Organic-Acid-Sensitive Visual Sensor Array Based on Fenton Reagent–Phenol/Aniline for the Rapid Species and Adulteration Assessment of Baijiu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Fabrication of the Organic-Acid-Sensitive Visual Sensor Array
2.3. RGB Extraction Method
2.4. Data Analysis
3. Results
3.1. The Influence of Ethanol on the Sensor Array
3.2. Optimization of the Sensor Array
3.3. Color Change Response of Sensor Array to Organic Acids
3.4. Color Change Response of Sensor Array to Mixed Organic Acids
3.5. Selectivity of the Sensor Array
3.6. Identification of Various Baijiu with Different Species
3.7. Adulteration Assessment of Baijiu
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.-W.; Han, B.-Z. Baijiu (白酒), Chinese liquor: History, classification and manufacture. J. Ethn. Foods 2016, 3, 19–25. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Hussain, R.; Khan, Q.F.; Zhang, H. Functional microbiota in Chinese traditional Baijiu and Mijiu Qu (starters): A review. Food Res. Int. 2020, 138, 109830. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Yang, S.; Shen, Y.; Cheng, W.; Li, H.; Sun, J.; Huang, M.; Sun, B. What Are the Main Factors That Affect the Flavor of Sauce-Aroma Baijiu. Foods 2022, 11, 3534. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Chen, S.; Xu, Y.; Tang, K. Exploring the Mystery of the Sweetness of Baijiu by Sensory Evaluation, Compositional Analysis and Multivariate Data Analysis. Foods 2021, 10, 2843. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shui, Z.; Dong, L.; Shen, L.; Zhao, D.; Luo, H.; Ma, Y.; Hou, C.; Huo, D. A novel acid-sensitive quantum dot sensor array for the identification of Chinese baijiu. Anal. Methods 2020, 12, 4789–4797. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hou, Y.; Chen, H.; Wang, J.; Zhang, C.; Zhao, Z.; Ao, R.; Huang, H.; Hong, J.; Zhao, D.; et al. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Qiu, S.; Lv, Y.; Li, D. Exploring the controllability of the Baijiu fermentation process with microbiota orientation. Food Res. Int. 2023, 173, 113249. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Li, Y.; Du, A.; Fan, Z.; Zhang, R.; Shi, L.; Luo, C.; Feng, K.; Chang, J.; Chu, X. Foodomics analysis of natural aging and gamma irradiation maturation in Chinese distilled Baijiu by UPLC-Orbitrap-MS/MS. Food Chem. 2020, 315, 126308. [Google Scholar] [CrossRef]
- Wang, G.; Song, X.; Zhu, L.; Li, Q.; Zheng, F.; Geng, X.; Li, L.; Wu, J.; Li, H.; Sun, B. A flavoromics strategy for the differentiation of different types of Baijiu according to the non-volatile organic acids. Food Chem. 2022, 374, 131641. [Google Scholar] [CrossRef]
- Wang, G.; Jing, S.; Wang, X.; Zheng, F.; Li, H.; Sun, B.; Li, Z. Evaluation of the Perceptual Interaction among Ester Odorants and Nonvolatile Organic Acids in Baijiu by GC-MS, GC-O, Odor Threshold, and Sensory Analysis. J. Agric. Food Chem. 2022, 70, 13987–13995. [Google Scholar] [CrossRef]
- Liu, Q.-R.; Zhang, X.-J.; Zheng, L.; Meng, L.-J.; Liu, G.-Q.; Yang, T.; Lu, Z.-M.; Chai, L.J.; Wang, S.-T.; Shi, J.-S.; et al. Machine learning based age-authentication assisted by chemo-kinetics: Case study of strong-flavor Chinese Baijiu. Food Res. Int. 2023, 167, 112594. [Google Scholar] [CrossRef]
- Dai, H.; Jia, J.; Fan, Y.; Chen, H.; Wang, S.; Shen, C.; Li, A.; Lu, L.; Zhou, C.; Fu, H.; et al. Four-channel fluorescent sensor array based on various functionalized CdTe quantum dots for the discrimination of Chinese baijiu. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 252, 119513. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Jia, J.; Fan, Y.; Chen, H.; Wang, S.; Shen, C.; Dai, H.; Zhou, C.; Fu, H.; She, Y. Furfural and organic acid targeted carbon dot sensor array for the accurate identification of Chinese baijiu. J. Food Sci. 2021, 86, 2924–2938. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, X.; Tu, K.; Pan, L.; Tu, J.; Tang, L.; Liu, P.; Zhan, G.; Zhong, Q.; Xiong, Z. Application of electronic nose in Chinese spirits quality control and flavour assessment. Food Control 2012, 26, 564–570. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, Y.; Luo, D.; He, J.; Wong, A.K.Y.; Hung, K. Channel Attention Convolutional Neural Network for Chinese Baijiu Detection With E-Nose. Ieee Sens. J. 2021, 21, 16170–16182. [Google Scholar] [CrossRef]
- Li, J.; Hou, C.; Huo, D.; Yang, M.; Fa, H.-b.; Yang, P. Development of a colorimetric sensor Array for the discrimination of aldehydes. Sens. Actuators B-Chem. 2014, 196, 10–17. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, P.; Li, J.; Li, P.; Hou, J.; Huo, D.; Hou, C.; Zhang, S. A nanophase material and organic dye modified colorimetric sensor array for the discrimination of baijiu. Anal. Methods 2018, 10, 5679–5686. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. A Hand-Held Optoelectronic Nose for the Identification of Liquors. Acs Sens. 2018, 3, 121–127. [Google Scholar] [CrossRef]
- Magagna, F.; Guglielmetti, A.; Liberto, E.; Reichenbach, S.E.; Allegrucci, E.; Gobino, G.; Bicchi, C.; Cordero, C. Comprehensive Chemical Fingerprinting of High-Quality Cocoa at Early Stages of Processing: Effectiveness of Combined Untargeted and Targeted Approaches for Classification and Discrimination. J. Agric. Food Chem. 2017, 65, 6329–6341. [Google Scholar] [CrossRef]
- Suslick, B.A.; Feng, L.; Suslick, K.S. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas. Anal. Chem. 2010, 82, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xiang, F.; Su, Y.; Jiang, X.; Cang, Y.; Long, W.; Lan, W.; Deng, G.; Chen, H.; She, Y.; et al. Authenticity identification of high—Temperature Daqu Baijiu through multi-channel visual array sensor of organic dyes combined with smart phone App. Food Chem. 2024, 438, 137980. [Google Scholar] [CrossRef] [PubMed]
- Salinas, Y.; Ros-Lis, J.V.; Vivancos, J.-L.; Martinez-Manez, R.; Dolores Marcos, M.; Aucejo, S.; Herranz, N.; Lorente, I. Monitoring of chicken meat freshness by means of a colorimetric sensor array. Analyst 2012, 137, 3635–3643. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, L.; Jia, J.; Chen, H.; Fu, H.; She, Y. Development of a triple channel colorimetric paper sensor array based on quantum dots: A robust tool for process monitoring and quality control of basic liquors of Baijiu. Sens. Actuators B-Chem. 2020, 319, 128260. [Google Scholar] [CrossRef]
- Yu, J.; Huang, M.; Tian, H.; Xu, X. Silver Nanoparticle Sensor Array-Based Meat Freshness Inspection System. Foods 2023, 12, 3814. [Google Scholar] [CrossRef]
- Jia, J.J.; Zhang, S.Y.; Ma, L.; Wang, S.T.; Shen, C.H.; She, Y.B. Gold nanobipyramid colorimetric sensing array for the differentiation of strong aroma-type baijiu with different geographical origins. Food Chem. 2024, 432, 137197. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Liu, X.F.; Luo, H.B.; Zhao, D.; Zhang, J.; Qiao, C.L.; Ma, Y.; Huo, D.Q.; Hou, C.J. A Gold Nanorods Etching Based Colorimetric Sensor Array for the Detection of Reducing Substances and Discrimination of Chinese Baijiu. Food Anal. Methods 2022, 15, 2605–2614. [Google Scholar] [CrossRef]
- Jia, J.J.; Zhang, S.Y.; Ma, L.; Zheng, L.; Yu, S.B.; Shen, C.H.; Fu, H.Y.; Wang, S.T.; She, Y.B. Colorimetric sensor arrays for the differentiation of baijiu based on amino-acid-modified gold nanoparticles. Sci. Rep. 2022, 12, 18596. [Google Scholar] [CrossRef]
- Li, J.W.; Li, L.; Zhang, J.; Huo, D.Q.; Hou, C.J.; Zhou, J.; Luo, H.B. Metal ions regulated Ag NPRs etching colorimetric sensor array for discrimination of Chinese Baijiu. Sens. Actuators B-Chem. 2019, 297, 126715. [Google Scholar] [CrossRef]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef]
- Li, J.W.; Hou, C.-J.; Huo, D.-Q.; Yang, M.; Zhang, S.-Y.; Ma, Y.; Lin, Y. A minimalist Chinese liquor identification system based on a colorimetric sensor array with multiple applications. Anal. Methods 2017, 9, 141–148. [Google Scholar] [CrossRef]
- Wu, M.; Chen, H.; Fan, Y.; Wang, S.; Hu, Y.; Liu, J.; Shen, C.; Zhou, C.; Fu, H.; She, Y. Carbonyl flavor compound-targeted colorimetric sensor array based on silver nitrate and o-phenylenediamine derivatives for the discrimination of Chinese Baijiu. Food Chem. 2022, 372, 131216. [Google Scholar] [CrossRef] [PubMed]
- Gamaralalage, D.; Sawai, O.; Nunoura, T. Effect of reagents addition method in Fenton oxidation on the destruction of organics in palm oil mill effluent. J. Environ. Chem. Eng. 2020, 8, 103974. [Google Scholar] [CrossRef]
- Li, X.; Jin, X.; Zhao, N.; Angelidaki, I.; Zhang, Y. Efficient treatment of aniline containing wastewater in bipolar membrane microbial electrolysis cell-Fenton system. Water Res. 2017, 119, 67–72. [Google Scholar] [CrossRef]
- Ma, J.H.; Ma, W.H.; Song, W.J.; Chen, C.C.; Tang, Y.L.; Zhao, J.C.; Huang, Y.P.; Xu, Y.M.; Zang, L. Fenton degradation of organic pollutants in the presence of low-molecular-weight organic acids: Cooperative effect of quinone and visible light. Environ. Sci. Technol. 2006, 40, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Tang, L.; Yu, R. Efficient pattern unmixing of multiplex proteins based on variable weighting of texture descriptors. Anal. Methods 2016, 8, 8188–8195. [Google Scholar] [CrossRef]
- Zou, H.-Y.; Wu, H.-L.; Fu, H.-Y.; Tang, L.-J.; Xu, L.; Nie, J.-F.; Yu, R.-Q. Variable-weighted least-squares support vector machine for multivariate spectral analysis. Talanta 2010, 80, 1698–1701. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yu, M.; Xu, Y.; Wang, Q.; Hu, Y.; Fu, H.-Y.; She, Y.-B. Nanoporphyrin/CdTe quantum dots: A robust tool for effective differentiation among DNA structures. Sens. Actuators B-Chem. 2019, 281, 623–633. [Google Scholar] [CrossRef]
- Fu, H.-Y.; Li, H.-D.; Xu, L.; Yin, Q.-B.; Yang, T.-M.; Ni, C.; Cai, C.-B.; Yang, J.; She, Y.-B. Detection of unexpected frauds: Screening and quantification of maleic acid in cassava starch by Fourier transform near-infrared spectroscopy. Food Chem. 2017, 227, 322–328. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wang, S.T.; Hu, Y.; Chen, H.Y.; Fu, H.Y.; Zhou, C.S.; She, Y.B. Novel colorimetric sensor array for identification of baijiu using color reactions of flavor compounds. Microchem. J. 2021, 167, 106277. [Google Scholar] [CrossRef]
- Wang, S.Y.; Long, W.J.; Wei, L.N.; Cheng, W.Y.; Chen, H.Y.; Yang, J.; Fu, H.Y. Nano effect fluorescence visual sensor based on Au-AgNCs: A novel strategy to identify the origin and growth year of Lilium bulbs. Food Chem. 2024, 441, 138353. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Bai, X.Y.; Chen, H.Y.; Yang, X.L.; Yang, J.; She, Y.B.; Fu, H.Y. A novel simultaneous quantitative method for differential volatile components in herbs based on combined near-infrared and mid-infrared spectroscopy. Food Chem. 2023, 407, 135096. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shi, Q.; Lu, D.W.; Wei, L.N.; Fu, H.Y.; She, Y.B.; Xie, S.P. Simultaneous detection of multiple frauds in kiwifruit juice by fusion of traditional and double-quantum-dots enhanced fluorescent spectroscopic techniques and chemometrics. Microchem. J. 2020, 157, 105105. [Google Scholar] [CrossRef]
- Xu, L.; Yan, S.M.; Cai, C.B.; Yu, X.P. One-class partial least squares (OCPLS) classifier. Chemom. Intell. Lab. Syst. 2013, 126, 1–5. [Google Scholar] [CrossRef]
- Xu, Q.S.; Liang, Y.Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- Bello, M.M.; Raman, A.A.A.; Asghar, A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Saf. Environ. Prot. 2019, 126, 119–140. [Google Scholar] [CrossRef]
- Leggio, A.; Bagala, J.; Belsito, E.L.; Comande, A.; Greco, M.; Liguori, A. Formation of amides: One-pot condensation of carboxylic acids and amines mediated by TiCl4. Chem. Cent. J. 2017, 11, 87. [Google Scholar] [CrossRef]
Abbr | Brand | Origin | Aroma | Alcohol (v/v%) |
---|---|---|---|---|
TQ | Luzhou Laojiao | Luzhou Sichuan | Strong aroma | 52 |
1573 | Luzhou Laojiao | Luzhou Sichuan | Strong aroma | 52 |
WLY | Wuliangye | Yibin Sichuan | Strong aroma | 52 |
JNC | Jiannanchun | Mianzhu Sichuan | Strong aroma | 52 |
SD | Tuopai Shede | Suining Sichuan | Strong aroma | 52 |
SJF | Shuijingfang | Chengdu Sichuan | Strong aroma | 52 |
GJG | Gujigngong | Bozhou Anhui | Strong aroma | 50 |
MZL | Yanghe | Suqian Jiangsu | Strong aroma | 52 |
SG | Shuanggoudaqu | Suqian Jiangsu | Strong aroma | 46 |
SH | Songhe | Luyi Henan | Strong aroma | 46 |
YL | Yilite | Yili Xinjiang | Strong aroma | 50 |
HT | Hetao | Bayanzhuoer | Strong aroma | 36 |
MT | Maotai | Zunyi Guizhou | Sauce aroma | 53 |
FJ | Fenjiu | Fenyan Shanxi | Light aroma | 53 |
GL | Guilinsanhua | Guilin Guangxi | Rice aroma | 52 |
KZJ | Kouzijiao | Huaibei Anhui | Mixed aroma | 42 |
XF | Xifeng | Baoji Shaanxi | Feng aroma | 52 |
YBS | Yubingshao | Foshan Guangdong | Chi aroma | 29 |
JZ | Yipingjingzhi | Anqiu Shandong | Sesame aroma | 52 |
LBG | Laobaigan | Hengshui Hebei | Laobaigan aroma | 52 |
JG | Jiuguijiu | Jishou Hunan | Fuyu aroma | 54 |
ST | Site | Yichun Jiangxi | Te aroma | 52 |
DJ | Dongjiu | Zunyi Guizhou | Herbal aroma | 54 |
Compounds | Linear Range (g/L) | LOD (g/L) | LOQ (g/L) | RSD% (n = 24, %) |
---|---|---|---|---|
Benzoic Acid | 1.22 × 10−2–1.22 | 3.71 × 10−4 | 1.24 × 10−3 | 1.53 |
Lactic Acid | 2.25 × 10−3–0.90 | 8.16 × 10−5 | 2.72 × 10−4 | 1.40 |
Acetic Acid | 6.01 × 10−5–0.60 | 3.61 × 10−5 | 1.20 × 10−4 | 1.21 |
Butyric Acid | 8.81 × 10−3–0.88 | 4.55 × 10−4 | 1.52 × 10−3 | 2.17 |
Isobutyric Acid | 4.41 × 10−3–0.88 | 1.32 × 10−3 | 4.38 × 10−3 | 1.96 |
Valeric Acid | 1.02 × 10−2–1.02 | 1.36 × 10−4 | 4.55 × 10−4 | 9.74 |
Isovaleric Acid | 5.11 × 10−3–1.02 | 6.35 × 10−4 | 2.12 × 10−3 | 1.54 |
Hexanoic Acid | 1.16 × 10−2–1.16 | 5.04 × 10−4 | 1.68 × 10−3 | 1.55 |
Octanoic Acid | 7.21 × 10−3–1.44 | 5.12 × 10−4 | 1.71 × 10−3 | 1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, Y.; Cai, Z.; Wu, M.; Fan, Y. Organic-Acid-Sensitive Visual Sensor Array Based on Fenton Reagent–Phenol/Aniline for the Rapid Species and Adulteration Assessment of Baijiu. Foods 2024, 13, 2139. https://doi.org/10.3390/foods13132139
Zhang L, Liu Y, Cai Z, Wu M, Fan Y. Organic-Acid-Sensitive Visual Sensor Array Based on Fenton Reagent–Phenol/Aniline for the Rapid Species and Adulteration Assessment of Baijiu. Foods. 2024; 13(13):2139. https://doi.org/10.3390/foods13132139
Chicago/Turabian StyleZhang, Lei, Yaqi Liu, Zhenli Cai, Meixia Wu, and Yao Fan. 2024. "Organic-Acid-Sensitive Visual Sensor Array Based on Fenton Reagent–Phenol/Aniline for the Rapid Species and Adulteration Assessment of Baijiu" Foods 13, no. 13: 2139. https://doi.org/10.3390/foods13132139