Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Food Production Waste
2.3. Extraction Procedure
2.4. Antibacterial Screening of Phytoextract
2.4.1. Agar Diffusion Assay
2.4.2. Minimum Inhibitory Concentration (MIC) Assay
2.5. Lactate Dehydrogenase (LDH) Keratinocyte Cytotoxicity Assay
2.6. UHPLC-ESI-QTOF-MS Characterization
2.7. Spectrophotometric Analysis
2.7.1. Total Phenolic Content (TPC)
2.7.2. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic Acid (ABTS)) Radical Scavenging Activities
2.7.3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
2.7.4. α-Amylase Enzyme Inhibition Activity
Preparation of α-Amylase Reagents
α-Amylase Assay
α-Amylase Enzyme Bioassay with Food Production Waste Extracts
3. Results
3.1. Antibacterial Activities and Minimum Inhibitory Concentration
3.2. Antioxidant Sum Parameters of Extracts
3.3. In Vitro α-Amylase Inhibition Activity
3.4. UHPLC-ESI-QTOF-MS Characterization of Compounds in Phytoextracts of the Three Food Production Wastes
3.4.1. Characterization of Coffee Silverskin Phytoextract
3.4.2. Characterization of Hot Trub Phytoextract
3.4.3. Characterization of Lemon Peel Phytoextract
3.5. Cell LDH Cytotoxicity Activity of Phytoextracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokrane, S.; Buonocore, E.; Capone, R.; Franzese, P.P. Exploring the Global Scientific Literature on Food Waste and Loss. Sustainability 2023, 15, 4757. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Gaur, V.K.; Sirohi, R.; Varjani, S.; Kim, S.H.; Wong, J.W.C. Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresour. Technol. 2021, 325, 124684. [Google Scholar] [CrossRef] [PubMed]
- Ninkuu, V.; Yan, J.; Fu, Z.; Yang, T.; Ziemah, J.; Ullrich, M.S.; Kuhnert, N.; Zeng, H. Lignin and Its Pathway-Associated Phytoalexins Modulate Plant Defense against Fungi. J. Fungi 2023, 9, 52. [Google Scholar] [CrossRef]
- Rezk, A.; Al-Hashimi, A.; John, W.; Schepker, H.; Ullrich, M.S.; Brix, K. Assessment of cytotoxicity exerted by leaf extracts from plants of the genus Rhododendron towards epidermal keratinocytes and intestine epithelial cells. BMC Complement Altern. Med. 2015, 15, 364. [Google Scholar] [CrossRef]
- Said, I.H.; Kuhnert, N. Plant Phenolics as an Alternative Source of Antimicrobial Compounds. In Herbal Medicine: Back to the Future, 4th ed.; Bentham Science Publishers: Bussum, The Netherlands, 2021. [Google Scholar]
- Liu, Y.; Benohoud, M.; Yamdeu, J.H.G.; Gong, Y.Y.; Orfila, C. Green extraction of polyphenols from citrus peel by-products and their antifungal activity against Aspergillus flavus. Food Chem. X 2021, 12, 100144. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Zengin, G.; Sinan, K.I.; Mahomoodally, M.F.; Angeloni, S.; Mustafa, A.M.; Vittori, S.; Maggi, F.; Caprioli, G. Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods 2020, 9, 713. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L.A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133, 109128. [Google Scholar] [CrossRef]
- dos Santos Mathias, T.R.; de Mello, P.P.M.; Sérvulo, E.F.C. Solid wastes in brewing process: A review. J. Brew. Distill. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Silva, K.F.C.E.; Feltre, G.; Zandonadi, F.S.; Rabelo, R.S.; Sussulini, A.; Hubinger, M.D. Unlocking hot Trub’s potential: A simple method for extracting bitter acids and Xanthohumol. J. Sci. Food Agric. 2024, 104, 5381–5390. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Pagliari, S.; Sicari, M.; Pansera, L.; Guidi Nissim, W.; Mhalhel, K.; Rastegar, S.; Germanà, A.; Cicero, N.; Labra, M.; Cannavacciuolo, C.; et al. A comparative metabolomic investigation of different sections of Sicilian Citrus x limon (L.) Osbeck, characterization of bioactive metabolites, and evaluation of in vivo toxicity on zebrafish embryo. J. Food Sci. 2024, 89, 3729–3744. [Google Scholar] [CrossRef]
- Yao, L.; Liu, W.; Bashir, M.; Nisar, M.F.; Wan, C.C. Eriocitrin: A review of pharmacological effects. Biomed. Pharmacother. 2022, 154, 113563. [Google Scholar] [CrossRef]
- Senna Ferreira Costa, F.; Roquete Amparo, T.; Brandão Seibert, J.; Silveira, B.M.; Gomes da Silva, R.; Inocêncio Pereira, D.; Barbosa, R.G.G.; Santos, O.D.H.D.; Brandão, G.C.; de Medeiros Teixeira, L.F.; et al. Reuse of Hot Trub as an Active Ingredient with Antioxidant and Antimicrobial Potential. Waste Biomass Valorization 2021, 12, 2037–2047. [Google Scholar] [CrossRef]
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Elshamy, S.; Handoussa, H.; El-Shazly, M.; Mohammed, E.D.; Kuhnert, N. Metabolomic profiling and quantification of polyphenols from leaves of seven Acacia species by UHPLC-QTOF-ESI-MS. Fitoterapia 2023, 172, 105741. [Google Scholar] [CrossRef] [PubMed]
- Hakeem Said, I.; Rezk, A.; Hussain, I.; Grimbs, A.; Shrestha, A.; Schepker, H.; Brix, K.; Ullrich, M.S.; Kuhnert, N. Metabolome Comparison of Bioactive and Inactive Rhododendron Extracts and Identification of an Antibacterial Cannabinoid(s) from Rhododendron collettianum. Phytochem. Anal. 2017, 28, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Albano, M.; Alves, F.C.B.; Andrade, B.F.M.T.; Barbosa, L.N.; Pereira, A.F.M.; de Souza, M.D.L.R.; Rall, V.L.M.; Júnior, A.F. Antibacterial and anti-staphylococcal enterotoxin activities of phenolic compounds. Innov. Food Sci. Emerg. Technol. 2016, 38, 83–90. [Google Scholar] [CrossRef]
- Kuhnert, N.; Clifford, M.N. A Practitioner’s Dilemma Mass Spectrometry-Based Annotation and Identification of Human Plasma and Urinary Polyphenol Metabolites. Mol. Nutr. Food Res. 2022, 66, 2100985. [Google Scholar] [CrossRef]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for antioxidant assays for food components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
- Ulpathakumbura, S.; Marikkar, N.; Jayasinghe, L. Anti-oxidative, anti-hyperglycemic and anti-obesity properties of selected edible leafy plants of Sri Lanka. Food Chem. Adv. 2023, 2, 100208. [Google Scholar] [CrossRef]
- Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27, 3400. [Google Scholar] [CrossRef] [PubMed]
- Duangjai, A.; Suphrom, N.; Wungrath, J.; Ontawong, A.; Nuengchamnong, N.; Yosboonruang, A. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integr. Med. Res. 2016, 5, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Mazzara, E.; Carletti, R.; Petrelli, R.; Mustafa, A.M.; Caprioli, G.; Fiorini, D.; Scortichini, S.; Dall, S.; Sut, S.; Nuñez, S.; et al. Green extraction of hemp (Cannabis sativa L.) using microwave method for recovery of three valuable fractions (essential oil, phenolic compounds and cannabinoids): A central composite design optimization study. J. Sci. Food Agric. 2022, 102, 6220–6235. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Suri, S.; Singh, A.; Nema, P.K. Current applications of citrus fruit processing waste: A scientific outlook. Appl. Food Res. 2022, 2, 100050. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhang, L.; Sun, B.; Cui, Y.; Sang, F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorganic Med. Chem. 2023, 93, 117454. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Oboh, G.; Ademiluyi, A.O.; Akinyemi, A.J.; Henle, T.; Saliu, J.A.; Schwarzenbolz, U. Inhibitory effect of polyphenol-rich extracts of jute leaf (Corchorus olitorius) on key enzyme linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting) in vitro. J. Funct. Foods 2012, 4, 450–458. [Google Scholar] [CrossRef]
- Dong, Y.; Sui, L.; Yang, F.; Ren, X.; Xing, Y.; Xiu, Z. Reducing the intestinal side effects of acarbose by baicalein through the regulation of gut microbiota: An in vitro study. Food Chem. 2022, 394, 133561. [Google Scholar] [CrossRef] [PubMed]
- Regazzoni, L.; Saligari, F.; Marinello, C.; Rossoni, G.; Aldini, G.; Carini, M.; Orioli, M. Coffee silver skin as a source of polyphenols: High resolution mass spectrometric profiling of components and antioxidant activity. J. Funct. Foods 2016, 20, 472–485. [Google Scholar] [CrossRef]
- Karar, M.G.E.; Matei, M.F.; Jaiswal, R.; Illenberger, S.; Kuhnert, N. Neuraminidase inhibition of Dietary chlorogenic acids and derivatives-potential antivirals from dietary sources. Food Funct. 2016, 7, 2052–2059. [Google Scholar] [CrossRef]
- Karar, M.G.E.; Pletzer, D.; Jaiswal, R.; Weingart, H.; Kuhnert, N. Identification, characterization, isolation and activity against Escherichia coli of quince (Cydonia oblonga) fruit polyphenols. Food Res. Int. 2014, 65, 121–129. [Google Scholar] [CrossRef]
- Intelmann, D.; Haseleu, G.; Dunkel, A.; Lagemann, A.; Stephan, A.; Hofmann, T. Comprehensive sensomics analysis of hop-derived bitter compounds during storage of beer. J. Agric. Food Chem. 2011, 59, 1939–1953. [Google Scholar] [CrossRef]
- Sanches, V.L.; Cunha, T.A.; Viganó, J.; de Souza Mesquita, L.M.; Faccioli, L.H.; Breitkreitz, M.C.; Rostagno, M.A. Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chem. X 2022, 14, 100262. [Google Scholar] [CrossRef]
MIC (mg/mL) | ||||||
---|---|---|---|---|---|---|
Bacteria | Coffee Silverskin | Lemon Peel | Hot Trub | |||
MeOH | H2O | MeOH | H2O | MeOH | H2O | |
Listeria monocytogenes + | 3.1 | 6.3 | 3.1 | 6.3 | 0.4 | 6.3 |
Vibrio parahaemolyticus − | 1.6 | 6.3 | 6.3 | 12.5 | 1.6 | 6.3 |
Cronobacter sakazakii − | 6.3 | 12.5 | 12.5 | 12.5 | 6.3 | 12.5 |
Pseudomonas aeruginosa − | 3.1 | 12.5 | 6.3 | 12.5 | 0.4 | 0.8 |
Salmonella enterica − | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 | 12.5 |
Klebsiella pneumoniae − | 3.1 | 12.5 | 6.5 | 12.5 | 12.5 | 12.5 |
Staphylococcus aureus + | 3.1 | 12.5 | 6.3 | 12.5 | 3.1 | 6.3 |
# | RT/min | [M − H] | Err/ppm | Expemental m/z | Theo. m/z | Compound | Base Peak Ion | Other Fragments Ions | |||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 36.3 | C21H19O11 | 4.0 | 447.0915 | 447.0933 | Kaempferol-3-O-glucoside | 227.0333 | 255.0283 | 284.0310 | 256.0325 | 96.9590 |
2 | 32.5 | C21H19O12 | 4.4 | 463.0862 | 463.0882 | Hyperoside | 300.0258 | 271.0236 | 255.0292 | 301.0312 | 272.0269 |
3 | 34.7 | C25H23O12 | 5.4 | 515.1167 | 515.1195 | 3,4-diCQA | 173.0446 | 191.0547 | 135.0452 | 179.0330 | 161.0226 |
4 | 35.5 | C25H23O12 | 3.6 | 515.1177 | 515.1195 | 3,5-diCQA | 191.0549 | 135.0436 | 179.0344 | 136.0472 | 192.0574 |
5 | 37.9 | C25H23O12 | 5.4 | 515.1167 | 515.1195 | 4,5-diCQA | 173.0443 | 179.0344 | 135.0439 | 191.0552 | 93.0336 |
6 | 29.7 | C34H25O11 | −2.4 | 609.1417 | 609.1402 | Kaempferol deivative | 284.0306 | 255.0270 | 285.0390 | 227.0333 | 319.1952 |
7 | 31.4 | C34H25O11 | −4.1 | 609.1428 | 609.1402 | Rutin | 300.0255 | 301.0310 | 271.0242 | 255.0284 | 302.0355 |
8 | 15.8 | C16H17O9 | 4.7 | 353.0851 | 353.0878 | 5-cafeoyl quinic acid | 191.0542 | 85.0289 | 87.0071 | 93.0327 | 192.0589 |
9 | 17.5 | C16H17O9 | 4.3 | 353.0856 | 353.0878 | 3-cafeoyl quinic acid | 135.0434 | 93.0331 | 191.0543 | 173.0422 | 136.0497 |
10 | 36.3 | C21H19O11 | 3.3 | 447.0905 | 447.0933 | Kaempferol 3-O-glucoside | 227.0336 | 255.0282 | 284.0314 | 256.0322 | 285.037 |
11 | 23.2 | C17H19O9 | 4.5 | 367.1003 | 367.1003 | 5-O-Feruloylquinic acid | 191.0557 | 134.0353 | 93.0334 | 87.0088 | 173.0438 |
12 | 27.2 | C17H19O9 | 4.9 | 367.1003 | 367.0976 | 4-O-Feruloylquinic acid | 191.0538 | 85.0288 | 93.0339 | 192.0565 | 87.0089 |
13 | 21.9 | C17H19O9 | 4.7 | 367.1035 | 367.1006 | 3-O-Feruloylquinic acid | 93.0334 | 134.0355 | 173.0444 | 111.0441 | 94.0363 |
14 | 15.8 | C39H31O13 | 0.3 | 707.1768 | 707.1770 | 4-cafeoyl quinic acid | 191.0547 | 192.0581 | 161.0229 | 179.0336 | 93.0343 |
15 | 19.9 | C12H15O7 | 5.0 | 271.0799 | 271.0823 | Arbutine | 137.0250 | 149.0203 | 152.0466 | 123.0077 | 138.0293 |
16 | 47.5 | C15H11O5 | 3.8 | 271.0602 | 271.0612 | Naringenin | 119.0490 | 93.0336 | 83.0139 | 107.0113 | 161.0650 |
17 | 34.5 | C15H17O8 | 5.2 | 325.0912 | 325.0929 | p-Coumaric acid-O-hexoside | 78.9593 | 292.8046 | 229.8419 | 308.8069 | 102.9474 |
18 | 2 | C13H21O12 | 5.1 | 369.102 | 369.1038 | Fraxetin-8-O-glucoside | 191.0563 | 85.0290 | 103.0030 | 87.0090 | 129.0189 |
19 | 1.9 | C13H21O12 | 4.0 | 369.1024 | 369.1038 | 7-hydroxy-6-methoxy-8-[3,4,5-trihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetrahydr opyran-2-yl)oxy]chromen-2-one | 191.0557 | 85.0287 | 87.0083 | 192.0601 | 83.0495 |
20 | 23.2 | C17H19O9 | 4.7 | 367.1003 | 367.1035 | Methyl 5-O-caffeoylquinate | 191.0556 | 134.0353 | 93.0334 | 87.0088 | 173.0438 |
21 | 18.5 | C9H7O4 | 3.8 | 179.0334 | 179.0350 | Cafffeic acid | 134.0362 | 135.0424 | 89.0394 | 106.0431 | 118.0379 |
22 | 25.1 | C16H17O8 | 5.0 | 337.0899 | 337.0829 | Coumaroyl quinic acid (isomer) | 191.0543 | 85.0286 | 93.0354 | 111.0440 | 618.7287 |
23 | 27.2 | C17H19O9 | 2.8 | 367.1009 | 367.1035 | 5-O-Feruloylquinic acid | 191.0560 | 85.0293 | 93.0338 | 134.0335 | 127.0385 |
24 | 301 | C16H13O6 | 5.0 | 301.07 | 301.0718 | Quercetin | 151.0051 | 164.0108 | 108.0195 | 136.0195 | 135.0400 |
25 | 37.1 | C15H11O6 | 4.4 | 287.0537 | 287.0561 | Dihydrokaempferol | 125.0230 | 151.0065 | 133.0281 | 152.0089 | 149.9032 |
26 | 21.8 | C16H17O8 | 4.8 | 337.0899 | 337.0929 | 4-O-p-Coumaroylquinic acid | 93.0335 | 173.0462 | 119.0486 | 292.8072 | 111.0442 |
27 | 20.5 | C16H17O9 | 3.8 | 353.0851 | 353.0878 | Chlorogenic acid | 191.0542 | 85.0289 | 87.0071 | 93.0327 | 192.0589 |
28 | 20.6 | C16H17O8 | 5.0 | 337.0909 | 337.0929 | (1R,3R,4S,5R)-1,3,4-trihydroxy-5-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxycyclohexane-1-carboxylic acid | 93.0341 | 191.0544 | 119.0483 | 292.8119 | 127.0381 |
29 | 13.6 | C7H13O7 | 3.2 | 209.066 | 209.0667 | 1,3,7-trimethyluric acid | 137.0222 | 78.9583 | 179.0168 | 124.0505 | 80.0015 |
30 | 27.1 | C17H19O9 | 4.4 | 367.1004 | 367.1034 | 5-O-Feruloylquinic acid | 191.0537 | 85.0288 | 93.0339 | 192.0565 | 87.0089 |
# | RT/min | [M − H] | Err/ppm | Exp. m/z | Theo. m/z | Compound | Base Peak Ion | Other Fragments Ions | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 52 | C25H27O5 | 2.7 | 407.1853 | 407.1865 | 8-Geranylnaringenin | 119.0496 | 287.1283 | 133.0649 | 201.0543 | 93.0338 | 201.0183 |
2 | 48.7 | C18H33O5 | 5.3 | 329.2316 | 329.2347 | Desdimethyl-octahydro-iso-cohumulone | 139.1130 | 211.1329 | 171.0998 | 127.1125 | 172.1068 | 99.0780 |
3 | 50.4 | C20H19O5 | 4.6 | 339.1222 | 339.1238 | Flavaprenin/8-Prenylnaringenin | 119.0498 | 133.0652 | 219.0630 | 93.0333 | 176.0108 | 151.0758 |
4 | 49.1 | C21H21O5 | 5.1 | 353.1373 | 353.1394 | Isoxanthohumol | 119.0496 | 120.0529 | 133.0651 | 163.0025 | 175.0031 | 165.0904 |
5 | 50.7 | C21H21O5 | 3.5 | 353.1382 | 353.1384 | Xanthohumol | 119.0498 | 175.0032 | 163.0025 | 120.0526 | 203.0335 | 190.0636 |
6 | 27.3 | C26H27O14 | 3.8 | 563.1385 | 563.1406 | Apigenin 6-C-pentosyl-8-C-hexoside | 353.0654 | 383.0745 | 384.0734 | 365.0665 | 413.0918 | 296.0616 |
7 | 47.5 | C15H9O5 | 4.3 | 269.0439 | 269.055 | Apigenin | 117.0337 | 78.9583 | 149.0241 | 260.0873 | 159.0433 | 180.0546 |
8 | 45.4 | C20H27O5 | 3.8 | 347.184 | 347.1864 | Cohumulone I | 125.0595 | 263.0913 | 233.1171 | 261.1107 | 193.0491 | 221.0446 |
9 | 49.9 | C19H25O4 | 4.2 | 317.1745 | 317.1758 | Cohulupone | 205.0863 | 133.0652 | 205.0499 | 152.0472 | 111.0446 | 233.0809 |
10 | 51.2 | C20H27O4 | 4.2 | 331.1901 | 331.1915 | Hulupone/Adhulupone | 219.1014 | 125.0605 | 219.0651 | 191.0709 | 166.0629 | 247.0963 |
11 | 52.9 | C21H29O5 | 3.3 | 361.2008 | 361.2020 | n-Cis-isohumulone | 195.0657 | 125.0602 | 223.0602 | 196.0697 | 153.0187 | 163.0754 |
12 | 52.8 | C21H29O5 | 3.1 | 361.2009 | 361.2020 | n-trans-isohumulone (isomer) | 195.0658 | 125.0599 | 223.0604 | 196.0704 | 153.0185 | 179.0706 |
13 | 52.6 | C21H29O5 | 5.0 | 361.2009 | 361.2020 | trans-isoadhumulone (isomer) | 195.0649 | 125.0610 | 205.0866 | 289.1428 | 167.0686 | 203.0695 |
14 | 52.2 | C21H29O5 | 3.7 | 361.2007 | 361.2020 | Iso-α-n/ad-humulone (isomer) | 219.1011 | 303.1591 | 245.0787 | 125.0602 | 219.0624 | 259.1727 |
15 | 54.1 | C26H37O5 | 5.0 | 429.2622 | 429.2646 | Hydroxytricyclolupone/Hydroxytricycloadlupone | 125.0599 | 245.1526 | 259.0972 | 176.0836 | 99.0803 | 78.9582 |
16 | 52.9 | C25H35O5(-CH3) | 3.2 | 415.2477 | 415.2490 | Hydroxytricyclocolupone epimers | 111.0433 | 245.1485 | 148.0872 | 107.0486 | 125.0990 | 149.0980 |
17 | 26.1 | C27H29O15 | 4.1 | 593.1476 | 593.1512 | Apigenin-C-hexoside-O-hexoside | 311.0528 | 297.0374 | 282.0499 | 237.0897 | 283.0580 | 298.0407 |
18 | 52.9 | C21H29O5 | 3.6 | 361.2007 | 361.2020 | cis-isoadhumulone | 195.0657 | 125.0604 | 223.0601 | 196.0696 | 153.0188 | 163.0756 |
19 | 52 | C25H35O5 | 1.8 | 415.2482 | 415.2490 | 4-Hydroxycoluplone/Hydroxytricyclocolupone | 111.0446 | 259.0946 | 181.0502 | 149.0968 | 203.1417 | 209.0455 |
20 | 43.9 | C18H23O5 | 4.1 | 319.1525 | 319.1551 | Deisopropyltricycloisohumulone | 125.0607 | 319.1534 | 137.0963 | 165.0912 | 78.9597 | 554.4515 |
21 | 28.8 | C11H11O5 | 4.2 | 223.0594 | 223.0612 | Sinapic acid | 93.0331 | 94.0354 | 185.4320 | 121.0275 | ||
22 | 1.8 | C12H21O11 | 3.9 | 341.1076 | 341.1089 | Maltose | 101.0238 | 161.8954 | 78.9558 | 103.0007 |
# | RT/min | [M − H] | Err/ppm | Exp. m/z | Theo. m/z | Compound Name | Base Peak Ion | Other Fragments Ions | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 42.9 | C19H29O8 | 3.6 | 385.1831 | 385.1868 | Sinapic acid O-hexoside | 99.0418 | 107.0480 | 522.6395 | 87.0098 | 179.1412 | 92.9205 | 101.0220 | 302.7875 |
2 | 32 | C26H25O14 | 4.4 | 561.1214 | 561.1250 | courmaric acid ester | 223.0615 | 129.0186 | 85.0284 | 147.0313 | 125.0232 | 83.0142 | ||
3 | 50.5 | C18H31O4 | 2.2 | 311.2208 | 311.2228 | (E)-octadec-8-enedioic acid (fatty acid) | 183.0121 | 96.9601 | 79.9546 | 74.9865 | 155.1113 | 78.9606 | ||
4 | 38.6 | C28H33O15 | 4.8 | 609.179 | 609.1825 | Neohesperidin | 301.0693 | 286.0459 | 284.0307 | 302.0731 | 299.0540 | 242.0559 | 257.0795 | 164.0102 |
5 | 31.3 | C27H29O16 | 3.5 | 609.1421 | 609.1461 | Rutin | 300.0253 | 301.0305 | 271.0227 | 255.0288 | 302.0338 | 272.0296 | 151.0023 | 303.0366 |
6 | 40 | C28H31O15 | 3.6 | 607.1647 | 607.1668 | Diosmetin-7-O-rutinoside | 299.0521 | 284.0289 | 285.0333 | 301.0691 | 300.0568 | 112.9823 | 211.0702 | 1216.0304 |
7 | 30.5 | C27H31O15 | 3.8 | 595.1628 | 595.1668 | Neoeriocitrin | 151.0028 | 135.0436 | 125.0238 | 175.0031 | 107.0128 | 287.0542 | 136.0471 | 101.0214 |
8 | 31.2 | C28H31O17 | 2.2 | 639.1553 | 639.1567 | Laricitrin-O-rutinoside | 315.0127 | 330.0362 | 316.0184 | 331.0452 | 287.0171 | 271.0228 | 209.0082 | 243.0254 |
9 | 28.7 | C11H11O5 | 4.4 | 223.0598 | 223.0612 | Sinapic acid | 91.0604 | 93.0333 | 94.0362 | 98.0250 | 105.0341 | 121.0273 | 135.0421 | 148.0176 |
10 | 23.9 | C27H29O15 | 5.0 | 593.147 | 593.1512 | Vicenin 2 | 353.0637 | 383.0748 | 325.0689 | 354.0667 | 384.0769 | 297.0734 | 365.0613 | 473.1064 |
11 | 30.9 | C21H19O10 | 4.1 | 431.0945 | 431.0984 | Apigenin 8-C-glucoside | 283.0590 | 311.0529 | 284.0635 | 117.0330 | 293.0470 | 282.0494 | 312.0552 | 163.0385 |
12 | 25.3 | C16H21O9 | 3.8 | 357.1156 | 357.1191 | 3-(2-Glucosyloxy-4-methoxyphenyl)propanoic acid | 151.0742 | 136.0524 | 121.0279 | 177.0529 | 112.9288 | 158.9271 | 371.7675 | 153.0899 |
13 | 26.7 | C33H23O10 | 2.8 | 579.1281 | 579.1297 | 4′,7,7″-Trimethoxyamentoflavone | 298.0433 | 309.0382 | 327.0507 | 297.0370 | 459.0974 | 285.0439 | 351.0459 | 299.0575 |
14 | 37.1 | C27H31O14 | 5.5 | 579.1688 | 579.1719 | Naringin | 271.0575 | 151.0035 | 119.0480 | 272.0589 | 177.0147 | 107.0117 | 165.0187 | 295.0477 |
15 | 31.2 | C28H31O17 | 2.2 | 639.1553 | 639.1567 | Laricitrin-O-rutinoside | 315.0127 | 330.0362 | 316.0184 | 331.0452 | 287.0171 | 271.0228 | 209.0082 | 243.0254 |
16 | 31.6 | C21H21O11 | 5.1 | 449.1067 | 449.1089 | Eriodictyol-7-O-glucoside | 151.0022 | 135.0435 | 107.0128 | 174.9997 | 109.0280 | 136.0471 | 193.0118 | 165.0160 |
17 | 28.1 | C21H19O11 | 4.2 | 447.0901 | 447.0933 | Orientin | 327.0494 | 299.0524 | 297.0381 | 298.0481 | 284.0303 | 78.9576 | 328.0569 | 311.0558 |
18 | 27.4 | C21H19O11 | 3.6 | 447.0903 | 447.0933 | Kaempferol-3-O-glucoside | 298.0443 | 297.0377 | 299.0532 | 327.0470 | 285.0390 | 284.0310 | 311.0510 | 357.0572 |
19 | 30.1 | C34H41O20 | 3.0 | 769.2174 | 769.2197 | Isorhamnetin-3-O-2G-rhamnosylrutinoside | 314.0408 | 299.0167 | 315.0456 | 300.0260 | 271.0231 | 1226.9550 | 292.8148 | 243.0260 |
20 | 25.2 | C28H31O16 | 4.7 | 623.157 | 623.1618 | Chrysoeriol 6,8-di-C-glucoside | 383.0740 | 413.0841 | 312.0619 | 384.0789 | 414.0877 | 503.1185 | 395.0683 | 313.0642 |
21 | 27.1 | C33H39O20 | 2.4 | 755.2022 | 755.2040 | Quercetin-3-O-(2G-α-L-rhamnosyl)-rutinoside | 300.0255 | 301.0290 | 271.0226 | 137.0222 | 255.0281 | 235.1170 | 299.0172 | 112.9855 |
22 | 48.1 | C16H11O6 | 3.7 | 299.0535 | 299.0561 | Diosmetin | 284.0300 | 256.0350 | 285.0381 | 255.0296 | 151.0035 | 257.0373 | 286.0348 | 211.0392 |
23 | 48 | C16H11O6 | 5.0 | 299.0534 | 299.0561 | Chrysoeriol | 284.0318 | 256.0350 | 107.0120 | 280.8580 | 255.0334 | 150.9987 | 211.0369 | 227.0392 |
24 | 39.2 | C22H21O11 | 4.2 | 461.1061 | 461.1089 | Peonidin-3-O-beta-galactoside | 283.0225 | 255.0276 | 284.0270 | 298.0442 | 297.0391 | 256.0311 | 446.0877 | 299.0493 |
25 | 20.9 | C17H21O10 | 4.9 | 385.111 | 385.1140 | Sinapoyl-D-glucose | 190.0262 | 175.0025 | 191.0299 | 205.0488 | 164.0448 | 119.0129 | 147.0070 | 95.0128 |
26 | 10.29 | C25H17O5 | -3.7 | 397.1112 | 397.1081 | Bis[4-(3-hydroxyphenoxy)phenyl]methanone | 125.0238 | 78.9579 | 158.9249 | 217.0484 | 615.6301 | 300.8143 | 102.9487 | 126.0226 |
27 | 31.2 | C27H29O14 | 3.7 | 577.1541 | 577.1563 | isovitexin 2″-O-rhamnoside | 293.0431 | 311.0565 | 294.0483 | 323.0534 | 341.0650 | 281.0422 | 269.0397 | 295.0561 |
28 | 35.9 | C27H29O14 | 5.0 | 577.1534 | 577.1563 | Apigenin-7-O-neohesperidoside | 269.0431 | 270.0440 | 181.0491 | 268.0356 | 387.1107 | 166.0255 | 329.0278 | 205.0855 |
29 | 3.7 | C11H21O9 | 2.7 | 297.1183 | 297.1191 | Rhamnosylribitol | 87.0071 | 147.0285 | 78.9589 | 106.0278 | 86.9379 | 115.0029 | 229.8425 | 96.0076 |
30 | 35.2 | C35H29O11 | -2.7 | 625.1732 | 625.1774 | Kuwanon L | 271.0587 | 151.0022 | 272.0623 | 119.0485 | 313.0689 | 273.0648 | 93.0330 | 107.0126 |
31 | 44.9 | C15H9O6 | 4.6 | 285.0386 | 285.0405 | Luteolin | 133.0279 | 78.9571 | 151.0013 | 107.0126 | 285.0434 | 217.0509 | 195.0453 | 121.0303 |
32 | 44.2 | C15H11O6 | 3.3 | 287.0537 | 287.0561 | Eriodictyol | 135.0435 | 134.0365 | 83.0117 | 151.0054 | 115.9218 | 107.0132 | 106.0438 | 177.0635 |
33 | 31 | C26H27O14 | 4.6 | 563.138 | 563.1404 | Isovitexin 2″-O-arabinoside | 293.0440 | 294.0496 | 311.0546 | 295.0525 | 282.0542 | 283.0545 | 323.0548 | 312.0609 |
34 | 12.2 | C15H19O9 | 3.8 | 343.1008 | 343.1035 | Homovanillic acid O-hexoside | 137.0587 | 121.0271 | 292.8014 | 109.0295 | 135.0435 | 294.8085 | 93.0361 | 78.9579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziemah, J.; Ullrich, M.S.; Kuhnert, N. Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization. Foods 2024, 13, 1902. https://doi.org/10.3390/foods13121902
Ziemah J, Ullrich MS, Kuhnert N. Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization. Foods. 2024; 13(12):1902. https://doi.org/10.3390/foods13121902
Chicago/Turabian StyleZiemah, James, Matthias S. Ullrich, and Nikolai Kuhnert. 2024. "Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization" Foods 13, no. 12: 1902. https://doi.org/10.3390/foods13121902
APA StyleZiemah, J., Ullrich, M. S., & Kuhnert, N. (2024). Antibacterial Activity Potential of Industrial Food Production Waste Extracts against Pathogenic Bacteria: Comparative Analysis and Characterization. Foods, 13(12), 1902. https://doi.org/10.3390/foods13121902