Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Pasta Cooking
2.3. Texture Analysis of Cooked Pasta
2.4. Preparation of Pasta Boluses and Oral Processing Patterns
2.5. Pasta Boluses Characterisation
2.5.1. Granulometric Tests of Pasta Boluses
2.5.2. Texture Analysis of Pasta Boluses
2.5.3. Viscoelastic Analysis of Pasta Boluses
2.6. In Vitro Digestion Tests of Pasta
2.6.1. Starch Digestion Products of Pasta
2.6.2. Protein Digestibility of Pasta
2.7. Statistical Tests
3. Results and Discussion
3.1. Texture Properties of Cooked Pasta
3.2. Oral Processing Patterns of Pasta
3.3. Granulometric Properties of Pasta Boluses
3.4. Texture Properties of Pasta Boluses
3.5. Viscoelastic Properties of Pasta Boluses
3.6. Digestibility of Pasta Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations World Population Prospects. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 22 July 2024).
- Arazo-Rusindo, M.; Reaño, G.; Pérez-Bravo, F.; Castillo-Valenzuela, O.; Benavides-Valenzuela, S.; Zúñiga, R.N.; Mariotti-Celis, M.S. Redesign of an Instant Legume Soup for Older Adults with Increased Micronutrients Bioaccessibility and Adequate Sensory Attributes by Using Encapsulation. LWT 2023, 180, 114676. [Google Scholar] [CrossRef]
- Hernández-Olivas, E.; Muñoz-Pina, S.; Andrés, A.; Heredia, A. The Impact of Age-Related Digestive Disorders on in Vitro Digestibility of Macronutrients and Bioaccessibility of Minor Components of Chia Seeds. Food Res. Int. 2023, 169, 112874. [Google Scholar] [CrossRef] [PubMed]
- Duijsens, D.; Alfie Castillo, A.I.; Verkempinck, S.H.E.; Pälchen, K.; Hendrickx, M.E.; Grauwet, T. In Vitro Macronutrient Digestibility and Mineral Bioaccessibility of Lentil-Based Pasta: The Influence of Cellular Intactness. Food Chem. 2023, 423, 136303. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Leong, S.Y.; Alpos, M.; Johnson, C.; McLeod, S.; Peng, M.; Sutton, K.; Oey, I. Role of Food Processing and Incorporating Legumes in Food Products to Increase Protein Intake and Enhance Satiety. Trends Food Sci. Technol. 2024, 147, 104466. [Google Scholar] [CrossRef]
- Conti, M.V.; Guzzetti, L.; Panzeri, D.; De Giuseppe, R.; Coccetti, P.; Labra, M.; Cena, H. Bioactive Compounds in Legumes: Implications for Sustainable Nutrition and Health in the Elderly Population. Trends Food Sci. Technol. 2021, 117, 139–147. [Google Scholar] [CrossRef]
- Garcia-Valle, D.E.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Structural Characteristics and in Vitro Starch Digestibility of Pasta Made with Durum Wheat Semolina and Chickpea Flour. LWT 2021, 145, 111347. [Google Scholar] [CrossRef]
- Blanquet-Diot, S.; François, O.; Denis, S.; Hennequin, M.; Peyron, M.A. Importance of Oral Phase in in Vitro Starch Digestibility Related to Wholegrain versus Refined Pastas and Mastication Impairment. Food Hydrocoll. 2021, 112, 106277. [Google Scholar] [CrossRef]
- Hernández-Olivas, E.; Muñoz-Pina, S.; Andrés, A.; Heredia, A. Age-Related Gastrointestinal Alterations of Legumes and Cereal Grains Digestibility. Food Biosci. 2021, 41, 101027. [Google Scholar] [CrossRef]
- Assad-Bustillos, M.; Tournier, C.; Palier, J.; Septier, C.; Feron, G.; Della Valle, G. Oral Processing and Comfort Perception of Soft Cereal Foods Fortified with Pulse Proteins in the Elderly with Different Oral Health Status. Food Funct. 2020, 11, 4535–4547. [Google Scholar] [CrossRef]
- Hernández, S.; Ribes, S.; Verdú, S.; Barat, J.M.; Talens, P.; Grau, R. Developing a Homogeneous Texture Dish by Combining Solid and Liquid Foodstuff Matrices. LWT 2022, 166, 113757. [Google Scholar] [CrossRef]
- Ribes, S.; Grau, R.; Talens, P. Use of Chia Seed Mucilage as a Texturing Agent: Effect on Instrumental and Sensory Properties of Texture-Modified Soups. Food Hydrocoll. 2022, 123, 107171. [Google Scholar] [CrossRef]
- Peyron, M.-A.; Sayd, T.; Sicard, J.; Mirade, P.-S.; Pinguet, J.; Chambon, C.; Santé-Lhoutellier, V. Deciphering the Protein Digestion of Meat Products for the Elderly by in Vitro Food Oral Processing and Gastric Dynamic Digestion, Peptidome Analysis and Modeling. Food Funct. 2021, 12, 7283–7297. [Google Scholar] [CrossRef] [PubMed]
- Peyron, M.-A.; Santé-Lhoutellier, V.; François, O.; Hennequin, M. Oral Declines and Mastication Deficiencies Cause Alteration of Food Bolus Properties. Food Funct. 2018, 9, 1112–1122. [Google Scholar] [CrossRef]
- Ribes, S.; Arnal, M.; Talens, P. Influence of Food Oral Processing, Bolus Characteristics, and Digestive Conditions on the Protein Digestibility of Turkey Cold Meat and Fresh Cheese. Food Res. Int. 2023, 173, 113297. [Google Scholar] [CrossRef]
- Sharma, M.; Kristo, E.; Corredig, M.; Duizer, L. Effect of Hydrocolloid Type on Texture of Pureed Carrots: Rheological and Sensory Measures. Food Hydrocoll. 2017, 63, 478–487. [Google Scholar] [CrossRef]
- Ishihara, S.; Nakauma, M.; Funami, T.; Odake, S.; Nishinari, K. Swallowing Profiles of Food Polysaccharide Gels in Relation to Bolus Rheology. Food Hydrocoll. 2011, 25, 1016–1024. [Google Scholar] [CrossRef]
- Muñoz-Núñez, M.; Laguna, L.; Tárrega, A. What Is the Food like That People Choke on? A Study on Food Bolus Physical Properties under Different in Vitro Oral Capacities. Food Res. Int. 2023, 165, 112474. [Google Scholar] [CrossRef] [PubMed]
- Milde, L.B.; Chigal, P.S.; Olivera, J.E.; González, K.G. Incorporation of Xanthan Gum to Gluten-Free Pasta with Cassava Starch. Physical, Textural and Sensory Attributes. LWT 2020, 131, 109674. [Google Scholar] [CrossRef]
- Neylon, E.; Arendt, E.K.; Zannini, E.; Sahin, A.W. Fundamental Study of the Application of Brewers Spent Grain and Fermented Brewers Spent Grain on the Quality of Pasta. Food Struct. 2021, 30, 100225. [Google Scholar] [CrossRef]
- Álvarez, M.D.; Paniagua, J.; Herranz, B. Assessment of the Miniature Kramer Shear Cell to Measure Both Solid Food and Bolus Mechanical Properties and Their Interplay with Oral Processing Behavior. Foods 2020, 9, 613. [Google Scholar] [CrossRef]
- Ribes, S.; Estarriaga, R.; Grau, R.; Talens, P. Physical, Sensory, and Simulated Mastication Properties of Texture-Modified Spanish Sauce Using Different Texturing Agents. Food Funct. 2021, 12, 8181–8195. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Menard, O.; Lesmes, U.; Shani-Levi, C.S.; Araiza Calahorra, A.; Lavoisier, A.; Morzel, M.; Rieder, A.; Feron, G.; Nebbia, S.; Mashiah, L.; et al. Static in Vitro Digestion Model Adapted to the General Older Adult Population: An INFOGEST International Consensus. Food Funct. 2023, 14, 4569–4582. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Gallego, M.; Arnal, M.; Barat, J.M.; Talens, P. Effect of Cooking on Protein Digestion and Antioxidant Activity of Different Legume Pastes. Foods 2021, 10, 47. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ketnawa, S.; Ogawa, Y. Evaluation of Protein Digestibility of Fermented Soybeans and Changes in Biochemical Characteristics of Digested Fractions. J. Funct. Foods 2019, 52, 640–647. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the Degree of Hydrolysis of Food Protein Hydrolysates by Trinitrobenzenesulfonic Acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.J.; Mccarthy, K.L.; Mccarthy, M.J. Textural and Structural Changes in Lasagna after Cooking. J. Texture Stud. 2000, 31, 93–108. [Google Scholar] [CrossRef]
- Oduro-Obeng, H.; Fu, B.X.; Beta, T. Influence of Cooking Duration on Carotenoids, Physical Properties and in Vitro Antioxidant Capacity of Pasta Prepared from Three Canadian Durum Wheat Cultivars. Food Chem. 2021, 363, 130016. [Google Scholar] [CrossRef]
- Chetrariu, A.; Dabija, A. Quality Characteristics of Spelt Pasta Enriched with Spent Grain. Agronomy 2021, 11, 1824. [Google Scholar] [CrossRef]
- Aguayo-Mendoza, M.G.; Chatonidi, G.; Piqueras-Fiszman, B.; Stieger, M. Linking Oral Processing Behavior to Bolus Properties and Dynamic Sensory Perception of Processed Cheeses with Bell Pepper Pieces. Food Qual. Prefer. 2021, 88, 104084. [Google Scholar] [CrossRef]
- Chen, J. Food Oral Processing: Some Important Underpinning Principles of Eating and Sensory Perception. Food Struct. 2014, 1, 91–105. [Google Scholar] [CrossRef]
- Nishinari, K.; Peyron, M.-A.; Yang, N.; Gao, Z.; Zhang, K.; Fang, Y.; Zhao, M.; Yao, X.; Hu, B.; Han, L.; et al. The Role of Texture in the Palatability and Food Oral Processing. Food Hydrocoll. 2024, 147, 109095. [Google Scholar] [CrossRef]
- Motoi, L.; Morgenstern, M.P.; Hedderley, D.I.; Wilson, A.J.; Balita, S. Bolus Moisture Content of Solid Foods during Mastication. J. Texture Stud. 2013, 44, 468–479. [Google Scholar] [CrossRef]
- van der Bilt, A.; Abbink, J.H. The Influence of Food Consistency on Chewing Rate and Muscular Work. Arch. Oral Biol. 2017, 83, 105–110. [Google Scholar] [CrossRef]
- Bolhuis, D.P.; Forde, C.G. Application of Food Texture to Moderate Oral Processing Behaviors and Energy Intake. Trends Food Sci. Technol. 2020, 106, 445–456. [Google Scholar] [CrossRef]
- Chen, L.; Lv, B.; Zhang, X.; Xu, Y.; Wu, P.; Zhou, W.; Chen, X.D. The Swallowing Threshold and Starch Hydrolysis of Cooked Rice with Different Moisture Contents for Human Mastication. Food Res. Int. 2022, 160, 111677. [Google Scholar] [CrossRef]
- Rizo, A.; Peña, E.; Alarcon-Rojo, A.D.; Fiszman, S.; Tarrega, A. Relating Texture Perception of Cooked Ham to the Bolus Evolution in the Mouth. Food Res. Int. 2019, 118, 4–12. [Google Scholar] [CrossRef]
- Ilic, J.; Tomasevic, I.; Djekic, I. Influence of Water-Based and Contact Heating Preparation Methods on Potato Mechanical Properties, Mastication, and Sensory Perception. Int. J. Gastron. Food Sci. 2021, 25, 100401. [Google Scholar] [CrossRef]
- Devezeaux de Lavergne, M.; van de Velde, F.; Stieger, M. Bolus Matters: The Influence of Food Oral Breakdown on Dynamic Texture Perception. Food Funct. 2017, 8, 464–480. [Google Scholar] [CrossRef]
- Panouillé, M.; Saint-Eve, A.; Souchon, I. Instrumental Methods for Bolus Characterization during Oral Processing to Understand Food Perceptions. Curr. Opin. Food Sci. 2016, 9, 42–49. [Google Scholar] [CrossRef]
- Mishellany-Dutour, A.; Renaud, J.; Peyron, M.A.; Rimek, F.; Woda, A. Is the Goal of Mastication Reached in Young Dentates, Aged Dentates and Aged Denture Wearers? Br. J. Nutr. 2008, 99, 121–128. [Google Scholar] [CrossRef]
- Pematilleke, N.; Kaur, M.; Adhikari, B.; Torley, P. Influence of Meat Texture on Oral Processing and Bolus Formation. J. Food Eng. 2020, 283, 110038. [Google Scholar] [CrossRef]
- Jalabert-Malbos, M.L.; Mishellany-Dutour, A.; Woda, A.; Peyron, M.A. Particle Size Distribution in the Food Bolus after Mastication of Natural Foods. Food Qual. Prefer. 2007, 18, 803–812. [Google Scholar] [CrossRef]
- Pu, D.; Duan, W.; Huang, Y.; Zhang, L.; Zhang, Y.; Sun, B.; Ren, F.; Zhang, H.; Tang, Y. Characterization of the Dynamic Texture Perception and the Impact Factors on the Bolus Texture Changes during Oral Processing. Food Chem. 2021, 339, 128078. [Google Scholar] [CrossRef]
- Campo-Deaño, L.; Tovar, C.A.; Jesús Pombo, M.; Teresa Solas, M.; Javier Borderías, A. Rheological Study of Giant Squid Surimi (Dosidicus gigas) Made by Two Methods with Different Cryoprotectants Added. J. Food Eng. 2009, 94, 26–33. [Google Scholar] [CrossRef]
- Hosotsubo, M.; Magota, T.; Egusa, M.; Miyawaki, T.; Matsumoto, T. Fabrication of Artificial Food Bolus for Evaluation of Swallowing. PLoS ONE 2016, 11, e0168378. [Google Scholar] [CrossRef]
- Loret, C.; Walter, M.; Pineau, N.; Peyron, M.A.; Hartmann, C.; Martin, N. Physical and Related Sensory Properties of a Swallowable Bolus. Physiol. Behav. 2011, 104, 855–864. [Google Scholar] [CrossRef]
- Tobin, A.B.; Mihnea, M.; Hildenbrand, M.; Miljkovic, A.; Garrido-Bañuelos, G.; Xanthakis, E.; Lopez-Sanchez, P. Bolus Rheology and Ease of Swallowing of Particulated Semi-Solid Foods as Evaluated by an Elderly Panel. Food Funct. 2020, 11, 8648–8658. [Google Scholar] [CrossRef]
- Witt, T.; Stokes, J.R. Physics of Food Structure Breakdown and Bolus Formation during Oral Processing of Hard and Soft Solids. Curr. Opin. Food Sci. 2015, 3, 110–117. [Google Scholar] [CrossRef]
- Gibouin, F.; van der Sman, R.; Benedito, J.; Della Valle, G. Rheological Properties of Artificial Boluses of Cereal Foods Enriched with Legume Proteins. Food Hydrocoll. 2022, 122, 107096. [Google Scholar] [CrossRef]
- Freitas, D.; Le Feunteun, S.; Panouillé, M.; Souchon, I. The Important Role of Salivary α-Amylase in the Gastric Digestion of Wheat Bread Starch. Food Funct. 2018, 9, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Gropper, S.S.; Smith, J.L. Advanced Nutrition and Human Metabolism, 6th ed.; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Ribes, S.; Genot, M.; Aubry, L.; Talens, P.; Vénien, A.; Santé-Lhoutellier, V.; Peyron, M.-A. Oral Impairments Decrease the Nutrient Bioaccessibility of Bread in the Elderly. Food Hydrocoll. 2023, 135, 108202. [Google Scholar] [CrossRef]
- Sissons, M.; Cutillo, S.; Egan, N.; Farahnaky, A.; Gadaleta, A. Influence of Some Spaghetti Processing Variables on Technological Attributes and the in Vitro Digestion of Starch. Foods 2022, 11, 3650. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Cerioli, C.; Fortunati, P.; Masoero, F. Cooking Quality and Starch Digestibility of Gluten Free Pasta Using New Bean Flour. Food Chem. 2015, 175, 43–49. [Google Scholar] [CrossRef]
- Yao, M.; Li, M.; Dhital, S.; Tian, Y.; Guo, B. Texture and Digestion of Noodles with Varied Gluten Contents and Cooking Time: The View from Protein Matrix and Inner Structure. Food Chem. 2020, 315, 126230. [Google Scholar] [CrossRef] [PubMed]
- Crosara, K.T.B.; Zuanazzi, D.; Moffa, E.B.; Xiao, Y.; de Andrade Moreira Machado, M.A.; Siqueira, W.L. Revealing the Amylase Interactome in Whole Saliva Using Proteomic Approaches. Biomed. Res. Int. 2018, 6346954. [Google Scholar] [CrossRef]
- Paz-Yépez, C.; Peinado, I.; Heredia, A.; Andrés, A. Influence of Particle Size and Intestinal Conditions on In Vitro Lipid and Protein Digestibility of Walnuts and Peanuts. Food Res. Int. 2019, 119, 951–959. [Google Scholar] [CrossRef]
- Rémond, D.; Shahar, D.R.; Gille, D.; Pinto, P.; Kachal, J.; Peyron, M.-A.; Dos Santos, C.N.; Walther, B.; Bordoni, A.; Dupont, D.; et al. Understanding the Gastrointestinal Tract of the Elderly to Develop Dietary Solutions That Prevent Malnutrition. Oncotarget 2015, 6, 13858–13898. [Google Scholar] [CrossRef]
- Chen, C.C.; Shih, Y.C.; Chiou, P.W.S.; Yu, B. Evaluating Nutritional Quality of Single Stage- and Two Stage-Fermented Soybean Meal. Asian-Australas. J. Anim. Sci. 2010, 23, 598–606. [Google Scholar] [CrossRef]
- Zou, X.; Zhou, G.; Yu, X.; Bai, Y.; Wang, C.; Xu, X.; Dai, C.; Li, C. In Vitro Protein Digestion of Pork Cuts Differ with Muscle Type. Food Res. Int. 2018, 106, 344–353. [Google Scholar] [CrossRef] [PubMed]
Samples | Hardness (N) | Adhesiveness (N·s) | Cohesiveness (%) |
---|---|---|---|
DC-NM | 9.72 ± 2.00 a | −0.248 ± 0.169 a | 36.38 ± 5.17 a |
DC-DM | 15.36 ± 2.75 b | −0.082 ± 0.118 bc | 41.94 ± 4.21 b |
SC-NM | 10.57 ± 1.85 a | −0.015 ± 0.095 b | 42.74 ± 3.16 b |
SC-DM | 14.70 ± 2.78 b | −0.001 ± 0.000 c | 49.26 ± 2.85 c |
Samples | G′LVR (Pa) | StrainLVR (%) | StressLVR (Pa) | G′ = G′′ (Pa) |
---|---|---|---|---|
DC-NM | 9591 ± 2654 a | 0.28 ± 0.05 a | 28 ± 11 a | 247 ± 59 a |
DC-DM | 10,592 ± 2375 a | 0.39 ± 0.03 b | 42 ± 11 b | 265 ± 64 a |
SC-NM | 8198 ± 1519 a | 0.24 ± 0.03 a | 20 ± 5 a | 217 ± 27 a |
SC-DM | 8798 ± 1604 a | 0.29 ± 0.06 a | 26 ± 8 a | 255 ± 50 a |
Samples | G′ (Pa) | G′′ (Pa) | G* (Pa) | η* (Pa·s) | Tan δ |
---|---|---|---|---|---|
DC-NM | 8289 ± 2381 a | 1980 ± 516 a | 8524 ± 2431 a | 1357 ± 387 a | 0.241 ± 0.018 b |
DC-DM | 9471 ± 2260 a | 2167 ± 417 a | 9716 ± 2295 a | 1546 ± 365 a | 0.231 ± 0.013 ab |
SC-NM | 7161 ± 1409 a | 1629 ± 295 a | 7344 ± 1439 a | 1169 ± 229 a | 0.228 ± 0.009 ab |
SC-DM | 8558 ± 1322 a | 1883 ± 290 a | 8763 ± 1347 a | 1432 ± 215 a | 0.221 ± 0.014 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnal, M.; Salcedo, L.; Talens, P.; Ribes, S. Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta. Foods 2024, 13, 2341. https://doi.org/10.3390/foods13152341
Arnal M, Salcedo L, Talens P, Ribes S. Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta. Foods. 2024; 13(15):2341. https://doi.org/10.3390/foods13152341
Chicago/Turabian StyleArnal, Milagros, Lucía Salcedo, Pau Talens, and Susana Ribes. 2024. "Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta" Foods 13, no. 15: 2341. https://doi.org/10.3390/foods13152341
APA StyleArnal, M., Salcedo, L., Talens, P., & Ribes, S. (2024). Role of Food Texture, Oral Processing Responses, Bolus Properties, and Digestive Conditions on the Nutrient Bioaccessibility of Al Dente and Soft-Cooked Red Lentil Pasta. Foods, 13(15), 2341. https://doi.org/10.3390/foods13152341