Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Proton Nuclear Magnetic Resonance (1H NMR) spectra acquisition and study
2.2.1. General
2.2.2. Standard Experiments (S)
2.2.3. Multisuppression Experiments (MS)
2.2.4. Determination by 1H NMR of the Molar Percentage of the Main Acyl Groups and of the Concentration of Some Minor Components
2.3. Statistical Analysis
3. Results and Discussion
Signal | Compound | Chemical Shift (ppm) | Multiplicity (J in Hz) | Functional Group (Carbon Atom) |
---|---|---|---|---|
Triacylglycerides (TG) | ||||
A | Saturated, oleic and/or ω-7 AG | 0.879 | t | -CH3 |
A | Linoleic AG | 0.889 | t | -CH3 |
B | Linolenic AG | 0.972 | t | -CH3 |
C | AG | 1.221–1.419 | m * | -(CH2)n- |
D | AG | 1.522–1.700 | m | -OCO-CH2-CH2- |
E | AG | 1.941–2.139 | m ** | -CH2-CH=CH- |
F | AG | 2.305 | dt | -OCO-CH2- |
G | G1: Linoleic AG G2: Linolenic AG | 2.765 2.801 | t t | =HC-CH2-CH= |
H | Glyceryl group of TG | 4.139, 4.303 | dd, dd | -CH2-OCO-R (C1, C3) |
I | Glyceryl group of TG | 5.270 | m | >CH-OCO-R (C2) |
J | AG | 5.296–5.470 | m | -CH=CH- |
Sterols and other terpenic compounds | ||||
1 | Cycloeucalenol § | 0.150 0.390 3.210 4.660, 4.720 | d d dd s, s | -CH2- (C19) -CH2- (C19) >CH-OH (C3) >C=CH2 (C28) |
2 | Cycloartenol † | 0.334 0.555 3.270 | d d m | -CH2- (exo, C19) -CH2- (endo, C19) >CH-OH (C3) |
3 | 24-Methylene-cycloartanol § | 0.334 0.555 3.270 4.660, 4.720 | d d m s, s | -CH2- (exo, C19) -CH2- (endo, C19) >CH-OH (C3) >C=CH2 (C28) |
4 | Cyclobranol § | 0.334 0.555 | d d | -CH2- (exo, C19) -CH2- (endo, C19) |
5 | Esters of cycloartenol †, 24-methylenecycloartanol § and cyclobranol § | 0.345 0.575 | d d | -CH2- -CH2- (Cyclopropane ring)? |
6 | Gramisterol § | 0.540 3.110 4.660, 4.720 | s dt s, s | -CH3 (C18) >CH-OH (C3) >C=CH2 (C28) |
7 | Citrostadienol §, ∆7-Avenasterol §, ∆7-Campesterol § | 0.540 3.590 | s m | -CH3 (C18) >CH-OH (C3) |
8 | β-Sitosterol †, ∆5-Avenasterol †, ∆5-Campesterol † | 0.684 3.450–3.550 | s m | -CH3 (C18) >CH-OH (C3) |
9 | Squalene † | 1.670 5.120 | s m | -CH3 (C1,C24) >C=CH- (C3, C7, C11, C14, C18, C22) |
10 | Obtusifoliol § | 3.110 4.660, 4.720 | ddd s, s | >CH-OH (C3) >C=CH2 (C28) |
11 | Non-cyclic diterpenic esters § | 4.580 | d | =CH-CH2-OCO- (C1) |
Phenolic compounds | ||||
19 | Hydroxytyrosol † and derivatives | 6.600 6.750 6.780 | dd d (J = 2.0) d (J = 8.0) | -CH= |
20 | Tyrosol derivatives § | 6.600 6.780 7.015 | d (J = 8.5) d (J = 8.5) d (J = 8.5) | -CH= |
21 | Tyrosol † | 6.780 7.060 | d (J = 8.5) d (J = 8.5) | -CH= (C7) -CH= (C4) |
22 | Pinoresinol † | 6.816 6.877 6.895 | ? | Aromatic protons |
23 | 1-Acetoxypinoresinol § | 6.846 6.884 | ? | Aromatic protons |
24 | 5S,4R-oleuropeindial §Ψ | 9.190–9.205 9.670 | os d (J = 2.7) | -CHO (C1) -CHO (C3) |
25 | 5S,4S-oleuropeindial §Ψ | 9.190–9.205 9.448 | os d (J = 2.7) | -CHO (C1) -CHO (C3) |
26 | Oleacein (3,4-DHPEA-EDA) § | 9.209 9.615–9.645 | d (J = 2.0) os | -CHO (C1) -CHO (C3) |
27 | 5S,4R-ligstrodial §Ψ | 9.207–9.222 9.680 | os d (J = 2.7) | -CHO (C1) -CHO (C3) |
28 | 5S,4S-ligstrodial §Ψ | 9.207–9.222 9.452 | os d (J = 2.7) | -CHO (C1) -CHO (C3) |
29 | Oleocanthal (p-HPEA-EDA) § | 9.223 9.615–9.645 | d (J = 2.0) os | -CHO (C1) -CHO (C3) |
30 | S-E-Elenolide | 9.270 | d (J = 0.9) | -CHO (C1) |
31 | p-HPEA-EA § | 9.499 | d (J = 1.8) | -CHO (C1) |
32 | 3,4-DHPEA-EA § | 9.504 | d (J = 1.8) | -CHO (C1) |
33 | Elenolic acid § | 9.615–9.645 | os | -CHO (C1) |
34 | Oleomissional §Ψ | 7.360 9.190–9.205 11.780 | dd os d (J = 12.9) | =CH-OH (C3) -CHO (C1) =CH-OH (C3) |
35 | Oleokoronal §Ψ | 7.386 9.207–9.222 11.764 | dd os d (J = 12.9) | =CH-OH (C3) -CHO (C1) =CH-OH (C3) |
Compounds derived from oxidative or hydrolytic processes | ||||
a | 1,2-Diglycerides (glyceryl backbone) † | 3.725 | d/t *** | -CH2-OH (C3) |
b | (Z,E)-conjugated dienes supported in chains having also a hydroperoxide group (OOH) † | 5.510 5.560 6.000 6.580 | dtm ddm ddtd dddd | -CH=CH-CH=CH- |
c | (E)-2-alkenals † | 9.502 | d (J = 7.8) | -CHO (C1) |
d | Alkanals † | 9.750 | t | -CHO (C1) |
Other signals due to protons in EVOO minor components | ||||
U | Unidentified | 9.160 | s | -CHO |
U | Unidentified | 9.266 | d/m? | -CHO |
U | Unidentified | 9.286 | d (J = 1.8) | -CHO |
U | Unidentified | 9.310 | d (J = 2.0) | -CHO |
U | Unidentified | 9.355 | d (J = 1.8) | -CHO |
U | Unidentified | 9.663 | bs/m? | -CHO |
U | Unidentified | 9.775 | bs? | -CHO |
3.1. Univariate Analysis: Analysis of Variance (ANOVA)
3.1.1. Differences in Composition Found for the Arbequina EVOO Samples
3.1.2. Differences in Composition Found for the Arroniz EVOO Samples
3.1.3. Differences in Composition Found for the Cornicabra EVOO Samples
3.1.4. Differences in Composition Found for the Hojiblanca EVOO Samples
3.1.5. Differences in Composition Found for the Picual EVOO Samples
3.2. Multivariate Analysis: Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In Olive Oil Chemistry and Technology, 2nd ed.; Boskou, D., Ed.; AOCS Press: Champaign, IL USA, 2006; pp. 41–72. [Google Scholar]
- Tsimidou, M.Z. A Critical Appraisal of the Separation Protocols Proposed for the Implementation of the Health Claim on “Olive Oil Polyphenols” (EC Regulation 432/2012). Separations 2022, 9, 351. [Google Scholar] [CrossRef]
- Blasi, F.; Ianni, F.; Cossignani, L. Phenolic profiling for geographical and varietal authentication of extra virgin olive oil. Trends Food Sci. Technol. 2024, 147, 104444. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 2010, 58, 5991–6006. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Castellón, J.; López-Yerena, A.; Domínguez-López, I.; Siscart-Serra, A.; Fraga, N.; Sámano, S.; López-Sabater, C.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Pérez, M. Extra virgin olive oil: A comprehensive review of efforts to ensure its authenticity, traceability, and safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2639–2664. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Wang, S.C.; Aparicio-Ruiz, R.; García-González, D.L.; Aparicio, R. In-depth assessment of analytical methods for olive oil purity, safety, and quality characterization. J. Agric. Food Chem. 2015, 63, 4509–4526. [Google Scholar] [CrossRef] [PubMed]
- Guillén, M.D.; Ruiz, A. Edible oils: Discrimination by 1H nuclear magnetic resonance. J. Sci. Food Agric. 2003, 83, 338–346. [Google Scholar] [CrossRef]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H NMR. Establishment of a new index for the characterization of extra-virgin olive oils. J. Agric. Food Chem. 2012, 60, 11696–11703. [Google Scholar] [CrossRef] [PubMed]
- Maestrello, V.; Solovyev, P.; Bontempo, L.; Mannina, L.; Camin, F. Nuclear magnetic resonance spectroscopy in extra virgin olive oil authentication. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4056–4075. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Napoli, C.; Humpfer, E.; Schuetz, B.; Schaefer, H.; Kontominas, M.G.; Sacco, A. Classification of olive oils according to geographical origin by using 1H NMR fingerprinting combined with multivariate analysis. Food Chem. 2012, 130, 177–183. [Google Scholar] [CrossRef]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct study of minor extra-virgin olive oil components without any sample modification. 1H NMR multisupression experiment: A powerful tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef]
- Del Coco, L.; De Pascali, S.A.; Fanizzi, F.P. NMR-metabolomic study on monocultivar and blend salento EVOO including some from secular olive trees. FNS 2014, 5, 89–95. [Google Scholar] [CrossRef]
- Pereira, C.; Freitas, A.M.C.; Cabrita, M.J.; Garcia, R. Assessing tyrosol and hydroxytyrosol in Portuguese monovarietal olive oils: Revealing the nutraceutical potential by a combined spectroscopic and chromatographic techniques-based approach. LWT 2020, 118, 108797. [Google Scholar] [CrossRef]
- Tsolis, T.; Kyriakou, D.; Sifnaiou, E.; Thomos, D.; Glykos, D.; Tsiafoulis, C.G.; Garoufis, A. NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds. Molecules 2024, 29, 1111. [Google Scholar] [CrossRef] [PubMed]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Quantitative measurement of major secoiridoid derivatives in olive oil using qNMR. Proof of the artificial formation of aldehydic oleuropein and ligstroside aglycon isomers. J. Agric. Food Chem. 2014, 62, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Héberger, K.; Holland, M.V.; Moreno-Rojas, J.M.; Mariani, C.; Bellan, G.; Reniero, F.; Guillou, C. Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes. Food Chem. 2010, 118, 956–965. [Google Scholar] [CrossRef]
- Bouvier-Navé, P.; Husselstein, T.; Benveniste, P. Two families of sterol methyltransferases are involved in the first and the second methylation steps of plant sterols biosynthesis. Eur. J. Biochem. 1998, 256, 88–96. [Google Scholar] [CrossRef]
- Diamantakos, P.; Velkou, A.; Killday, K.B.; Gimisis, T.; Melliou, E.; Magiatis, P. Oleokoronal and oleomissional: New major phenolic ingredients of extra virgin olive oil. Olivæ (Int. Olive Oil Counc. J.) 2015, 122, 22–33. [Google Scholar]
- Gariboldi, P.; Jommi, G.; Verotta, L. Secoiridoids from Olea europaea. Phytochemistry 1986, 25, 865–869. [Google Scholar] [CrossRef]
- Gunawan, A.C.; Paano, A. Structure Elucidation of Two New Phytol Derivatives, a New Phenolic Compound and Other Metabolites of Averrhoa bilimbi. In Proceeding of the Research Congress De La Salle University, Manila, Philippines, 7–9 March 2013. [Google Scholar]
- Gupta, A.; Sharma, M.C. Biologically active long-chain aliphatic alcohols and esters from the bark of Symplocos racemosa. Int. J. Pharmacogn. Phytochem. Res. 2015, 7, 1056–1059. [Google Scholar]
- Guvenalp, Z.; Ozbek, H.; Kur, A.; Um-Uz, U.; Kazaz, C.; Omür, L.; Irezer, D. Secondary metabolites from Nepeta heliotropifolia. Turk. J. Chem. 2009, 33, 667–675. [Google Scholar] [CrossRef]
- Kawai, S.; Takada, Y.; Tsuchida, S.; Kado, R.; Kimura, J. Sterols from bivalves Calyptogena soyoae and Bathymodiolus septemdierum living in deep sea. Fish. Sci. 2007, 73, 902–906. [Google Scholar] [CrossRef]
- Kikuchi, T.; Kadota, S.; Tsubono, K. Studies on the Constituents of Orchidaceous Plants. IV. Proton and Carbon-13 Signal Assignments of Cycloeucalenol-Type Triterpenes from Nervilia purpurea SCHLECHTER by Two-Dimensional Nuclear Magnetic Resonance Spectroscopy. Chem. Pharm. Bull. 1986, 34, 2479–2486. [Google Scholar] [CrossRef]
- Melliou, E.; Magiatis, P.; Killday, K.B. A new ultra rapid screening method for olive oil health claim evaluation using selective pulse NMR spectroscopy. In Magnetic Resonance in Food Science: Defining Food by Magnetic Resonance; Capozzi, F., Laghi, L., Belton, P.S., Eds.; Royal Society of Chemistry: London, UK, 2015; pp. 84–92. [Google Scholar]
- Montedoro, G.; Servili, M.; Baldioli, M.; Selvaggini, R.; Miniati, E.; Macchioni, A. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives. J. Agric. Food Chem. 1993, 41, 2228–2234. [Google Scholar] [CrossRef]
- Nagel, R.; Berasategui, A.; Paetz, C.; Gershenzon, J.; Schmidt, A. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense. Plant Physiol. 2014, 164, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Identification of lignans as major components in the phenolic fraction of olive oil. Clin. Chem. 2000, 46, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Rigakou, A.; Diamantakos, P.; Melliou, E.; Magiatis, P. S-(E)-Elenolide: A new constituent of extra virgin olive oil. J. Sci. Food Agric. 2019, 99, 5319–5326. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, R.; Patumi, M.; Fontanazza, G.; Barone, P.; Fiordiponti, P.; Mannina, L.; Rossi, E.; Segre, A.L. A high-field 1H nuclear magnetic resonance study of the minor components in virgin olive oils. J. Am. Oil Chem. Soc. 1996, 73, 747–758. [Google Scholar] [CrossRef]
- Segre, A.L.; Mannina, L. 1H-NMR study of edible oils. Recent. Res. Dev. Oil Chem. 1997, 1, 297–308. [Google Scholar]
- Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 2015, 7, 1672–1687. [Google Scholar] [CrossRef]
- Tsiafoulis, C.G.; Liaggou, C.; Garoufis, A.; Magiatis, P.; Roussis, I.G. Nuclear magnetic resonance analysis of extra virgin olive oil: Classification through secoiridoids. J. Sci. Food Agric. 2024, 104, 1992–2005. [Google Scholar] [CrossRef]
- Wang, J.; Nes, W.D. Cyclobranol: A substrate for C25-methyl sterol side chains and potent mechanism-based inactivator of plant sterol methyltransferase. Bioorg Med. Chem. Lett. 2008, 18, 3878–3881. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cambrai, A.; Miesch, M.; Roussi, S.; Raul, F.; Aoude-Werner, D.; Marchioni, E. Separation of Δ5- and Δ7-Phytosterols by Adsorption Chromatography and Semipreparative Reversed Phase High-Performance Liquid Chromatography for Quantitative Analysis of Phytosterols in Foods. J. Agric. Food Chem. 2006, 54, 1196–1202. [Google Scholar] [CrossRef]
- Martínez-Yusta, A.; Goicoechea, E.; Guillén, M.D. A Review of Thermo-Oxidative Degradation of Food Lipids Studied by 1H NMR Spectroscopy: Influence of Degradative Conditions and Food Lipid Nature. Compr. Rev. Food Sci. Food Saf. 2014, 13, 838–859. [Google Scholar] [CrossRef]
- del Caño-Ochoa, S.; Ruiz-Aracama, A.; Guillén, M.D. Potential of nuclear magnetic resonance for a discriminant characterization of PDO VOOs. Eur. J. Lipid Sci. Technol. 2019, 121, 1800137. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P.; Tseng, L.H.; Spraul, M. Separation and identification of phenolic compounds in olive oil by coupling High-Performance Liquid Chromatography with Postcolumn Solid-Phase Extraction to Nuclear Magnetic Resonance Spectroscopy (LC-SPE-NMR). J. Agric. Food Chem. 2005, 53, 4667–4679. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, R.; Luna, G. Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Alvarruiz, A.; Álvarez-Ortí, M.; Mateos, B.; Sena, E.; Pardo, J.E. Quality and composition of virgin olive oil from varietties grown in Castilla-La Mancha (Spain). J. Oleo Sci. 2015, 64, 1075–1082. [Google Scholar] [CrossRef]
- Amarowicz, R. Squalene: A natural antioxidant? Eur. J. Lipid Sci. Technol. 2009, 111, 411–412. [Google Scholar] [CrossRef]
- Diarte, C.; Romero, A.; Romero, M.P.; Graell, J.; Lara, I. Chemical and sensory characterization of nine spanish monovarietal olive oils: An emphasis on wax esters. Agriculture 2021, 11, 170. [Google Scholar] [CrossRef]
- Tang, F.; Polari, J.J.; Green, H.S.; Wang, S.C.; Hatzakis, E. NMR-based metabolomics for olive oil cultivar classification: A comparison with standard targeted analysis of fatty acids and triglycerides. Food Control 2022, 137, 108939. [Google Scholar] [CrossRef]
- Biedermann, M.; Haase-Aschoff, P.; Grob, K. Wax ester fraction of edible oils: Analysis by on-line LC-GC-MS and GCxGC-FID. Eur. J. Lipid Sci. Technol. 2008, 110, 1084–1094. [Google Scholar] [CrossRef]
- Aragón, A.; Toledano, R.M.; Cortés, J.M.; Villén, J.; Vázquez, A. Wax ester composition of monovarietal olive oils from Designation of Origin (DO) “Campos de Hellin”. Food Chem. 2011, 129, 71–76. [Google Scholar] [CrossRef]
- García, A.; Brenes, M.; García, P.; Romero, C.; Garrido, A. Phenolic content of commercial olive oils. Eur. Food Res. Technol. 2003, 216, 520–525. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Brenes, M.; Hidalgo, F.J.; García, A.; Ríos, A.; García, P.; Zamora, R.; Garrido, A. Pinoresinol and 1- acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 2000, 77, 715–720. [Google Scholar] [CrossRef]
- Sánchez-Ortiz, A.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Synthesis of volatile compounds of virgin olive oils is limited by the lipoxygenase activity load during the oils extraction process. J. Agric. Food Chem. 2012, 60, 812–822. [Google Scholar] [CrossRef]
- Olmo-Cunillera, A.; Casadei, E.; Valli, E.; Lozano-Castellón, J.; Miliarakis, E.; Domínguez-López, I.; Ninot, A.; Romero-Aroca, A.; Lamuela-Raventós, R.M.; Pérez, M.; et al. Aromatic, sensory, and fatty acid profiles of arbequina extra virgin olive oils produced using different malaxation conditions. Foods 2022, 11, 3446. [Google Scholar] [CrossRef]
- Beltrán, G.; Bucheli, M.E.; Aguilera, M.P.; Belaj, A.; Jimenez, A. Squalene in virgin olive oil: Screening of variability in olive cultivars. Eur. J. Lipid Sci. Technol. 2016, 118, 1250–1253. [Google Scholar] [CrossRef]
- Dias, L.G.; Rodrigues, N.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Monovarietal extra-virgin olive oil classification: A fusion of human sensory attributes and an electronic tongue. Eur. Food Res. Technol. 2016, 242, 259–270. [Google Scholar] [CrossRef]
- Goad, L.J.; Williams, B.L.; Goodwin, T.W. Studies on phytosterol biosynthesis. The presence of 4-alpha,14-alpha-dimethyl-delta-8,24(28)-ergostadien-3-beta-ol in grapefruit peel and its co-occurrece with cycloeucalenol in higher plant tissues. Eur. J. Biochem. 1967, 3, 232–236. [Google Scholar] [CrossRef]
- Du, Y.; Fu, X.; Chu, Y.; Wu, P.; Liu, Y.; Ma, L.; Tian, H.; Zhu, B. Biosynthesis and the roles of plant sterols in development and stress responses. Int. J. Mol. Sci. 2022, 23, 2332. [Google Scholar] [CrossRef]
- Napolitano, A.; De Lucia, M.; Panzella, L.; d’Ischia, M. The chemistry of tyrosol and hydroxytyrosol: Implications for oxidative stress. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2010; pp. 1225–1232. [Google Scholar]
- Rodríguez-Morató, J.; de la Torre, R.; Blumberg, J.; Chen, C.Y.O. Hydroxytyrosol is more a more potent antioxidant than tyrosol. FASEB J. 2016, 30, 404–408. [Google Scholar] [CrossRef]
- Salvador, M.D.; Fregapane, G. Major and minor lipid constituents of cornicabra virgin olive oil and the influence of crop season changes. In Olives and Olive Oil in Health and Disease Prevention; Preedy, V.R., Watson, R.R., Eds.; Academic Press: Cambridge, MA, USA, 2010; pp. 239–247. [Google Scholar]
- Gómez-Alonso, S.; Salvador, M.D.; Fregapane, G. Phenolic Compounds Profile of Cornicabra Virgin Olive Oil. J. Agric. Food Chem. 2002, 50, 6812–6817. [Google Scholar] [CrossRef]
- Andrewes, P.; Busch, J.L.H.C.; de Joode, T.; Groenewegen, A.; Alexandre, H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxyligstroside glycon as a key contributor to pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
ARB | ARZ | COR | HOJ | PIC | |
---|---|---|---|---|---|
Molar percentage of main acyl groups | |||||
Linolenic | 0.6 ± 0.0 a | 0.6 ± 0.1 a | 0.5 ± 0.0 a | 0.7 ± 0.0 b | 0.6 ± 0.1 a |
Linoleic | 9.3 ± 1.0 c | 7.7 ± 0.6 c | 3.2 ± 0.4 a | 5.9 ± 0.7 b | 4.4 ± 2.1 a,b |
Oleic | 74.6 ± 1.7 a | 81.6 ± 1.0 b,c | 84.7 ± 1.0 b | 81.2 ± 1.9 b | 83.2 ± 3.5 b,c |
Saturated | 15.4 ± 0.9 c | 10.0 ± 0.7 a | 11.5 ± 0.6 a,b | 12.2 ± 1.6 b | 11.9 ± 1.4 b |
µmol of sterols and other terpenic compounds/ mol TG | |||||
Cycloeucalenol | 4.5 ± 3.1 a | 18.7 ± 11.7 a,b | 26.0 ± 8.6 b | 20.6 ±9.5 a,b | 19.4 ± 13.9 a,b |
4,4-Dimethylsterols * | 161.9 ± 53.9 a | 758.4 ± 190.6 c | 300.3 ± 113.0 a,b | 267.1 ± 113.9 a,b | 375.9 ± 93.4 b |
Esters of 4,4-dimethylsterols * | 44.3 ± 11.0 a | 226.6 ± 63.9 b | 105.3 ± 49.8 a | 100.0 ± 36.5 a | 112.4 ± 34.4 a |
Gramisterol + Obtusifoliol | 117.1 ± 41.9 a | 172.1 ± 81.3 a | 268.5 ± 33.3 b | 329.0 ± 75.8 b | 282.6 ± 74.4 b |
∆7-Sterols * | 85.9 ± 13.8 a | 193.8 ± 30.9 b | 147.5 ± 32.8 b | 164.9± 27.2 b | 148.1 ± 32.0 b |
∆5-Sterols * | 1123.7 ± 108.2 a | 1521.8 ± 80.4 b | 1599.6 ± 157.3 b | 1619.0 ± 38.3 b | 1460.1 ± 118.2 b |
Squalene | 7342.9 ± 919.3 a | 18,755.6 ± 1592.0 b | 16,360.0 ± 1345.4 b | 16,360.0 ± 2922.9 b | 15,455.6 ± 2622.4 b |
Non-cyclic diterpenic esters (wax esters) | 804.4 ± 87.9 b | 351.0 ± 117.2 a | 913.2± 154.6 b | 409.0 ± 207.7 a | 326.7 ± 283.8 a |
µmol of phenolic compounds/ mol TG | |||||
Pinoresinol | 5.9 ± 5.7 a | 0.1 ± 0.2 a | 15.8 ± 4.5 b | 2.7 ± 6.0 a | 5.8 ± 6.8 a |
1-Acetoxypinoresinol | 30.8 ± 5.7 b | 0.0 ± 0.0 a | 4.2 ± 5.7 a | 19.0 ± 12.9 b | 4.6 ± 11.2 a |
5S,4S-oleuropeindial | 0.0 ± 0.0 a | 10.7 ± 8.7 b | 0.0 ± 0.0 a | 3.5± 7.8 a,b | 0.0± 0.0 a |
Oleacein (3,4-DHPEA-EDA) | 67.2 ± 30.6 a | 152.4 ± 79.1 a | 80.0 ± 62.7 a | 107.4 ± 38.2 a | 87.0 ± 19.7 a |
5S,4S-ligstrodial | 0.0 ± 0.0 a | 13.5 ± 10.7 a | 22.5 ± 22.1 a | 16.2 ± 15.1 a | 9.2 ± 17.3 a |
Oleocanthal (p-HPEA-EDA) | 89.1 ± 19.6 a | 93.9 ± 57.5 a | 192.0 ± 68.6 b | 157.1 ± 57.2 a,b | 158.7 ± 56.5 a,b |
E-Elenolide | 6.3 ± 8.3 a | 73.5 ± 94.7 a | 23.4 ± 27.5 a | 53.5 ± 35.8 a | 8.3 ± 14.4 a |
p-HPEA-EA | 3.1 ± 8.1 a | 33.5 ± 17.4 a,b | 79.6 ± 64.1 b | 42.8 ± 27.1 a,b | 87.8 ± 42.7 b |
3,4-DHPEA-EA | 4.9 ± 9.0 a | 165.6 ± 107.5 b | 86.0 ± 53.6 a,b | 71.0 ± 35.8 a,b | 138.7 ± 47.0 b |
Oleacein + Oleocanthal + Elenolic acid | 200.7 ± 57.1 a | 496.3 ± 153.5 b | 418.6 ± 129.4 b | 344.5 ± 88.9 a,b | 331.2 ± 88.3 a,b |
Elenolic acid (estimated) | 44.4 ± 50.9 a | 250.0 ± 106.9 b | 146.7 ± 55.3 a | 80.0 ± 64.8 a | 85.5 ± 34.1 a |
Oleokoronal | 0.0 ± 0.0 a | 25.8 ± 13.3 a | 52.8 ± 46.2 a | 53.6 ± 29.4 a | 48.0 ± 48.0 a |
Oleomissional | 0.0 ± 0.0 a | 46.0 ± 26.5 b | 0.0 ± 0.0 a | 27.6 ± 18.2 b | 0.0 ± 0.0 a |
Tyrosol (7.06 ppm) | 92.8 ± 66.7 a | 139.4 ± 30.8 a | 400.6 ± 213.9 b | 261.5 ± 80.3 a,b | 337.5 ± 143.7 b |
Estimated concentration of phenolic compounds (µmol/ mol of TG) | |||||
Tyrosol derivatives (7.015 ppm) | 254.2 ± 56.6 a | 384.3 ± 122.9 a | 855.2 ± 307.4 b | 758.1 ± 327.9 b | 758.5 ± 277.1 b |
Phenolics at 6.78 ppm: Tyr, Tyr derivatives, OHTyr and OHTyr derivatives * | 624.3 ± 196.2 a | 1610.8 ± 417.8 b | 1856.8 ± 634.0 b | 1712.7 ± 634.1 b | 1977.6 ± 540.5 b |
Phenolics at 6.60 ppm: OHTyr, OHTyr derivatives, Tyr derivatives * | 331.6 ± 100.4 a | 736.0 ± 281.0 b | 588.0 ± 205.5 a,b | 694.3 ± 248.4 b | 688.1 ± 109.6 b |
µmol of other minor compounds/ mol TG | |||||
1,2-Diglyerides | 5642.0 ± 528.1 a | 9053.1 ± 1404.2 c | 6149.7 ± 1168.9 a | 7913.6± 1035.6 b,c | 6888.8 ± 960.7 a,b |
(E)-2-alkenals | 32.11 ± 7.2 b | 13.5 ± 3.6 a | 19.6 ± 8.6 a,b | 18.2 ± 8.1 a | 15.9 ± 12.6 a |
Alkanals | 61.5 ± 17.1 a | 72.5 ± 14.8 a | 56.5 ± 16.4 a | 70.9 ± 8.9 a | 81.4 ± 43.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goicoechea-Oses, E.; Ruiz-Aracama, A. Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils. Foods 2024, 13, 2298. https://doi.org/10.3390/foods13142298
Goicoechea-Oses E, Ruiz-Aracama A. Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils. Foods. 2024; 13(14):2298. https://doi.org/10.3390/foods13142298
Chicago/Turabian StyleGoicoechea-Oses, Encarnacion, and Ainhoa Ruiz-Aracama. 2024. "Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils" Foods 13, no. 14: 2298. https://doi.org/10.3390/foods13142298
APA StyleGoicoechea-Oses, E., & Ruiz-Aracama, A. (2024). Usefulness of the 1H NMR Multisuppression Approach for the Global Characterization of Monovarietal Extra-Virgin Olive Oils. Foods, 13(14), 2298. https://doi.org/10.3390/foods13142298