Study on the Effect of Sorghum Flour Particle Size on the Storage Quality of Leavened Pancakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sorghum Flour with Different Particle Sizes
2.3. Particle Size Determination
2.4. Preparation and Storage Technology of Sorghum Flour Leavened Pancake
2.5. Hardness
2.6. Moisture Content
2.7. Moisture Distribution
2.8. Thermal Properties of Starch
2.9. Starch Crystallinity
2.10. Short–Range Ordering of Starch Molecules
2.11. Statistical Analysis
3. Results and Discussion
3.1. Particle Size Distribution of Sorghum Flour
3.2. Changes in Hardness of Sorghum Flour Leavened Pancakes during Storage
3.3. Changes in Moisture Content of Sorghum Flour Leavened Pancakes during Storage
3.4. Changes in Moisture Distribution of Sorghum Flour Leavened Pancakes during Storage
3.5. Changes in Thermal Characteristics of Starch of Sorghum Flour Leavened Pancakes during Storage
3.6. Changes in Starch Crystallinity of Sorghum Flour Leavened Pancakes during Storage
3.7. Changes in Short–Range Order of Starch Molecules during Storage of Sorghum Flour Leavened Pancakes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, B.; Chen, J.; Xu, F. Effect of arabinoxylan addition in Chinese steamed bread. Food Sci. Technol. 2022, 42, 77022. [Google Scholar] [CrossRef]
- Li, C.; Gidley, M.J. Starch structure and exchangeable protons contribute to reduced aging of high–amylose wheat bread. Food Chem. 2022, 385, 132673. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, M.; Erazo-Castrejón, S.V.; Doehlert, D.C.; McMullen, M.S. Staling of bread as affected by waxy wheat flour blends. Cereal Chem. 2002, 79, 178–182. [Google Scholar] [CrossRef]
- Besbes, E.; Jury, V.; Monteau, J.Y.; Le Bail, A. Water vapor transport properties during staling of bread crumb and crust as affected by heating rate. Food Res. Int. 2013, 50, 10–19. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Al–Saqer, J.; Al–Zenki, S. Comparison of methods for the assessment ofthe extent of staling in bread. Food Chem. 1997, 58, 161–167. [Google Scholar] [CrossRef]
- Xiang, Y.; Dong, R.; Xu, S.; Ren, T.; Hu, X. Effect of wheat gluten addition on the quality of thermal–vacuum packaged Chinese steamed bread. Cereal Chem. 2021, 99, 530–541. [Google Scholar] [CrossRef]
- Qiao, C.C.; Tian, X.H.; Wang, L.X.; Jiang, P.; Zhai, X.T.; Wu, N.N.; Tan, B. Quality characteristics, texture properties and moisture migration of fresh brown rice noodles under different storage and temperatures conditions. J. Cereal Sci. 2022, 104, 103434. [Google Scholar] [CrossRef]
- Yousif, A.; Nhepera, D.; Johnson, S. Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chem. 2012, 134, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Jin, X.; Gao, J.; Qiu, Z.; Ying, J.; Wang, Y.; Dong, Z.; Zhou, W. Impact of wheat bran micronization on dough properties and bread quality: Part I—Bran functionality and dough properties. Food Chem. 2021, 353, 129407. [Google Scholar] [CrossRef]
- Liu, N.; Ma, S.; Li, L.; Wang, X. Study on the effect of wheat bran dietary fiber on the rheological properties of dough. Grain Oil Sci. Technol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.T. Influence of particle size on the properties of rice flour and quality of gluten–free rice bread. LWT-Food Sci. Technol. 2021, 151, 112236. [Google Scholar] [CrossRef]
- Sheikholeslami, Z.; Mahfouzi, M.; Karimi, M.; Ghiafehdavoodi, M. Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation. LWT-Food Sci. Technol. 2021, 139, 110794. [Google Scholar] [CrossRef]
- GB/T 5009.3-2016; Determination of Moisture in Food. Standards Institution of China. Standards Press of China: Beijing, China, 2016.
- He, Y.; Guo, J.; Ren, G.; Cui, G.; Han, S.; Liu, J. Effects of konjac glucomannan on the water distribution of frozen dough and corresponding steamed bread quality. Food Chem. 2020, 330, 127243. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Tao, H.; Jin, Z.; Xu, X. The final established physicochemical properties of steamed bread made from frozen dough: Study of the combined effects of gluten polymerization, water content and starch crystallinity on bread firmness. J. Cereal Sci. 2015, 63, 116–121. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Xua, X.; Sulieman, A.A.; Mahdi, A.A.; Na, Y. Effects of fermentation time on rheological and physicochemical characteristics of koreeb (Dactyloctenium aegyptium) seed flour dough and kisra bread. J. Food Meas. Charact. 2019, 13, 2136–2146. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Hong, Y.; Bi, Y.; Gu, Z.; Cheng, L.; Li, C. Digestibility and changes to structural characteristics of green banana starch during in vitro digestion. Food Hydrocolloids 2015, 49, 192–199. [Google Scholar] [CrossRef]
- Liu, H.; Duan, J.; Zhu, J.; Liu, X. Effects of highland barley flour with different particle sizes on the characteristics of reconstituted flour and Noodles. Foods 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The impact of resistant starch on characteristics of gluten–free dough and bread. Food Hydrocolloids 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Lodi, A.; Abduljalil, A.M.; Vodovotz, Y. Characterization of water distribution in bread during storage using magnetic resonance imaging. Magn. Reson. Imaging 2007, 25, 1449–1458. [Google Scholar] [CrossRef]
- Curti, E.; Bubici, S.; Carini, E.; Baroni, S.; Vittadini, E. Water molecular dynamics during bread staling by Nuclear Magnetic Resonance. LWT-Food Sci. Technol. 2011, 44, 854–859. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.; Hou, G.G. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by Magnetic Resonance Imaging (MRI). J. Agric. Food Chem. 2012, 60, 6507–6514. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Li, Y.; Ding, S.; Yang, J. Characterization of textural, rheological, thermal, microstructural, and water mobility in wheat flour dough and bread affected by trehalose. Food Chem. 2017, 233, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Shi, Y.; Zeng, J.; Gao, H.; Wang, M. Effect of frozen storage temperature on the protein properties of steamed bread. Food Sci. Technol. 2022, 42, e68622. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food. Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Russell, P.L. The ageing of gels from starches of different amylose/amylopectin content studied by differential scanning calorimetry. J. Cereal Sci. 1987, 6, 147–158. [Google Scholar] [CrossRef]
- Skendi, A.; Mouselemidou, P.; Papageorgiou, M.; Papastergiadis, E. Effect of acorn meal–water combinations on technological properties and fine structure of gluten–free bread. Food Chem. 2018, 253, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Armero, E.; Collar, C. Crumb firming kinetics of wheat breads with anti–staling additives. J. Cereal Sci. 1998, 28, 165–174. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, L.; Li, D.; Jin, Z.; Xu, X. Roles of dextran, weak acidification and their combination in the quality of wheat bread. Food Chem. 2019, 286, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Nagataki, A.; Tomita, H.; Himeda, Y.; Takemori, T.; Fukuoka, M. A quantification method of retrogradation for cooked rice based on a single isolated peak in X-ray diffraction. J. Cereal Sci. 2018, 79, 80–85. [Google Scholar] [CrossRef]
- Guo, L.; Xu, D.; Fang, F.; Jin, Z.; Xu, X. Effect of glutathione on wheat dough properties and bread quality. J. Cereal Sci. 2020, 96, 103116. [Google Scholar] [CrossRef]
- Kou, X.; Luo, D.; Zhang, K.; Xu, W.; Li, X.; Xu, B.; Li, P.; Han, S.; Liu, J. Textural and staling characteristics of steamed bread prepared from soft flour added with inulin. Food Chem. 2019, 301, 125272. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, Y.; Manthey, F.A.; Xu, X.; Jin, Z.; Deng, L. Influence of β–cyclodextrin on the short–term retrogradation of rice starch. Food Chem. 2009, 116, 54–58. [Google Scholar] [CrossRef]
- Gray, J.A.; Bemiller, J.N. Bread staling: Molecular basis and control. Compr. Rev. Food. Sci. Food Saf. 2003, 2, 1–21. [Google Scholar] [CrossRef]
- Van Soest, J.J.; Tournois, H.; de Wit, D.; Vliegenthart, J.F. Short–range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier–transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef]
Sorghum Flour with Different Particle Sizes | D10 (μm) | D50 (μm) | D90 (μm) | D(4, 3) (μm) |
---|---|---|---|---|
SF1 | 10.56 ± 0.08 a | 53.37 ± 1.45 a | 396.80 ± 2.97 a | 139.25 ± 1.20 a |
SF2 | 9.49 ± 0.10 b | 31.93 ± 0.60 b | 134.40 ± 3.39 b | 56.55 ± 1.51 b |
SF3 | 6.80 ± 0.00 c | 20.55 ± 0.01 c | 40.07 ± 0.05 c | 22.56 ± 0.01 c |
Storage Time (d) | Groups | Relaxation Time (ms) | Proportion of Peak Area (%) | ||
---|---|---|---|---|---|
T21 | T22 | A21 | A22 | ||
1 | SF0 | 0.38 ± 0.02 abA | 9.66 ± 0.00 A | 23.71 ± 0.05 abA | 76.29 ± 0.05 bcC |
SF1 | 0.33 ± 0.06 bA | 9.01 ± 0.00 A | 24.33 ± 0.04 aA | 75.67 ± 0.03 cC | |
SF2 | 0.41 ± 0.02 abA | 9.66 ± 0.00 A | 23.19 ± 0.71 bcA | 76.81 ± 0.71 abA | |
SF3 | 0.46 ± 0.04 aA | 10.35 ± 0.00 | 22.19 ± 0.19 cA | 77.81 ± 0.19 aA | |
3 | SF0 | 0.30 ± 0.00 cB | 9.01 ± 0.00 aB | 23.33 ± 0.01 aA | 76.67 ± 0.01 bBC |
SF1 | 0.29 ± 0.01 cA | 8.13 ± 0.40 bB | 23.37 ± 0.07 aB | 76.56 ± 0.11 bAB | |
SF2 | 0.37 ± 0.00 aB | 9.01 ± 0.00 aB | 22.51 ± 0.00 bAB | 77.49 ± 0.00 aA | |
SF3 | 0.32 ± 0.00 bB | 9.01 ± 0.00 a | 21.94 ± 0.57 bA | 78.05 ± 0.56 aA | |
5 | SF0 | 0.28 ± 0.00 B | 8.71 ± 0.43 aB | 22.58 ± 0.14 abB | 77.42 ± 0.14 bcA |
SF1 | 0.24 ± 0.00 AB | 7.84 ± 0.00 bBC | 23.09 ± 0.06 aB | 76.89 ± 0.08 cA | |
SF2 | 0.28 ± 0.00 C | 8.71 ± 0.30 aB | 22.41 ± 0.44 bcAB | 77.59 ± 0.44 abA | |
SF3 | 0.30 ± 0.00 B | 9.01 ± 0.00 a | 21.81 ± 0.09 cA | 78.19 ± 0.09 aA | |
7 | SF0 | 0.24 ± 0.00 bC | 7.84 ± 0.00 C | 22.75 ± 0.39 abB | 77.25 ± 0.39 bcAB |
SF1 | 0.19 ± 0.01 cB | 7.32 ± 0.00 C | 23.46 ± 0.29 aB | 76.48 ± 0.24 cB | |
SF2 | 0.24 ± 0.01 bD | 8.41 ± 0.00 B | 21.60 ± 0.73 bB | 77.68 ± 0.30 bA | |
SF3 | 0.29 ± 0.01 aB | 8.41 ± 0.00 | 21.46 ± 0.26 bA | 78.54 ± 0.26 aA |
Groups | Avrami Exponent n | Regeneration Rate Constant k (d−1) | R2 |
---|---|---|---|
SF0 | 1.141 | 0.058 | 0.994 |
SF1 | 1.026 | 0.123 | 0.998 |
SF2 | 2.001 | 0.043 | 0.955 |
SF3 | 2.380 | 0.032 | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Tian, J.; Xu, F.; Lv, Y. Study on the Effect of Sorghum Flour Particle Size on the Storage Quality of Leavened Pancakes. Foods 2024, 13, 1934. https://doi.org/10.3390/foods13121934
Li X, Tian J, Xu F, Lv Y. Study on the Effect of Sorghum Flour Particle Size on the Storage Quality of Leavened Pancakes. Foods. 2024; 13(12):1934. https://doi.org/10.3390/foods13121934
Chicago/Turabian StyleLi, Xueqin, Jingru Tian, Fei Xu, and Yingguo Lv. 2024. "Study on the Effect of Sorghum Flour Particle Size on the Storage Quality of Leavened Pancakes" Foods 13, no. 12: 1934. https://doi.org/10.3390/foods13121934
APA StyleLi, X., Tian, J., Xu, F., & Lv, Y. (2024). Study on the Effect of Sorghum Flour Particle Size on the Storage Quality of Leavened Pancakes. Foods, 13(12), 1934. https://doi.org/10.3390/foods13121934