 e | 2.88 ± 0.05 d | 3.25 ± 0.15 c | 3.61 ± 0.14 b | 3.98 ± 0.08 a | 2.60 |
Total starch, % | 40.54 ± 1.49 a | 39.95 ± 1.13 a | 39.34 ± 1.27 a | 38.75 ± 0.83 a | 38.14 ± 0.90 a | - |
Carbohydrates, g/100 g | 70.87 ± 2.59 a | 69.64 ± 2.14 ab | 68.47 ± 1.78 ab | 67.64 ± 1.15 ab | 66.04 ± 1.93 b | 60.00 |
Energy, Kcal/100 g | 440.96 ± 12.25 a | 442.12 ± 13.10 a | 442.62 ± 12.98 a | 443.38 ± 14.35 a | 442.98 ± 11.09 a | 508.00 |
CIEL* a* b* Parameters in Dough | Dough Containing 100% Whole Brown Rice Flour (WRC) | Dough Containing 25% Black Rice Flour (25-BRC) | Dough Containing 50% Black Rice Flour (50-BRC) | Dough Containing 75% Black Rice Flour (75-BRC) | Dough Containing 100% Whole Black Rice Flour (BRC) |
L* | 75.43 ± 1.24 a | 46.98 ± 0.36 b | 36.57 ± 1.73 c | 31.58 ± 0.07 d | 26.07 ± 1.12 e |
a* | 0.39 ± 0.16 c | 5.83 ± 0.24 a | 5.84 ± 0.09 a | 5.83 ± 0.21 a | 4.79 ± 0.74 b |
b* | 19.45 ± 0.49 a | 3.65 ± 0.02 b | 1.35 ± 0.33 c | 1.25 ± 0.39 c | −0.03 ± 0.06 d |
Corresponding color (RGB coordinates) | |||||
CIEL* a* b* Parameters on the Cracker Surface | Crackers Containing 100% Whole Brown Rice Flour (WRC) | Crackers Containing 25% Black Rice Flour (25-BRC) | Crackers Containing 50% Black Rice Flour (50-BRC) | Crackers Containing 75% Black Rice Flour (75-BRC) | Crackers Containing 100% Black Rice Flour (BRC) |
L* | 70.75 ± 0.52 a | 43.65 ± 0.40 b | 36.10 ± 1.07 c | 30.35 ± 2.40 d | 27.90 ± 0.10 d |
a* | 1.83 ± 0.18 d | 6.56 ± 0.18 a | 6.62 ± 0.27 a | 5.76 ± 0.47 b | 4.95 ± 0.20 c |
b* | 26.04 ± 0.41 a | 8.16 ± 0.09 b | 5.13 ± 1.17 c | 2.59 ± 0.52 d | 1.55 ± 0.09 d |
∆E on the surface | - | 32.81 ± 0.34 c | 40.75 ± 0.94 b | 46.88 ± 1.90 a | 49.45 ± 0.53 a |
Browning index (BI) | 46.62 ± 0.51 a | 31.29 ± 0.74 b | 28.24 ± 0.28 c | 22.22 ± 0.59 d | 18.13 ± 0.08 e |
Chroma (C*) | 26.30 ± 0.45 a | 10.47 ± 0.20 b | 8.38 ± 0.35 c | 5.76 ± 0.13 d | 5.19 ± 0.22 d |
Corresponding color (RGB coordinates) | |||||
CIEL* a* b* Parameters in the Crushed Sample | Crackers Containing 100% Whole Brown Rice Flour (WRC) | Crackers Containing 25% Black Rice Flour (25-BRC) | Crackers Containing 50% Black Rice Flour (50-BRC) | Crackers Containing 75% Black Rice Flour (75-BRC) | Crackers Containing 100% Whole Black Rice Flour (BRC) |
L* | 76.58 ± 0.21 a | 46.81 ± 0.83 b | 35.89 ± 0.66 c | 30.84 ± 0.82 d | 26.35 ± 0.36 e |
a* | 2.20 ± 0.08 c | 9.71 ± 0.22 b | 10.75 ± 0.05 a | 10.97 ± 0.18 a | 9.77 ± 0.18 b |
b* | 27.94 ± 0.26 a | 12.19 ± 0.16 b | 8.65 ± 0.47 c | 6.47 ± 0.06 d | 5.37 ± 0.37 e |
∆E in the crushed sample | - | 34.49 ± 0.64 d | 45.84 ± 0.50 c | 51.28 ± 0.65 b | 55.59 ± 0.21 a |
Browning index (BI) | 46.36 ± 0.31 b | 44.84 ± 0.43 c | 48.67 ± 0.88 a | 48.36 ± 0.53 a | 48.59 ± 0.47 a |
Chroma (C*) | 28.03 ± 0.27 a | 15.58 ± 0.27 b | 13.80 ± 0.47 c | 12.74 ± 0.19 d | 11.15 ± 0.41 e |
Corresponding color (RGB coordinates) |
Parameter | WRC | 25-BRC | 50-BRC | 75-BRC | BRC | |
---|---|---|---|---|---|---|
Medium width, mm | 35.30 ± 0.39 a | 35.60 ± 0.16 a | 35.00 ± 0.54 a | 34.80 ± 0.35 a | 35.20 ± 0.19 a | |
Medium thickness, mm | 4.70 ± 0.05 d | 5.10 ± 0.10 c | 5.10 ± 0.21 c | 5.40 ± 0.04 b | 5.70 ± 0.12 a | |
Spread factor | 75.3 ± 2.20 a | 69.30 ± 3.40 b | 68.10 ± 1.50 b | 64.0 ± 1.10 bc | 61.50 ± 2.30 c | |
Texture parameters | Hardness (N) | 39.88 ± 9.49 a | 39.80 ± 9.70 a | 42.08 ± 7.84 a | 40.85 ± 7.34 a | 42.61 ± 7.25 a |
Peak count (−) | 8.70 ± 3.31 a | 12.05 ± 3.56 a | 12.25 ± 3.96 a | 13.55 ± 3.78 a | 12.90 ± 3.77 a | |
Work of shear (Ns) | 66.30 ± 16.93 a | 65.87 ± 15.84 a | 67.08 ± 14.27 a | 79.80 ± 13.82 a | 86.17 ± 15.72 a | |
Distance to max. peak (mm) | 1.21 ± 0.27 a | 1.36 ± 0.27 a | 1.40 ± 0.26 a | 1.36 ± 0.24 a | 1.49 ± 0.22 a |
Parameter | WRC | 25-BRC | 50-BRC | 75-BRC | BRC | |
---|---|---|---|---|---|---|
Polyphenols, mg GAE/100 g of sample | Free polyphenols | 53.14 ± 2.37 d | 60.18 ± 2.15 cd | 67.20 ± 2.03 bc | 74.23 ± 3.11 ab | 81.25 ± 4.07 a |
Bound polyphenols | 31.18 ± 1.03 e | 53.30 ± 1.15 d | 75.43 ± 3.02 c | 97.56 ± 3.74 b | 119.69 ± 5.91 a | |
Total polyphenols | 84.32 ± 3.69 e | 113.48 ± 4.82 d | 142.63 ± 4.29 c | 171.79 ± 6.33 b | 200.94 ± 9.83 a | |
Total flavonoids (TFV), µg/g | 309.31 ± 22.18 e | 606.44 ± 28.94 d | 924.60 ± 19.11 c | 1278.60 ± 43.16 b | 2592.07 ± 89.49 a | |
Total proanthocyanidins (TPA), µg/g | 38.58 ± 0.29 e | 234.48 ± 3.29 d | 422.14 ± 5.10 c | 549.73 ± 5.10 b | 854.75 ± 17.21 a |
Anthocyanins, µg/g of Sample | Sample Code | ||||
---|---|---|---|---|---|
WRC | 25-BRC | 50-BRC | 75-BRC | BRC | |
Cyanidin 3-O-glucoside chloride | nd | 42.33 ± 1.55 d | 92.29 ± 3.47 c | 130.60 ± 4.21 b | 221.58 ± 2.07 a |
Peonidin-3-O-glucoside chloride | nd | 23.27 ± 0.68 d | 50.93 ± 1.76 c | 72.15 ± 4.32 b | 120.25 ± 5.21 a |
Oenin chloride | nd | 0.54 ± 0.09 c | 0.87 ± 0.08 b | 1.98 ± 0.08 a | 1.86 ± 0.03 a |
Petunidin chloride | nd | 0.18 ± 0.02 d | 0.31 ± 0.03 c | 0.36 ± 0.01 b | 0.44 ± 0.01 a |
Myrtillin chloride | nd | nd | nd | nd | nd |
Callistephin chloride | nd | nd | nd | nd | nd |
Phenolic Acids, µg/g of sample | WRC | 25-BRC | 50-BRC | 75-BRC | BRC |
3,4-dihydroxybenzoic acid | nd | 62.00 ± 0.09 c | 109.55 ± 5.56 c | 171.52 ± 2.35 b | 223.41 ± 1.28 a |
Vanillic acid | 0.32 ± 0.03 e | 8.12 ± 0.10 d | 14.99 ± 0.72 c | 22.81 ± 0.01 b | 31.17 ± 1.04 a |
Syringic acid | 3.21 ± 0.13 c | 2.52 ± 0.09 d | 2.70 ± 0.21 d | 4.13 ± 0.02 b | 7.79 ± 0.23 a |
p-coumaric acid | 1.45 ± 0.12 a | 1.39 ± 0.06 a | 1.31 ± 0.01 a | 1.25 ± 0.03 a | 0.98 ± 0.16 b |
Ferulic acid | 6.15 ± 0.16 a | 5.90 ± 0.11 ab | 5.89 ± 0.03 ab | 6.15 ± 0.16 a | 5.58 ± 0.12 c |
Sinapic acid | 0.62 ± 0.06 a | 0.53 ± 0.07 ab | 0.46 ± 0.02 bc | 0.37 ± 0.01 cd | 0.29 ± 0.04 d |
Ellagic acid | 0.24 ± 0.01 e | 2.91 ± 0.05 d | 5.29 ± 0.24 c | 8.95 ± 0.29 b | 11.84 ± 0.18 a |
p-hydroxybenzoic acid | nd | nd | nd | nd | nd |
Procyanidin B2 | nd | nd | nd | nd | nd |
Gallocatechin gallate | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uivarasan, A.M.; Mihaly Cozmuta, L.; Lukinac, J.; Jukić, M.; Šelo, G.; Peter, A.; Nicula, C.; Mihaly Cozmuta, A. Whole Black Rice Flour Improves the Physicochemical, Glycemic, and Sensory Properties of Cracker Snacks. Foods 2024, 13, 1503. https://doi.org/10.3390/foods13101503
Uivarasan AM, Mihaly Cozmuta L, Lukinac J, Jukić M, Šelo G, Peter A, Nicula C, Mihaly Cozmuta A. Whole Black Rice Flour Improves the Physicochemical, Glycemic, and Sensory Properties of Cracker Snacks. Foods. 2024; 13(10):1503. https://doi.org/10.3390/foods13101503
Chicago/Turabian StyleUivarasan, Alexandra Maria, Leonard Mihaly Cozmuta, Jasmina Lukinac, Marko Jukić, Gordana Šelo, Anca Peter, Camelia Nicula, and Anca Mihaly Cozmuta. 2024. "Whole Black Rice Flour Improves the Physicochemical, Glycemic, and Sensory Properties of Cracker Snacks" Foods 13, no. 10: 1503. https://doi.org/10.3390/foods13101503
APA StyleUivarasan, A. M., Mihaly Cozmuta, L., Lukinac, J., Jukić, M., Šelo, G., Peter, A., Nicula, C., & Mihaly Cozmuta, A. (2024). Whole Black Rice Flour Improves the Physicochemical, Glycemic, and Sensory Properties of Cracker Snacks. Foods, 13(10), 1503. https://doi.org/10.3390/foods13101503