Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Extraction of REO
2.2. Analysis of REO by Gas Chromatography-Mass Spectrometry
2.3. Nanoencapsulation of REO
2.4. Scanning Electron Microscopy
2.5. Experimental Design and Diets
2.6. Growth Performance and Nutrient Digestibility
2.7. Carcass Characteristics and Physical Meat Quality Traits
2.8. Meat Lipid Peroxidation
2.9. The Gene Expression Study
2.10. Statistical Analysis
3. Results
3.1. Result of Gas Chromatography-Mass Spectrometry
3.2. Result of Scanning Electron Microscopy
3.3. Effect on Growth Performance
3.4. Effect on Nutrient Digestibility
3.5. Effect on Carcass Attributes
3.6. Effect on Physical Meat Quality Attributes
3.7. Effect on Meat Lipid Peroxidation Parameters
3.8. Effect on Gene Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, K.W.; Ho Hong, Y.; Lee, S.H.; Jang, S.I.; Park, M.S.; Bautista, D.A. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res. Vet. Sci. 2012, 93, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Torok, V.A.; Allison, G.E.; Percy, N.J.; Ophel-Keller, K.; Hughes, R.J. Influence of antimicrobial feed additives on broiler commensal post hatch gut microbiota development and performance. Appl. Environ. Microbiol. 2011, 77, 3380–3390. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Karimi, A.; Devendra, K.; Waldroup, P.W.; Cho, K.K.; Kwon, Y.M. Influence of penicillin on microbial diversity of the cecal microbiota in broiler chickens. Poult. Sci. 2013, 9, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Forgetta, V.; Rempel, H.; Malouin, F.; Vaillancourt, R., Jr.; Topp, E.; Dewar, K.; Diarra, M.S. Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poult. Sci. 2012, 91, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.T.; Fliss, I.; Biron, E. Insights in the development and uses of alternatives to antibiotic growth promoters in poultry and swine production. Antibiotics 2022, 11, 766. [Google Scholar] [CrossRef] [PubMed]
- Diarra, M.S.; Malouin, F. Antibiotics in canadian poultry productions and anticipated alternatives. Front. Microbiol. 2014, 5, 282. [Google Scholar] [CrossRef]
- FDA Guidance for Industry. 213-New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food- Producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI. Guid. Ind. 2013, 18, 213. [Google Scholar]
- Banday, M.T.; Adil, S.; Wani, M.A.; Khan, A.A.; Sheikh, I.U.; Shubeena, S. Utilization of mushroom waste as non-conventional feed additive in broiler chicken. SKUAST J. Res. 2023, 25, 342–347. [Google Scholar] [CrossRef]
- Hallagan, J.B.; Hall, R.L. FEMA GRAS-a GRAS assessment program for flavor ingredients. Regul. Toxicol. Pharmacol. 1995, 21, 422–430. [Google Scholar] [CrossRef]
- Yakhkeshi, S.; Rahimi, S.; GharibNaseri, K. The effects ofcomparison of herbal extracts, antibiotic, probiotic and organic acid on serum lipids, immune response, git microbial population, intestinal morphology and performance of broilers. J. Med. Plant Res. 2011, 10, 80–95. [Google Scholar]
- Nehme, R.; Andrés, S.; Pereira, R.B.; Ben Jemaa, M.; Bouhallab, S.; Ceciliani, F.; López, S.; Rahali, F.Z.; Ksouri, R.; Pereira, D.M.; et al. Essential oils in livestock: From health to food quality. Antioxidants 2021, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, A.G.; Corrêa, J.A.F.; Pinto, A.C.S.M.; Luciano, F.B. The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance-a review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5267–5283. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Mandal, G.P.; Patra, A.K.; Kumar, P.; Samanta, I.; Pradhan, S.; Samanta, A.K. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes. Anim. Feed Sci. Technol. 2018, 236, 39–47. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, I.H. Effects of a protease and essential oils on growth performance, blood cell profiles, nutrient retention, ileal microbiota, excreta gas emission, and breast meat quality in broiler chicks. Poult. Sci. 2018, 97, 2854–2860. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, K.M.; Kipper, M.; Andretta, I.; Ribeiro, A.M.L. Withdrawal of antibiotic growth promoters from broiler diets: Performance indexes and economic impact. Poult. Sci. 2019, 98, 6659–6667. [Google Scholar] [CrossRef]
- Lemos, M.F.; Lemos, M.F.; Pacheco, H.P.; Endringer, D.C.; Scherer, R. Seasonality modifies rosemary’s composition and biological activity. Ind. Crops Prod. 2015, 70, 41–47. [Google Scholar] [CrossRef]
- Bajalan, I.; Rouzbahani, R.; Pirbalouti, A.G.; Maggi, F. Chemical composition and antibacterial activity of Iranian Lavandula × hybrida. Chem. Biodivers. 2017, 14, e1700064. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Lo Sterzo, C.; Paparella, A. Characterization of essential oils obtained from Abruzzo autochthonous plants: Antioxidant and antimicrobial activities assessment for food application. Foods 2018, 7, 19. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: In vitro antimicrobial activities and effects on growth performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef]
- Adil, S.; Banday, M.T.; Sheikh, I.U.; Khan, A.A.; Khurshid, A. Effect of essential oils as replacement for antibiotic growth promoters in the diet on performance of broiler chicken. SKUAST J. Res. 2020, 22, 74–78. [Google Scholar]
- Jemaa, M.B.; Falleh, H.; Serairi, R.; Neves, M.A.; Snoussi, M.; Isoda, H.; Nakajima, M.; Ksouri, R. Nanoencapsulated Thymus capitatus essential oil as natural preservative. Innov. Food Sci. Emerg. Technol. 2018, 45, 92–97. [Google Scholar] [CrossRef]
- Bazana, M.T.; Codevilla, C.F.; de Menezes, C.R. Nanoencapsulation of Bioactive Compounds: Challenges and Perspectives. Curr. Opin. Food Sci. 2019, 26, 47–56. [Google Scholar] [CrossRef]
- Kalagatur, N.K.; Nirmal Ghosh, O.S.; Sundararaj, N.; Mudili, V. Antifungal activity of chitosan nanoparticles encapsulated with Cymbopogonmartinii essential oil on plant pathogenic fungi Fusarium graminearum. Front. Pharmacol. 2018, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.F. Apparatus for volatile oil determination, description of new type. Am. Perfum. Essent. Oil Rev. 1928, 17, 467–503. [Google Scholar]
- Yoksan, R.; Jirawutthiwongchai, J.; Arpo, K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloids Surf. B Biointerfaces 2010, 76, 292–297. [Google Scholar] [CrossRef] [PubMed]
- IS: 9863; Nutrient Requirement for Poultry. Bureau of Indian Standards: New Delhi, India, 2007.
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Washington, DC, USA, 2005. [Google Scholar]
- Talpatra, S.K.; Roy, S.C.; Sen, K.C. Estimation of Phosphorus, Chlorine, Calcium, Magnesium, Sodium and Potassium in feed stuffs. Ind. J. Vet. Sci. 1940, 10, 243–258. [Google Scholar]
- Gökalp, H.Y.; Kaya, M.; Tülek, Y.; Zorba, O. Guide for Quality Control and Laboratory Application of Meat Products; Atatürk University: Erzurum, Turkey, 2001; p. 751. [Google Scholar]
- Brondum, J.; Munck, L.; Henckel, P.; Karlsson, A.; Tornberg, E.; Engelsen, S.B. Prediction of water-holding capacity and composition of porcine meat by comparative spectroscopy. Meat Sci. 2000, 55, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Jay, J.M.; Hollingshed, A.M. Two methods for determining extract release volume (ERV) of fresh and spoiled beef and poultry meats. J. Food Sci. 2006, 55, 1475–1476. [Google Scholar] [CrossRef]
- Wybenga, D.R.; Pileggi, V.J. Estimation of cholesterol. Clin. Chem. 1970, 16, 980. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Sallam, K.I.; Ishioroshi, M.; Samejima, K. Antioxidant andantimicrobial effects of garlic in chicken sausage. LWT-Food Sci. Technol. 2004, 37, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Wani, M.A.; Tyagi, P.K.; Jubeda, B.; Mir, N.A.; Dev, K.; Biswas, A.; Sharma, D.; Akshat Goel, A. Expression of nutrient transporter genes in response to dietary rice gluten meal and protease enzyme supplementation and the consequent effects on growth, nutrient digestibility, immunity and jejunum histomorphometry in chicken. Anim. Biotechnol. 2021, 33, 1620–1628. [Google Scholar] [CrossRef] [PubMed]
- Khokhlova, E.V.; Smeianov, V.V.; Efimov, B.A.; Kafarskaia, L.I.; Pavlova, S.I.; Shkoporov, A.N. Anti-inflammatory properties of intestinal Bifidobacterium strains isolated from healthy infants. Microbiol. Immunol. 2012, 56, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, Y.; Goo, D.; Zimmerman, N.P.; Smith, A.H.; Rehberger, T.; Lillehoj, H.S. The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poult. Sci. 2020, 99, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple range and multiple F test. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Gharejanloo, M.; Mehri, M.; Shirmohammad, F. Effect of different levels of turmeric and rosemary essential oils on performance and oxidative stability of broiler meat. Iran. J. Appl. Anim. 2017, 7, 655–662. [Google Scholar]
- Ertas, O.N.; Guler, T.; Ciftci, M.; Dalkilic, B.; Simsek, U.G. The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar]
- Ghozlan, S.A.; El-Far, A.H.; Sadek, K.M.; Abourawash, A.A.; Abdel-Latif, M.A. Effect of rosemary (Rosmarinus officinalis) dietary supplementation in broiler chickens concerning immunity, antioxidant status, and performance. Alex. J. Vet. Sci. 2017, 55, 152–161. [Google Scholar] [CrossRef]
- Abd El-Latif, A.S.; Saleh, N.S.; Allam, T.S.; Ghazy, E.W. The effects of rosemary (Rosmarinus officinalis) and garlic (Allium sativum) essential oils on performance, hematological, biochemical and immunological parameters of broiler chickens. Br. Poult. Sci. 2013, 2, 16–24. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Awaad, M.H.H.; Elmenawey, M.; Ahmed, K.A. Effect of a specific combination of carvacrol, cinnamaldehyde, and on the growth performance, carcass quality and gut integrity of broiler chickens. Vet. World 2014, 7, 284–290. [Google Scholar] [CrossRef]
- Habibi, R.; Sadeghi, G.H.; Karimi, A. Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress. Br. Poult. Sci. 2014, 55, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.; Haldar, S.; Ghosh, T.K. Comparative efficacy of an organic acid blend and bacitracin methylene disalicylate as growth promoters in broiler chickens: Effects on performance, gut histology, and small intestinal milieu. Vet. Med. Int. 2010, 645150. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, D.; Wiliczkiewicz, A.; Wertelecki, T.; Orda, J.; Skorupińska, J. Use of active substances of plant origin in chicken diets based on maize and locally grown cereals. Br. Poult. Sci. 2005, 46, 485–493. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Paraskevas, V.; Tsirtsikos, P.; Palamidi, I.; Steiner, T.; Schatzmayr, G.; Fegeros, K. Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition. Anim. Feed Sci. Technol. 2011, 168, 223–231. [Google Scholar] [CrossRef]
- Bento, M.H.L.; Ouwehand, A.C.; Tiihonen, K.; Lahtinen, S.; Nurminen, P.; Saarinen, M.T.; Schulze, H.; Mygind, T.; Fischer, J. Essential oils and their use in animal feeds for monogastricanimals-Effects on feed quality, gut microbiota, growth performance and food safety: A review. Vet. Med. 2013, 58, 449–458. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Dotas, D.; Mitsopoulos, I.; Dotas, V.; Botsoglou, E.; Nikolakakis, I.; Botsoglou, N. Effect of feeding rosemary and α-tocopheryl acetate on hen performance and egg quality. Poult. Sci. 2006, 43, 143–149. [Google Scholar] [CrossRef]
- Elbaz, A.M.; Ashmawy, E.S.; Salama, A.A.; Abdel-Moneim, A.M.E.; Badri, F.B.; Thabet, H.A. Effects of garlic and lemon essential oils on performance, digestibility, plasma metabolite, and intestinal health in broilers under environmental heat stress. BMC Vet. Res. 2022, 18, 430. [Google Scholar] [CrossRef]
- Kumar, P.; Patra, A.K.; Mandal, G.P.; Samanta, I.; Pradhan, S. Effect of black cumin seeds on growth performance, nutrient utilization, immunity, gut health and nitrogen excretion in broiler chickens. J. Sci. Food Agri. 2017, 97, 3742–3751. [Google Scholar] [CrossRef]
- Jang, I.S.; Ko, Y.H.; Kang, S.Y.; Lee, C.Y. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed. Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Windisch, W.; Schedle, K.; Plitzner, C.; Kroismayr, A. Use of phytogenic products as feed additives for swine and poultry. J. Anim. Sci. 2008, 86, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Mohebodini, H.; Jazi, V.; Bakhshalinejad, R.; Shabani, A.; Ashayerizadeh, A. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livest. Sci. 2019, 229, 13–21. [Google Scholar] [CrossRef]
- Attia, Y.; Al-Harthi, M.; El-Kelawy, M. Utilisation of essential oils as a natural growth promoter for broiler chickens. Ital. J. Anim. Sci. 2019, 18, 1005–1012. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Ghazanfari, S.; Moradi, M.A. Effect of supplementing clove essential oil to the diet on microflora population, intestinal morphology, blood parameters and performance of broilers. Eur. Poult. Sci. 2014, 78, 1–11. [Google Scholar] [CrossRef]
- Mohammadi, A.; Ghazanfari, S.; Sharifi, S.D. Comparative effects of dietary organic, inorganic and Nano-selenium complexes and rosemary essential oil on performance, meat quality and selenium deposition in muscles of broiler chickens. Livest. Sci. 2019, 226, 21–30. [Google Scholar] [CrossRef]
- Mehdipour, Z.; Afsharmanesh, M.; Sami, M. Effects of supplemental thyme extract (Thymus vulgaris L.) on growth performance, intestinal microbial populations and meat quality in Japanese quails. Com. Clin. Path. 2013, 23, 1–6. [Google Scholar] [CrossRef]
- Ristc, M.; Damme, K. The meaning of pH-value for the meat quality of broilers–Influence of breed lines. Meat Technol. 2010, 51, 115–123. [Google Scholar]
- Bianchi, M.; Fletcher, D.L.; Smith, D.P. Physical and functional properties of intact and ground pale broiler breast meat. Poult. Sci. 2005, 84, 803–808. [Google Scholar] [CrossRef]
- Popović, S.; Puvača, N.; Peulić, T.; Ikonić, P.; Spasevski, N.; Kostadinović, L.; Đuragić, O. The usefulness of dietary essential oils mixture supplementation on quality aspect of poultry meat. J. Agron. 2019, 2, 335–343. [Google Scholar]
- Salarmoini, M.; Salajegheh, A.; Salajegheh, M.H.; Afsharmanesh, M. The effect of lavender (Lavandula angustifolia) extract in comparison to antibiotic on growth performance, intestinal morphology, ileal microflora, antioxidant status and meat quality of broilers. Iran. J. Appl. Anim. Sci. 2019, 9, 717–725. [Google Scholar]
- Ghiasvand, A.R.; Khatibjoo, A.; Mohammadi, Y.; Akbari Gharaei, M.; Shirzadi, H. Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population and meat quality of broiler chickens fed corn or wheat-based diet. Br. Poult. Sci. 2021, 62, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Sudarman, A.; Solikhah, H. Performance and meat cholesterol content of broiler chickens fed Pluchea indica L. leaf meal reared under stress condition. Media Peternak. 2011, 34, 64. [Google Scholar] [CrossRef]
- Cho, S.Y.; Jun, H.J.; Lee, J.H.; Jia, Y.; Kim, K.H.; Lee, S.J. Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2-and ubiquitin-dependent mechanisms. FEBS Lett. 2011, 585, 3289–3296. [Google Scholar] [CrossRef] [PubMed]
- Irawan, A.; Hidayat, C.; Jayanegara, A.; Ratriyanto, A. Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes and serum metabolites of broiler chickens: A meta-analysis. Anim. Biosci. 2021, 34, 1499. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.A.; Lee, Y.S.; Erf, G.F.; Meullenet, J.F.; McKee, S.R.; Owens, C.M. Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poult. Sci. 2012, 91, 1240–1247. [Google Scholar] [CrossRef]
- Gumus, R.; Gelen, S.U. Effects of dietary thyme and rosemary essential oils on performance parameters with lipid oxidation, water activity, pH, colour and microbial quality of breast and drumstick meats in broiler chickens. Arch. Anim. Breed. 2023, 66, 17–29. [Google Scholar] [CrossRef]
- Rimini, S.; Petracci, M.; Smith, D.P. The use of thyme and orange essential oils blend to improve quality traits of marinated chicken meat. Poult. Sci. 2014, 93, 2096–2102. [Google Scholar] [CrossRef]
- Tekce, E.; Çınar, K.; Bayraktar, B.; Takma, C.; Gül, M. Effects of an essential oil mixture added to drinking water for temperature-stressed broilers: Performance, meat quality and thiobarbituric acid-reactive substances. J. Appl. Poult. Res. 2020, 29, 77–84. [Google Scholar] [CrossRef]
- Kim, H.W.; Yan, F.F.; Hu, J.Y.; Cheng, H.W.; Kim, Y.H.B. Effects of probiotics feeding on meat quality of chicken breast during post-mortem storage. Poult. Sci. 2016, 95, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Shaltout, F.A.; Koura, H.A. Impact of some essential oils on the quality aspect and shelf life of meat. Benha Vet. Med. J. 2017, 33, 351–364. [Google Scholar] [CrossRef]
- Hamada, M.; Abdeldaim, M.; Fathalla, S.I.; Al, N.A.; Humam, A.E.; Albrecht, E. Meat Safety and Quality of Broiler Chickens Supplemented with Thyme Essential Oil. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Food Sci. Technol. 2022, 79, 41–50. [Google Scholar]
- Abbasi, M.A.; Ghazanfari, S.; Sharifi, S.D.; Ahmadi Gavlighi, H. Influence of dietary plant fats and antioxidant supplementations on performance, apparent metabolizable energy and protein digestibility, lipid oxidation and fattyacid composition of meat in broiler chicken. Vet. Med. Sci. 2020, 6, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Peric, L.; Zikic, D.; Lukic, M. Application of alternative growth promoters in broiler production. Biotechnol. Anim. Husb. 2009, 25, 387–397. [Google Scholar] [CrossRef]
- Moretti, S.; Mrakic-Sposta, S.; Roncoroni, L.; Vezzoli, A.; Dellanoce, C.; Monguzzi, E.; Branchi, F.; Ferretti, F.; Lombardo, V.; Doneda, L.; et al. Oxidative stress as a biomarker for monitoring treated celiac disease. Clin. Transl. Gastroenterol. 2018, 9, 157. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Guo, X. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci. Hum. Well. 2016, 5, 39–48. [Google Scholar] [CrossRef]
- Zeinali, S.O.; Ghazanfari, S.H.; Ebrahimi, M.A. Mucin2 gene expression in the chicken intestinal goblet cells are affected by dietary essential oils. Bulg. J. Agric. Sci. 2017, 23, 134–141. [Google Scholar]
- Amiri, N.; Afsharmanesh, M.; Salarmoini, M.; Meimandipour, A.; Hosseini, S.A.; Ebrahimnejad, H. Effects of nanoencapsulated cumin essential oil as an alternative to the antibiotic growth promoter in broiler diets. J. Appl. Poult. Res. 2020, 29, 875–885. [Google Scholar] [CrossRef]
- Stefanello, C.; Rosa, D.P.; Dalmoro, Y.K.; Segatto, A.L.; Vieira, M.S.; Moraes, M.L.; Santin, E. Protected blend of organic acids and essential oils improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. 2020, 6, 491. [Google Scholar] [CrossRef]
- Jiang, H.; Przybyszewski, J.; Mitra, D.; Becker, C.; Brehm-Stecher, B.; Tentinger, A.; MacDonald, R.S. Soy protein diet, but not Lactobacillus rhamnosus GG, decreases mucin-1, trefoil factor-3, and tumor necrosis factor-α in colon of dextran sodium sulfate-treated C57BL/6 mice. J. Nutr. 2011, 141, 1239–1246. [Google Scholar] [CrossRef]
- Honda, K.; Takeda, K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunol. 2009, 2, 187–196. [Google Scholar] [CrossRef]
- Everett, M.L.; Palestrant, D.; Miller, S.E.; Bollinger, R.R.; Parker, W. Immune exclusion and immune inclusion: A new model of host-bacterial interactions in the gut. Clin. Appl. Immunol. 2004, 4, 321–332. [Google Scholar] [CrossRef]
- He, S.; Yu, Q.; He, Y.; Hu, R.; Xia, S.; He, J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult. Sci. 2019, 98, 6378–6387. [Google Scholar] [CrossRef] [PubMed]
- Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 2004, 66, 361–384. [Google Scholar] [CrossRef] [PubMed]
- Ruhnke, I.; Röhe, I.; Goodarzi Boroojeni, F.; Knorr, F.; Mader, A.; Hafeez, A.; Zentek, J. Feed supplemented with organic acids does not affect starch digestibility, nor intestinal absorptive or secretory function in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2015, 99, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.; Eldemery, F.; Metwally, A.S.; Abd-Allah, E.M.; Mohamed, D.T.; IsmailT, A.; Hamed, T.A.; AlSadik, G.M.; Neamat-Allah, A.N.F.; Abd El-Hamid, M.I. Dietary Eugenol Nanoemulsion Potentiated Performance of Broiler Chickens: Orchestration of Digestive Enzymes, Intestinal Barrier Functions and Cytokines Related Gene Expression with a Consequence of Attenuating the Severity of E. coli O78 Infection. Front. Vet. Sci. 2022, 9, 847580. [Google Scholar] [CrossRef] [PubMed]
- Kayamuro, H.; Yoshioka, Y.; Abe, Y.; Arita, S.; Katayama, K.; Nomura, T. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J. Virol. 2010, 84, 12703–12712. [Google Scholar] [CrossRef]
- Wang, Y.G.; Fang, W.L.; Wei, J.; Wang, T.; Wang, N.; Ma, J.L.; Shi, M. The involvement of NLRX1 and NLRP3 in the development of non-alcoholic steatohepatitis in mice. J. Chin. Med. Assoc. 2013, 76, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, Y.; Zhou, H.; Tian, F.; Ni, Y. Antimicrobial activities and in vitro properties of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold-water fishes of high latitude water areas in Xinjiang, China. BMC Microbiol. 2019, 19, 247. [Google Scholar] [CrossRef]
Ingredients (g/kg) | Starter (7–21 Day) | Finisher (22–42 Day) |
---|---|---|
Corn | 550 | 586 |
Soybean Meal | 350 | 320 |
Fish Meal | 40 | 20 |
Vegetable Oil | 30 | 40 |
Limestone | 7.00 | 10.00 |
Di-Calcium Phosphate | 15.00 | 16.00 |
Salt | 3.00 | 3.00 |
DL-Methionine | 1.10 | 1.00 |
Lysine | 1.30 | 1.40 |
Trcae Mineral Premix 1 | 1.00 | 1.00 |
Vitamin Premix 2 | 1.50 | 1.50 |
Nutrient composition | ||
Crude Protein (%) * | 22.3 | 20.4 |
Metabolizable Energy (Kcal/kg) ** | 3062 | 3150 |
Crude Fiber (CF) (%) * | 4.41 | 4.86 |
Ether Extract (%) * | 7.36 | 8.59 |
Calcium (%) * | 1.41 | 1.23 |
Available P (%) * | 0.70 | 0.66 |
Lysine (%) ** | 1.24 | 1.09 |
Methionine (%) ** | 0.51 | 0.46 |
Gene | Primer Sequence (5′→3′) | Reference |
---|---|---|
Mucin-2 | CTGGCTCCTTGTGGCTCCTC AGCTGCATGACTGGAGACAACTG | [35] |
PepT1 | ACGCATACTGTCACCATCAAGAAT TCCAAAAGTCGTGTCACCCATA | [35] |
TNF-α | CCTGCTGGGGGAATGCTAGG AGCGTTGTCTGCTCTGTAGC | [36] |
IL-10 | CAGACCAGCACCAGTCATCAG ATCCCGTTCTCATCCATCTTCTCG | [37] |
GAPDH | GTCAGCAATGCATCGTGCA GGCATGGACAGTGGTCATAAGA | [35] |
Bioactive Compound | Retention Index | Percentage |
---|---|---|
α-Pinene | 929 | 15.37 |
Camphene | 945 | 10.53 |
β-Pinene | 978 | 6.04 |
Myrcene | 991 | 3.55 |
β-Phellandrene | 1025 | 4.36 |
1,8-Cineole | 1031 | 14.72 |
Camphor | 1127 | 28.19 |
Borneol | 1144 | 3.81 |
Bornyl acetate | 1262 | 4.60 |
E-β-Caryophyllene | 1406 | 2.39 |
Parameter | Dietary Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | AB | CS | REOF100 | REOF200 | REON100 | REON200 | |||
BWG, g | |||||||||
7–21 d | 477 | 494 | 478 | 480 | 486 | 497 | 518 | 4.78 | 0.233 |
22–42 d | 1265 b | 1356 ab | 1298 ab | 1301 ab | 1321 ab | 1351 ab | 1381 a | 12.01 | <0.001 |
7–42 d | 1742 c | 1850 ab | 1776 bc | 1781 bc | 1807 bc | 1848 ab | 1899 a | 12.56 | 0.035 |
FI, g | |||||||||
7–21 d | 599 | 587 | 591 | 593 | 593 | 597 | 594 | 2.60 | 0.942 |
22–42 d | 2490 | 2482 | 2485 | 2474 | 2478 | 2462 | 2474 | 8.69 | 0.992 |
7–42 d | 3088 | 3069 | 3076 | 3067 | 3071 | 3058 | 3068 | 8.26 | 0.987 |
FCR | |||||||||
7–21 d | 1.26 | 1.19 | 1.24 | 1.24 | 1.22 | 1.20 | 1.15 | 0.013 | 0.343 |
22–42 d | 1.97 a | 1.83 ab | 1.92 ab | 1.91 ab | 1.88 ab | 1.82 ab | 1.80 b | 0.017 | 0.048 |
7–42 d | 1.77 a | 1.66 bc | 1.73 ab | 1.72 ab | 1.70 ab | 1.66 bc | 1.62 c | 0.012 | 0.001 |
Parameter (%) | Dietary Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | AB | CS | REOF100 | REOF200 | REON100 | REON200 | |||
Dry matter | 70.46 c | 73.65 b | 70.68 c | 71.32 b | 72.07 b | 74.87 ab | 76.37 a | 0.49 | <0.001 |
Crude protein | 68.97 d | 72.30 bc | 69.22 d | 72.02 c | 71.10 bc | 73.61 ab | 75.46 a | 0.55 | <0.001 |
Ether extract | 73.49 | 74.97 | 73.34 | 74.30 | 75.07 | 75.63 | 76.44 | 1.00 | 0.988 |
Crude fiber | 18.09 | 17.14 | 18.45 | 18.72 | 18.86 | 19.02 | 19.70 | 0.44 | 0.868 |
Calcium | 46.42 | 48.09 | 46.88 | 48.28 | 48.50 | 49.18 | 49.68 | 0.76 | 0.940 |
Phosphorous | 51.01 | 52.92 | 51.58 | 52.56 | 52.70 | 53.30 | 54.06 | 0.87 | 0.984 |
Parameter | Dietary Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | AB | CS | REOF100 | REOF200 | REON100 | REON200 | |||
PSLW (g) | 1912.89 c | 1986.45 ab | 1928.82 bc | 1939.61 bc | 1952.70 bc | 1994.48 ab | 2031.63 a | 10.70 | 0.009 |
Dressing (%) * | 70.36 c | 72.48 a | 70.41 c | 70.74 bc | 70.69 bc | 72.30 ab | 72.49 a | 0.279 | 0.041 |
Breast (%) * | 18.03 c | 20.81 ab | 18.06 c | 18.65 bc | 19.21 abc | 20.90 ab | 21.49 a | 0.383 | 0.020 |
Thigh (%) * | 8.98 b | 10.46 a | 9.06 b | 9.39 ab | 9.50 ab | 10.28 a | 10.49 a | 0.177 | 0.028 |
Abdominal fat (%) * | 1.24 a | 1.25 a | 1.22 ab | 1.21 abc | 1.19 bc | 1.17 cd | 1.14 d | 0.009 | 0.001 |
Parameter | Dietary Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | AB | CS | REOF100 | REOF200 | REON100 | REON200 | |||
0 pH | 5.88 | 5.84 | 5.85 | 5.90 | 5.93 | 5.98 | 6.04 | 0.036 | 0.949 |
24 pH | 5.81 | 5.78 | 5.82 | 5.87 | 5.89 | 5.92 | 5.95 | 0.039 | 0.957 |
WHC (%) | 54.17 b | 53.96 b | 54.03 b | 54.52 b | 54.75 ab | 55.70 ab | 56.41 a | 0.249 | 0.04 |
DL (%) | 3.11 a | 3.14 a | 3.10 a | 3.05 ab | 3.01 ab | 2.92 bc | 2.85 c | 0.024 | 0.001 |
ERV (%) | 25.17 b | 25.11 b | 25.24 b | 25.85 b | 26.42 b | 28.55 a | 29.37 a | 0.347 | <0.001 |
Cholesterol (mg/kg) | 69.82 a | 69.57 a | 70.01 a | 68.77 a | 64.92 ab | 62.66 b | 60.55 c | 0.688 | <0.001 |
L* | 51.30 | 52.12 | 51.63 | 52.46 | 51.97 | 53.12 | 52.24 | 0.280 | 0.770 |
a* | 3.19 | 3.51 | 3.77 | 3.31 | 3.43 | 3.24 | 3.90 | 0.139 | 0.836 |
b* | 5.63 | 5.46 | 5.39 | 5.43 | 5.72 | 5.52 | 5.29 | 0.168 | 0.998 |
Parameter | Storage Day | Dietary Treatments | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | AB | CS | REOF100 | REOF200 | REON100 | REON200 | ||||
TBARS (mgMDA/kg) | 0 | 0.73 a | 0.71 a | 0.72 a | 0.68 a | 0.65 a | 0.53 b | 0.45 c | 0.023 | 0.012 |
5 | 1.59 a | 1.58 a | 1.60 a | 1.56 ab | 1.50 b | 1.42 c | 1.35 d | 0.021 | <0.001 | |
FFA (%) | 0 | 0.24 a | 0.22 a | 0.23 a | 0.20 a | 0.19 a | 0.13 b | 0.08 c | 0.013 | <0.001 |
5 | 1.37 a | 1.39 a | 1.36 a | 1.34 a | 1.28 b | 1.19 c | 1.12 d | 0.022 | 0.035 | |
PV (mEq/kg) | 0 | 1.03 a | 1.05 a | 1.04 a | 0.99 a | 0.97 a | 0.82 b | 0.76 b | 0.025 | <0.001 |
5 | 2.84 a | 2.82 a | 2.85 a | 2.78 ab | 2.73 b | 2.64 c | 2.57 c | 0.023 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adil, S.; Banday, M.T.; Hussain, S.A.; Wani, M.A.; Al-Olayan, E.; Patra, A.K.; Rasool, S.; Gani, A.; Sheikh, I.U.; Khan, A.A.; et al. Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken. Foods 2024, 13, 1515. https://doi.org/10.3390/foods13101515
Adil S, Banday MT, Hussain SA, Wani MA, Al-Olayan E, Patra AK, Rasool S, Gani A, Sheikh IU, Khan AA, et al. Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken. Foods. 2024; 13(10):1515. https://doi.org/10.3390/foods13101515
Chicago/Turabian StyleAdil, Sheikh, Mohammad T. Banday, Syed A. Hussain, Manzoor A. Wani, Ebtesam Al-Olayan, Amlan K. Patra, Shahid Rasool, Adil Gani, Islam U. Sheikh, Azmat A. Khan, and et al. 2024. "Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken" Foods 13, no. 10: 1515. https://doi.org/10.3390/foods13101515
APA StyleAdil, S., Banday, M. T., Hussain, S. A., Wani, M. A., Al-Olayan, E., Patra, A. K., Rasool, S., Gani, A., Sheikh, I. U., Khan, A. A., & Muzamil, S. (2024). Impact of Nanoencapsulated Rosemary Essential Oil as a Novel Feed Additive on Growth Performance, Nutrient Utilization, Carcass Traits, Meat Quality and Gene Expression of Broiler Chicken. Foods, 13(10), 1515. https://doi.org/10.3390/foods13101515