Microbial Diversity Associated with the Cabernet Sauvignon Carposphere (Fruit Surface) from Eight Vineyards in Henan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Transportation, and Storage
2.2. DNA Extraction and PCR Amplification
2.3. Illumina Miseq Sequencing Analysis
2.4. Statistical Analysis
3. Results
3.1. Sequence Analysis
3.2. Evolution of Microbial Communities
3.3. Differences in Bacterial and Fungal Diversity among Vineyards
4. Discussion
4.1. Difference of Epiphytic Bacterial and Fungal Taxa among the Vineyards
4.2. Influence of Vineyards on the Metabolic Functions of Epiphytes on Grape Berries
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrews, M.; Hodge, S.; Raven, J.A. Positive plant microbial interactions. Ann. Appl. Biol. 2010, 157, 317–320. [Google Scholar] [CrossRef]
- Zhang, H.; Boateng, N.A.S.; Ngea, G.L.N.; Shi, Y.; Lin, H.; Yang, Q.; Wang, K.; Zhang, X.; Zhao, L.; Droby, S. Unravelling the fruit microbiome: The key for developing effective biological control strategies for postharvest diseases. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4906–4930. [Google Scholar] [CrossRef] [PubMed]
- Hammami, R.; Oueslati, M.; Smiri, M.; Nefzi, S.; Ruissi, M.; Comitini, F.; Romanazzi, G.; Cacciola, S.O.; Zouaoui, N.S. Epiphytic yeasts and bacteria as candidate biocontrol agents of green and blue molds of citrus fruits. J. Fungi 2022, 8, 818. [Google Scholar] [CrossRef] [PubMed]
- Fancello, F.; Bianco, A.; Niccolai, M.; Zara, G.; Coronas, R.; Serra, E.; D’Hallewin, G.; Valentoni, A.; Santoru, A.; Pretti, L.; et al. Fruit microbial communities of the Bisucciu Sardinian apricot cultivar (Prunus armeniaca L.) as a reservoir of new brewing starter strains. Fermentation 2022, 8, 364. [Google Scholar] [CrossRef]
- Wróbel, B.; Nowak, J.; Fabiszewska, A.; Paszkiewicz-Jasińska, A.; Przystupa, W. Dry matter losses from epiphytic microbiota activity--A comprehensive study. Agronomy 2023, 13, 450. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 669–688. [Google Scholar] [CrossRef] [PubMed]
- Nisiotou, A.A.; Nychas, G.J. Yeast populations residing on healthy or botrytis-infected grapes from a vineyard in Attica, Greece. Appl. Environ. Microbiol. 2007, 73, 2765–2768. [Google Scholar] [CrossRef]
- Verginer, M.; Leitner, E.; Berg, G. Production of volatile metabolites by grape-associated microorganisms. J. Agric. Food Chem. 2010, 58, 8344–8350. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, A.; Castello, I.; Cirvilleri, G.; Perrone, G.; Epifani, F.; Ferrara, M.; Polizzi, G.; Walters, D.R.; Vitale, A. Detection of Botrytis cinerea field isolates with multiple fungicide resistance from table grape in Sicily. Crop Prot. 2015, 77, 65–73. [Google Scholar] [CrossRef]
- Portillo Mdel, C.; Franques, J.; Araque, I.; Reguant, C.; Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 2016, 219, 56–63. [Google Scholar] [CrossRef]
- De Filippis, F.; La Storia, A.; Blaiotta, G. Monitoring the mycobiota during Greco di Tufo and Aglianico wine fermentation by 18S rRNA gene sequencing. Food Microbiol. 2017, 63, 117–122. [Google Scholar] [CrossRef]
- Ranade, Y.; Sawant, I.; Saha, S.; Chandrashekar, M.; Pathak, P. Epiphytic microbial diversity of Vitis vinifera fructosphere: Present status and potential applications. Curr. Microbiol. 2021, 78, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, E.T.; Singh, R.P.; Guo, C.; Shang, Y.; Chen, J.; Liu, C. Grape berry surface bacterial microbiome: Impact from the varieties and clones in the same vineyard from central China. J. Appl. Microbiol. 2019, 126, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shang, Y.; Chen, J.; Brunel, B.; Peng, S.; Li, S.; Wang, E. Diversity of non-Saccharomyces yeasts of grape berry surfaces from representative Cabernet Sauvignon vineyards in Henan Province, China. FEMS Microbiol. Lett. 2021, 368, fnab142. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Barbier, B.A.; Bottos, E.M.; McDonald, I.R.; Cary, S.C. The Inter-Valley Soil Comparative Survey: The ecology of Dry Valley edaphic microbial communities. Isme J. 2012, 6, 1046–1057. [Google Scholar] [CrossRef]
- Borneman, J.; Hartin, R.J. PCR primers that amplify fungal rRNA genes from environmental samples. Appl. Environ. Microbiol. 2000, 66, 4356–4360. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Gloeckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic. Acids. Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- SmithUnna All known plant rRNA sequences. Nucleic. Acids. Res. 2010, 41, D590–D596.
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef]
- Stefanini, I.; Cavalieri, D. Metagenomic Approaches to Investigate the Contribution of the Vineyard Environment to the Quality of Wine Fermentation: Potentials and Difficulties. Front. Microbiol. 2018, 9, 991. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.-S.; Matsui, M.; Abdullah, A.A.-A. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. Biomed. Res. Int. 2015, 2015, 754934. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.G.; Morell, M.K. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 2003, 54, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Moellers, K.B.; Cannella, D.; Jorgensen, H.; Frigaard, N.-U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 2014, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Grangeteau, C.; Roullier-Gall, C.; Rousseaux, S.; Gougeon, R.D.; Schmitt-Kopplin, P.; Alexandre, H.; Guilloux-Benatier, M. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microb. Biotechnol. 2016, 10, 354–370. [Google Scholar] [CrossRef]
- Mezzasalma, V.; Sandionigi, A.; Guzzetti, L.; Galimberti, A.; Grando, M.S.; Tardaguila, J.; Labra, M. Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards. Front. Microbiol. 2018, 9, 946. [Google Scholar] [CrossRef] [PubMed]
- Boulton, R. A hypothesis for the presence, activity, and role of potassium/hydrogen, adenosine triphosphatases in grapevines. Am. J. Enol. Vitic. 1980, 31, 283–287. [Google Scholar] [CrossRef]
- Swain, D.M.; Yadav, S.K.; Tyagi, I.; Kumar, R.; Kumar, R.; Ghosh, S.; Das, J.; Jha, G. A prophage tail-like protein is deployed by Burkholderia bacteria to feed on fungi. Nat. Commun. 2017, 8, 404. [Google Scholar] [CrossRef]
Sample ID | Bacteria * | Fungi * | ||||||
---|---|---|---|---|---|---|---|---|
Shannon | Simpson | Ace | Chao1 | Shannon | Simpson | Ace | Chao1 | |
AY | 3.11 ± 0.60 ab | 0.13 ± 0.09 a | 160.51 ± 25.73 ab | 161.86 ± 41.36 ab | 1.08 ± 0.18 a | 0.55 ± 0.06 c | 44.61 ± 6.92 c | 40.33 ± 1.53 b |
CY | 2.65 ± 0.43 ab | 0.17 ± 0.10 a | 136.23 ± 19.37 ab | 141.27 ± 23.23 ab | 1.57 ± 0.20 bcd | 0.28 ± 0.05 a | 43.25 ± 1.50 c | 43.36 ± 0.88 b |
FG | 2.98 ± 0.32 ab | 0.10 ± 0.03 a | 189.00 ± 47.32 bc | 188.24 ± 47.71 bc | 1.30 ± 0.13 abc | 0.37 ± 0.05 ab | 31.37 ± 1.35 a | 30.62 ± 0.66 a |
LH | 1.94 ± 0.86 a | 0.35 ± 0.26 a | 104.46 ± 23.93 a | 98.17 ± 25.24 a | 1.42 ± 0.06 abc | 0.31 ± 0.04 a | 34.15 ± 3.50 ab | 36.64 ± 7.95 ab |
MQ | 2.61 ± 1.64 ab | 0.30 ± 0.42 a | 145.36 ± 43.29 ab | 148.18 ± 30.72 ab | 1.28 ± 0.44 ab | 0.51 ± 0.18 bc | 41.41 ± 3.02 c | 41.75 ± 4.40 b |
WG | 4.40 ± 0.03 c | 0.02 ± 0.00 a | 300.10 ± 36.74 d | 301.20 ± 34.22 d | 1.78 ± 0.19 d | 0.26 ± 0.06 a | 42.25 ± 2.38 c | 41.87 ± 2.58 b |
ZNPA | 2.85 ± 0.64 ab | 0.14 ± 0.12 a | 116.57 ± 43.05 a | 120.48 ± 35.66 a | 1.09 ± 0.06 a | 0.61 ± 0.02 c | 31.07 ± 3.00 a | 30.83 ± 3.25 a |
ZPZ | 3.52 ± 0.93 bc | 0.08 ± 0.05 a | 239.46 ± 16.95 c | 239.95 ± 20.96 c | 1.71 ± 0.25 cd | 0.36 ± 0.10 a | 39.57 ± 4.02 bc | 39.83 ± 4.86 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, C.; Zhao, Z.; Liu, C. Microbial Diversity Associated with the Cabernet Sauvignon Carposphere (Fruit Surface) from Eight Vineyards in Henan Province, China. Foods 2024, 13, 1626. https://doi.org/10.3390/foods13111626
Zhang J, Zhu C, Zhao Z, Liu C. Microbial Diversity Associated with the Cabernet Sauvignon Carposphere (Fruit Surface) from Eight Vineyards in Henan Province, China. Foods. 2024; 13(11):1626. https://doi.org/10.3390/foods13111626
Chicago/Turabian StyleZhang, Junjie, Cancan Zhu, Zeyang Zhao, and Chonghuai Liu. 2024. "Microbial Diversity Associated with the Cabernet Sauvignon Carposphere (Fruit Surface) from Eight Vineyards in Henan Province, China" Foods 13, no. 11: 1626. https://doi.org/10.3390/foods13111626
APA StyleZhang, J., Zhu, C., Zhao, Z., & Liu, C. (2024). Microbial Diversity Associated with the Cabernet Sauvignon Carposphere (Fruit Surface) from Eight Vineyards in Henan Province, China. Foods, 13(11), 1626. https://doi.org/10.3390/foods13111626