Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biscuit Production
2.1.1. Raw Materials
2.1.2. Biscuit Formulas
2.2. Product Characterization
2.2.1. Proximate Composition and Energy Content
2.2.2. Preparation of FAME and GC-FID Analysis of Fatty Acids
2.2.3. Determination of Total Phenolic Content and Antioxidant Activity
2.2.4. HPLC-DAD Analyses
2.3. In Vitro Oral–Gastro-Duodenal Digestion of Biscuit Prototypes
Determination of Reducing Sugars during Duodenal Digestion
2.4. Determination of Volatile Organic Compound Profiles
2.5. Sensory Analysis
2.5.1. Sample Preparation and Presentation
2.5.2. Descriptive Analysis (DA)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Crude Crushed Grape Pomace and Biscuit Prototypes
3.1.1. Proximate Composition, Energy Content and Fatty Acid Profile
3.1.2. Total and Specific Phenolic Content and Antioxidant Activity of Crude Crushed Grape Pomace and Biscuit Prototypes
3.2. Oral–Gastro-Duodenal Digestion of Biscuits: Release of Reducing Sugars and Polyphenols
3.3. Volatile Organic Compound Profiles
3.4. Sensory Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Per Capita Consumption Volume of Biscuits in Selected Countries in Europe in 2015. Available online: https://www.statista.com/statistics/716336/biscuit-consumption-volume-european-union-eu/ (accessed on 6 May 2024).
- Vici, G.; Rosi, A.; Angelino, D.; Polzonetti, V.; Scazzina, F.; Pellegrini, N.; Martini, D. Salt content of prepacked cereal-based products and their potential contribution to salt intake of the Italian adult population: Results from a simulation study. Nutr. Metab. Cardiovasc. 2023, 34, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food-Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef] [PubMed]
- Trigo, J.P.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M.E. High value-added compounds from fruit and vegetable by-products—Characterization, bioactivities, and application in the development of novel food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 1388–1416. [Google Scholar] [CrossRef] [PubMed]
- Sousa, E.C.; Uchoa-Thomaz, A.M.A.; Carioca, J.O.B.; de Morais, S.M.; de Lima, A.; Martins, C.G.; Alexandrino, C.D.; Ferreira, P.A.T.; Rodrigues, A.L.M.; Rodrigues, S.P.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of northeast Brazil. J. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef] [PubMed]
- Costabile, G.; Vitale, M.; Luongo, D.; Naviglio, D.; Vetrani, C.; Ciciola, P.; Tura, A.; Castello, F.; Mena, P.; Del Rio, D.; et al. Grape pomace polyphenols improve insulin response to a standard meal in healthy individuals: A pilot study. Clin. Nutr. 2019, 38, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic composition of grape pomace and its metabolism. Crit. Rev. Food Sci. Nutr. 2022, 17, 4865–4881. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, G.; Giosuè, A.; Calabrese, I.; Vaccaro, O. Dietary recommendations for prevention of atherosclerosis. Cardiovas. Res. 2022, 118, 1188–1204. [Google Scholar] [CrossRef]
- Bozzetto, L.; Annuzzi, G.; Pacini, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Griffo, E.; Giacco, A.; De Natale, C.; Cocozza, S.; et al. Polyphenol-rich diets improve glucose metabolism in people at high cardiometabolic risk: A controlled randomised intervention trial. Diabetologia 2015, 58, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Annuzzi, G.; Bozzetto, L.; Costabile, G.; Giacco, R.; Mangione, A.; Anniballi, G.; Vitale, M.; Vetrani, C.; Cipriano, P.; Della Corte, G.; et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 463–471. [Google Scholar] [CrossRef]
- Karnopp, A.R.; Figueroa, A.M.; Los, P.R.; Teles, J.C.; Simoes, D.R.S.; Barana, A.C.; Kubiaki, F.T.; de Oliveira, J.G.B.; Granato, D. Effects of Whole-Wheat Flour and Bordeaux Grape Pomace (Vitis labrusca L.) on the Sensory, Physicochemical and Functional Properties of Cookies. Food Sci. Technol. 2015, 35, 750–756. [Google Scholar] [CrossRef]
- Abreu, J.; Quintino, I.; Pascoal, G.; Postingher, B.; Cadena, R.; Teodoro, A. Antioxidant Capacity, Phenolic Compound Content and Sensory Properties of Cookies Produced from Organic Grape Peel (Vitis labrusca) Flour. Int. J. Food Sci. 2019, 54, 1215–1224. [Google Scholar] [CrossRef]
- Caponio, G.R.; Miolla, R.; Vacca, M.; Difonzo, G.; De Angelis, M. Wine lees as functional ingredient to produce biscuits fortified with polyphenols and dietary fibre. LWT Food Sci. Technol. 2024, 198, 115943. [Google Scholar] [CrossRef]
- Boff, J.M.; Strasburg, V.J.; Ferrari, G.T.; de Oliveira Schmidt, H.; Manfroi, V.; de Oliveira, V.R. Chemical, Technological, and Sensory Quality of Pasta and Bakery Products Made with the Addition of Grape Pomace Flour. Foods 2022, 11, 3812. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis. Association of Official Analytical Chemists, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC. Method 985.29 “Total Dietary Fiber in Foods Enzymatic-Gravimetric Method”, AOAC. In Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- AOAC. Method 969.33. In Official Methods of Analysis of the Association of Official Analytical Chemists; Helrich, K., Ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- European Directorate for the Quality of Medicines; Council of Europe. Determination of tannins in herbal drugs. In European Pharmacopoeia (Ph. Eur.), 6th ed.; European Directorate for the Quality of Medicines: Strasbourg, France, 2007; p. A286. [Google Scholar]
- Siano, F.; Sammarco, A.S.; Fierro, O.; Castaldo, D.; Caruso, T.; Picariello, G.; Vasca, E. Insights into the Structure–Capacity of Food Antioxidant Compounds Assessed Using Coulometry. Antioxidants 2023, 12, 1963. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestionì. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Siano, F.; Mamone, G.; Vasca, E.; Puppo, M.C.; Picariello, G. Pasta fortified with C-glycosides-rich carob (Ceratonia siliqua L.) seed germ flour: Inhibitory activity against carbohydrate digesting enzymes. Food Res. Int. 2023, 170, 112962. [Google Scholar] [CrossRef] [PubMed]
- Pasqualone, A.; Bianco, A.M.; Paradiso, V.M.; Summo, C.; Gambacorta, G.; Caponio, F. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Res. Int. 2014, 65, 385–393. [Google Scholar] [CrossRef]
- UNI 8589:1990; Analisi Sensoriale. Criteri Generali per la Progettazione di Locali Destinati All’ Analisi. International Organization for Standardization: Geneva, Switzerland, 1990.
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 6 May 2024).
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef] [PubMed]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Picariello, G.; Ferranti, P.; Garro, G.; Manganiello, G.; Chianese, L.; Coppola, R.; Addeo, F. Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties. Food Chem. 2014, 146, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- Beres, C.; Freitas, S.P.; de Oliveira, G.R.L.; de Oliveira, D.C.R.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M.C. Antioxidant dietary fibre from grape pomace flour or extract: Does it make any difference on the nutritional and functional value? J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- Ćorković, I.; GašoSokač, D.; Pichler, A.; Šimunović, J.; Kopjar, M. Dietary Polyphenols as Natural Inhibitors of α-Amylase and α-Glucosidase. Life 2022, 12, 1692. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Rizzi, C. The α-Amylase and α-Glucosidase Inhibition Capacity of Grape Pomace: A Review. Food Bioprocess Technol. 2023, 16, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Warren, F.J.; Gidley, M.J. Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends Food Sci. Technol. 2019, 91, 262–273. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Przygonski, K.; Wojtowicz, E.; Zawirska-Wojtasiak, R. Phenolic compounds reduce formation of N 12 ε-(carboxymethyl)lysine and pyrazines formed by Maillard reactions in a model bread system. Food Chem. 2017, 231, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Siger, A.; Przygonski, K.; Radziejewska-Kubzdela, E.; Zawirska-Wojtasiak, R. N ε-(carboxymethyl)lysine, available lysine, and volatile compound profile of biscuits enriched with grape by-product during storage. Plant Foods Hum. Nutr. 2022, 77, 190–197. [Google Scholar] [CrossRef]
- Canali, G.; Balestra, F.; Glicerina, V.; Pasini, F.; Caboni, M.F.; Romani, S. Influence of different baking powders on physico-chemical, sensory and volatile compounds in biscuits and their impact on textural modifications during soaking. J. Food Sci. Technol. 2020, 57, 3864–3873. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B. Virgin grape seed oil: Is it really a nutritional highlight? Eur. J. Lipid Sci. Technol. 2008, 110, 645–650. [Google Scholar] [CrossRef]
- Pittari, E.; Moio, L.; Piombino, P. Interactions between polyphenols and volatile compounds in wine: A literature review on physicochemical and sensory insights. Appl. Sci. 2021, 11, 1157. [Google Scholar] [CrossRef]
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.J. Advanced Glycation End Products (AGEs) May Be a Striking Link between Modern Diet and Health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.; Paparo, L.; Trinchese, G.; Rivieri, A.M.; Masino, A.; De Giovanni Di Santa Severina, A.F.; Cerulo, M.; Escolino, M.; Turco, A.; Esposito, C.; et al. Increased dietary intake of ultraprocessed foods and mitochondrial metabolism alterations in pediatric obesity. Sci. Rep. 2023, 13, 12609. [Google Scholar] [CrossRef] [PubMed]
Product | Moisture (%) | Ash (%) | Protein (%) | Total Lipid (%) | Total Carbohydrates (%) | Dietary Fiber (%) | Available Carbohydrates (%) | Energy (kcal 100 g−1) |
---|---|---|---|---|---|---|---|---|
GP | 14.8 | 3.2 | 6.0 | 6.1 | 70.0 | 55.0 | 15.0 | 245.2 |
CTR | 5.7 | 1.2 | 7.3 | 20.3 | 65.5 | 1.8 | 63.7 | 454.4 |
20-GP | 4.5 | 2.1 | 5.8 | 15.2 | 72.4 | 14.7 | 57.7 | 405.8 |
30-GP | 4.6 | 2.0 | 4.8 | 14.7 | 74.0 | 21.3 | 52.7 | 391.7 |
Fatty Acids (% Area) | GP | CTR | 20-GP | 30-GP |
---|---|---|---|---|
Palmitic, C16:0 | 7.69 ± 0.22 | 14.10 ± 0.12 a | 14.7 ± 0.02 b | 14.61 ± 0.04 b |
Palmitoleic, C16:1 | 0.21 ± 0.01 | 0.72 ± 0.01 a | 0.75 ± 0.04 a | 0.63 ± 0.03 b |
Stearic, C18:0 | 5.28 ± 0.35 | 1.50 ± 0.03 a | 1.84 ± 0.02 b | 2.07 ± 0.03 c |
Oleic, C18:1 ω-9 c | 21.52 ± 0.35 | 56.36 ± 0.10 a | 54.65 ± 0.04 b | 50.6 ± 0.02 c |
Linoleic, C18:2 ω-6 c | 61.68 ± 0.35 | 22.33 ± 0.22 a | 23.59 ± 0.03 b | 25.93 ± 0.03 c |
Arachidic, C20:0 | 0.53 ± 0.25 | 0.15 ± 0.01 a | 0.25 ± 0.01 b | 0.32 ± 0.02 c |
Linolenic, C18:3 ω-3 | 0.9 ± 0.01 | 1.56 ± 0.02 a | 2.00 ± 0.02 b | 2.26 ± 0.02 c |
cis-11-eicosenoico, C20:1 | 0.23 ± 0.15 | 0.20 ± 0.03 a | 0.22 ± 0.01 a | 0.24 ± 0.01 a |
Σ-SFA | 13.50 ± 0.28 | 15.75 ± 0.10 a | 16.79 ± 0.02 b | 17.00 ± 0.05 c |
Σ-MUFA | 22.64 ± 0.13 | 60.28 ± 0.05 a | 57.43 ± 0.06 b | 54.01 ± 0.12 c |
Σ-PUFA | 62.58 ± 0.36 | 23.89 ± 0.21 a | 25.59 ± 0.03 b | 28.19 ± 0.01 c |
Σ-PUFA/Σ-SFA | 4.63 ± 0.70 | 1.52 ± 0.01 a | 1.52 ± 0.01 a | 1.66 ± 0.01 b |
ω-6/ω-3 | 68.80 ± 0.17 | 14.30 ± 0.26 a | 11.77 ± 0.06 b | 11.50 ± 0.10 b |
GP | CTR | 20-GP | 30-GP | |
---|---|---|---|---|
Total polyphenols (mgGAE 100 g−1) | 2495 ± 13 | 30 ± 1 a | 456 ± 3 b | 540 ± 2 c |
CDAC (mmol e− 100 g−1) | 125 ± 3 | 4 ± 1 a | 17 ± 1 b | 19 ± 1 c |
N. | Compound (mg kg−1) | GP | CTR | 20-GP | 30-GP |
---|---|---|---|---|---|
1 | Delphinidin-3-O-glucoside | 291.3 | - | 0.4 | 1.2 |
2 | Cyanidin-3-O-glucoside | 55.1 | - | 0.2 | 0.3 |
3 | Petunidin-3-O-glucoside | 618.9 | - | 1.2 | 2.9 |
4 | Peonidin-3-O-glucoside | 404.7 | - | 0.9 | 2.1 |
5 | Malvidin-3-O-glucoside | 4657.0 | - | 9.6 | 22.8 |
6 | Malvidin-3-O-(6-O-acetyl)glucoside | 266.7 | - | 0.3 | 0.9 |
7 | Delphinidin-3-O-(6-O-p-coumaroyl)glucoside | 245.5 | - | 0.4 | 2.1 |
8 | Peonidin-3-O-(6-O-p-coumaroyl)glucoside | 105.4 | - | 0.3 | 0.6 |
9 | Malvidin-3-O-(6-O-p-coumaroyl)glucoside | 681.2 | - | 4.2 | 9.1 |
Volatiles | Code | CTR | 20-GP | 30-GP |
---|---|---|---|---|
2-Methypropanal * | Ald1 | 8.3 a | 10.3 b | 16.6 c |
2-Methylbutanal * | Ald2 | 21.8 a | 24.4 b | 31.6 c |
3-Methylbutanal ** | Ald3 | 87.4 a | 126.5 b | 197.0 c |
Hexanal * | Ald4 | 9.7 a | 14.9 b | 20.1 c |
Octanal ** | Ald5 | 0.0 a | 14.3 c | 13.5 b |
trans-2-Heptenal ** | Ald6 | 0.0 a | 0.0 a | 18.1 b |
Nonanal ** | Ald7 | 80.0 b | 48.5 a | 57.8 ab |
trans-2-Octenal *** | Ald8 | 0.0 a | 18.9 c | 14.3 b |
Benzaldehyde *** | Ald9 | 19.5 a | 22.6 b | 31.5 c |
Benzeneacetaldehyde ** | Ald10 | 26.0 a | 69.2 b | 78.4 c |
2-Nonenal *** | Ald11 | 0.0 a | 0.0 a | 28.6 b |
trans-trans-2,4-Decadienal ** | Ald12 | 0.0 a | 22.6 c | 13.6 b |
Ethyl acetate ** | E1 | 0.0 a | 0.4 b | 1.2 c |
Ethyl octanoate ** | E2 | 0.0 a | 7.2 b | 15.2 b |
Ethyl decanoate ** | E3 | 0.0 a | 3.2 b | 6.2 c |
2,3-Butanedione ** | K1 | 14.4 ab | 24.7 b | 9.7 a |
2,3-Pentanedione ** | K2 | 15.2 ab | 18.8 b | 7.5 a |
3-Octanone | K3 | 16.6 | 25.0 | 21.5 |
1-Octen-3-one ** | K4 | 0.0 a | 0.0 a | 9.6 b |
2-Propanone, 1-hydroxy-(Acetol) ** | K5 | 21.6 a | 71.5 b | 14.0 a |
Acetoin ** | K6 | 0.0 a | 13.5 b | 13.5 b |
6-Methyl-5-heptene-2-one *** | K7 | 0.0 a | 0.0 a | 7.9 b |
α-Pinene * | T1 | 41.1 b | 18.3 a | 18.3 a |
α-Phellandrene * | T2 | 40.8 b | 14.3 a | 14.3 a |
β-Pinene * | T3 | 47.9 b | 11.1 a | 11.1 a |
Limonene ** | T4 | 521.5 c | 25.3 a | 236.6 b |
γ-Terpinene * | T5 | 71.3 a | 23.9 b | 23.9 b |
o-Cymene * | T6 | 17.5 b | 4.9 a | 4.9 a |
1-Hexanol *** | Alc1 | 3.3 a | 13.3 c | 10.5 b |
1-Octen-3-ol ** | Alc2 | 0.0 a | 5.6 b | 6.6 b |
2-Ethyl-1-hexanol ** | Alc3 | 0.0 a | 0.0 a | 12.9 b |
1-Octanol | Alc4 | 8.7 | 12.5 | 12.5 |
Benzenmethanol ** | Alc5 | 3.8 a | 9.8 b | 8.6 b |
Benzeneethanol * | Alc6 | 6.5 a | 13.5 b | 14.2 b |
4-Vinyl-2-methoxy-phenol ** | Alc7 | 0.0 a | 3.1 b | 6.6 ab |
Pyrazine, methyl ** | Py1 | 38.6 b | 0.0 a | 0.0 a |
2,5-Dimethylpyrazine ** | Py2 | 11.1 b | 0.0 a | 0.0 a |
2-Ethylpyrazine ** | Py3 | 57.2 b | 0.0 a | 0.0 a |
Pyrazine, 2,3-dimethyl ** | Py4 | 9.4 b | 0.0 a | 0.0 a |
2-Ethyl-6-methylpyrazine ** | Py5 | 13.3 b | 0.0 a | 0.0 a |
2-Pentylfuran * | F1 | 15.4 a | 9.7 b | 9.2 b |
Dihydro-2-methyl-3(2H)-furanone ** | F2 | 0.0 a | 6.9 b | 6.9 b |
2-Furancarboxaldehyde; Furfural ** | F3 | 23.6 a | 472.2 b | 486.6 b |
Ethanone, 1-(2-furanyl); 2-Acetylfuran ** | F4 | 0.0 a | 26.9 b | 33.5 b |
5-Methylfurfural * | F5 | 0.0 a | 30.7 b | 30.7 b |
5-Hydroxymethylfurfural *** | F6 | 0.0 a | 20.2 c | 6.5 b |
2-Furanmethanol ** | F7 | 33.6 a | 158.7 b | 104.1 b |
5-Methyl-2-furfurylalcohol *** | F8 | 0.0 a | 48.4 c | 29.7 b |
2(5H)-Furanone | F9 | 8.1 | 8.4 | 8.4 |
4-Hydroxy-2,5-dimethylfuran-2(3H)-one (Furaneol) ** | F10 | 0.0 a | 6.0 b | 2.8 ab |
Acetic acid *** | A1 | 15.3 a | 457.7 c | 224.8 b |
Propanoic acid ** | A2 | 0.0 a | 15.8 b | 13.4 b |
Butanoic acid ** | A3 | 0.0 a | 13.1 b | 10.8 b |
Pentanoic acid ** | A4 | 0.0 a | 6.4 b | 7.6 b |
Hexanoic acid *** | A5 | 2.7 a | 37.9 b | 30.0 b |
Octanoic acid *** | A6 | 0.0 a | 3.1 c | 1.8 b |
Butyrolactone ** | L1 | 0.0 a | 7.0 b | 7.0 b |
2-Hydroxy-γ-butyrolactone ** | L2 | 0.0 a | 11.9 b | 3.1 a |
3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one *** | L3 | 0.0 a | 6.1 b | 4.7 b |
Ethanone, 1-(1H-pyrrol-2-yl); 2-Acetylpyrrole ** | Pyr1 | 1.7 a | 11.5 b | 10.0 b |
Attribute | CTR | 20-GP | 30-GP |
---|---|---|---|
Winy odor *** | 1.4 b | 2.8 a | 2.7 a |
Dried red fruit odor *** | 1.3 b | 2.9 a | 3.1 a |
EVO oil odor * | 4.6 a | 4.1 ab | 4.0 b |
Biscuit odor | 3.8 | 3.5 | 3.6 |
Sweet *** | 5.2 a | 4.2 b | 4.2 b |
Salty | 2.7 | 2.7 | 2.9 |
Bitter *** | 1.7 b | 2.9 a | 2.7 a |
Acid ** | 1.7 b | 2.4 a | 2.7 a |
Winy flavor *** | 1.5 b | 3.5 a | 4.0 a |
Dried red fruit flavor *** | 1.6 b | 3.8 a | 4.1 a |
EVO oil flavor | 3.9 | 3.8 | 3.8 |
Biscuit flavor *** | 4.9 a | 3.9 b | 3.6 b |
Firmness *** | 4.8 c | 5.9 b | 6.6 a |
Crunchiness *** | 6.0 a | 6.3 a | 5.0 b |
Friability *** | 6.2 a | 5.7 a | 3.7 b |
Chewiness *** | 3.5 c | 4.7 b | 5.9 a |
Greasiness *** | 3.9 a | 3.1 b | 2.9 b |
Graininess | 5.8 | 6.2 | 5.6 |
Adhesiveness | 3.5 | 3.7 | 3.9 |
Seedy *** | 1.4 b | 5.7 a | 5.8 a |
Pungent | 2.3 | 2.6 | 2.8 |
Astringent ** | 3.2 b | 3.6 ab | 4.1 a |
Liking * | 6.1 a | 5.9 ab | 5.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giosuè, A.; Siano, F.; Di Stasio, L.; Picariello, G.; Medoro, C.; Cianciabella, M.; Giacco, R.; Predieri, S.; Vasca, E.; Vaccaro, O.; et al. Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods 2024, 13, 2195. https://doi.org/10.3390/foods13142195
Giosuè A, Siano F, Di Stasio L, Picariello G, Medoro C, Cianciabella M, Giacco R, Predieri S, Vasca E, Vaccaro O, et al. Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods. 2024; 13(14):2195. https://doi.org/10.3390/foods13142195
Chicago/Turabian StyleGiosuè, Annalisa, Francesco Siano, Luigia Di Stasio, Gianluca Picariello, Chiara Medoro, Marta Cianciabella, Rosalba Giacco, Stefano Predieri, Ermanno Vasca, Olga Vaccaro, and et al. 2024. "Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties" Foods 13, no. 14: 2195. https://doi.org/10.3390/foods13142195
APA StyleGiosuè, A., Siano, F., Di Stasio, L., Picariello, G., Medoro, C., Cianciabella, M., Giacco, R., Predieri, S., Vasca, E., Vaccaro, O., & Cozzolino, R. (2024). Turning Wastes into Resources: Red Grape Pomace-Enriched Biscuits with Potential Health-Promoting Properties. Foods, 13(14), 2195. https://doi.org/10.3390/foods13142195