Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Microbial Strains
2.3. Pistachio Beverage Preparation
2.4. Inoculum of Fermented Pistachio-Based Beverages
2.5. pH Evaluation and Microbiological Analysis of Pistachio Beverage
2.6. Sugar Consumption, Organic Acids, and Ethanol Production
2.7. Chemical Analysis of Pistachio Beverage
2.8. Amino Acid Profile and GABA Content of Pistachio Beverage
2.9. Volatile Organic Compounds
2.10. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Production of the Pistachio-Based Beverage
3.2. Proximate Composition of the Pistachio-Based Beverage
3.3. Amino Acid Profile and GABA Content of Pistachio Beverage
3.4. Microbiological Analysis, pH, and Acid and Sugar Content of the Fermented Pistachio-Based Beverage
3.5. Volatile Organic Composition of the Fermented Pistachio-Based Beverage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexy, U. Diet and growth of vegetarian and vegan children. BMJ Nutr. Prev. Health 2023, 6, S3–S11. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, M.L.; Serrano-Carretero, A.; García-Herrera, P.; Cámara-Hurtado, M.; Sánchez-Mata, M.C. Plant-based beverages as milk alternatives? Nutritional and functional approach through food labelling. Food Res. Int. 2023, 173, 113244. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, R.; Upadhyay, A.; Mishra, S.; Shukla, S. Emerging trends in processing for cereal and legume-based beverages: A review. Future Foods 2023, 8, 100257. [Google Scholar] [CrossRef]
- Mehany, T.; Siddiqui, S.A.; Olawoye, B.; Olabisi Popoola, O.; Hassoun, A.; Manzoor, M.F.; Punia Bangar, S. Recent innovations and emerging technological advances used to improve quality and process of plant-based milk analogs. Crit. Rev. Food Sci. Nutr. 2023, 64, 7237–7267. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.; Mihaylova, D.; Lante, A. Insights and perspectives on plant-based beverages. Plants 2023, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J.; Fresán, U. International analysis of the nutritional content and a review of health benefits of non-dairy plant-based beverages. Nutrients 2021, 13, 842. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chelikani, V.; Serventi, L. Evaluation of chickpea as alternative to soy in plant-based beverages, fresh and fermented. LWT—Food Sci. Technol. 2018, 97, 570–572. [Google Scholar] [CrossRef]
- Manassero, C.A.; Añón, M.C.; Speroni, F. Development of a high protein beverage based on amaranth. Plant Foods Hum. Nutr. 2020, 75, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Kohajdová, Z.; Holkovičová, T.; Minarovičová, L.; Lauková, M.; Hojerová, J.; Greif, G.; Ťažká, D. Potential of quinoa for production of new non-dairy beverages with reduced glycemic index. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e9885. [Google Scholar] [CrossRef]
- Arya, S.S.; Shakya, N.K. High fiber, low glycaemic index (GI) prebiotic multigrain functional beverage from barnyard, foxtail and kodo millet. LWT—Food Sci. Technol. 2021, 135, 109991. [Google Scholar] [CrossRef]
- Abbou, A.; Kadri, N.; Servent, A.; Ricci, J.; Madai, K.; Dornier, M.; Collingnan, A.; Achir, N. Setting up a diagram process for the elaboration of a new plant-based beverage from Pinus halepensis seeds: Selection of unit operations and their conditions. J. Food Process. Eng. 2022, 45, e13943. [Google Scholar] [CrossRef]
- Di Renzo, T.; Osimani, A.; Marulo, S.; Cardinali, F.; Mamone, G.; Puppo, M.C.; Garzon, A.G.; Drago, S.R.; Laurino, C.; Reale, A. Insight into the role of lactic acid bacteria in the development of a novel fermented pistachio (Pistacia vera L.) beverage. Food Biosci. 2023, 53, 102802. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Deng, L.; Dai, T.; Liu, C.; Chen, J. High energy media mill modified pea dietary fiber: Physicochemical property and its mechanism in stabilizing pea protein beverage. Food Hydrocoll. 2024, 147, 109392. [Google Scholar] [CrossRef]
- Ritter, S.; Gastl, M.; Becker, T. Impact of germination on the protein solubility and antinutritive compounds of Lupinus angustifolius and Vicia faba in the production of protein-rich legume-based beverages. J. Agric. Food Chem. 2023, 71, 9080–9096. [Google Scholar] [CrossRef]
- Costa, J.; Silva, I.; Villa, C.; Mafra, I. A novel single-tube nested real-time PCR method to quantify pistachio nut as an allergenic food: Influence of food matrix. J. Food Compos. Anal. 2023, 115, 105042. [Google Scholar] [CrossRef]
- Tomaino, A.; Martorana, M.; Arcoraci, T.; Monteleone, D.; Giovinazzo, C.; Saija, A. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie 2010, 92, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytsky, S.; Lila, M.A. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. Food Funct. 2016, 7, 4285–4298. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, X.; Cui, H.; Xu, J.; Yuan, Z.; Liu, J.; Li, C.; Li, J.; Zhu, D. Plant-based fermented beverages and key emerging processing technologies. Food. Rev. Int. 2022, 39, 5844–5863. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Rizzello, C.G.; Coda, R. Fermentation biotechnology applied to cereal industry by-products: Nutritional and functional insights. Front. Nutr. 2019, 6, 42. [Google Scholar] [CrossRef]
- Sigüenza-Andrés, T.; Gomezà, M.; Rodríguez-Nogales, J.M.; Caro, I. Development of a fermented plant-based beverage from discarded bread flour. LWT—Food Sci. Technol. 2023, 182, 114795. [Google Scholar] [CrossRef]
- Mesquita, M.C.; Leandro, E.S.; de Alencar, E.R.; Botelho, R.B.A. Fermentation of chickpea (Cicer arietinum L.) and coconut (Coccus nucifera L.) beverages by Lactobacillus paracasei subsp. paracasei LBC 81: The influence of sugar content on growth and stability during storage. LWT—Food Sci. Technol. 2020, 132, 109834. [Google Scholar] [CrossRef]
- Liu, H.; Ni, Y.; Yu, H.; Fan, L. Evaluation of co-fermentation of L. plantarum and P. kluyveri of a plant-based fermented beverage: Physicochemical, functional, and sensory properties. Food Res. Int. 2023, 172, 113060. [Google Scholar] [CrossRef] [PubMed]
- Deziderio, M.A.; de Souza, H.F.; Kamimura, E.S.; Petrus, R.R. Plant-based fermented beverages: Development and characterization. Foods 2023, 12, 4128. [Google Scholar] [CrossRef] [PubMed]
- Marulo, S.; De Caro, S.; Nitride, C.; Di Renzo, T.; Di Stasio, L.; Ferranti, P.; Reale, A.; Mamone, G. Bioactive peptides released by lactic acid bacteria fermented pistachio beverages. Food Biosci. 2024, 59, 103988. [Google Scholar] [CrossRef]
- Li, F.; Chen, G.; Fu, X. Comparison of effect of gear juicer and colloid mill on microstructure, polyphenols profile, and bioactivities of mulberry (Morus indica L.). Food Bioprocess Technol. 2016, 9, 1233–1245. [Google Scholar] [CrossRef]
- Lima, J.; Bruno, L.; Wurlitzer, N.; de Sousa, P.; Holanda, S. Cashew nut-based beverage: Development, characteristics and stability during refrigerated storage. Food Sci. Technol. 2020, 41, 60–64. [Google Scholar] [CrossRef]
- Lopes, M.; Pierrepont, C.; Duarte, C.M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020, 9, 1458. [Google Scholar] [CrossRef]
- Reale, A.; Sorrentino, E.; Iacumin, L.; Tremonte, P.; Manzano, M.; Maiuro, L.; Comi, G.; Coppola, R.; Succi, M. Irradiation treatments to improve the shelf life of fresh black truffles. J. Food Sci. 2009, 74, M197–M200. [Google Scholar] [CrossRef]
- Belleggia, L.; Ferrocino, I.; Reale, A.; Corvaglia, M.R.; Milanović, V.; Cesaro, C.; Boscaino, F.; Di Renzo, T.; Garofalo, C.; Cardinali, F.; et al. Unfolding microbiota and volatile organic compounds of Portuguese Painho de Porco Preto fermented sausages. Food Res. Int. 2022, 155, 111063. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Alaiz, M.; Navarro, J.L.; Girón, J.; Vioque, E. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. A 1992, 591, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Garzón, A.G.; Torres, R.L.; Drago, S.R. Effects of malting conditions on enzyme activities, chemical, and bioactive compounds of sorghum starchy products as raw material for brewery. Starch Staerke 2016, 68, 1048–1054. [Google Scholar] [CrossRef]
- Garofalo, C.; Ferrocino, I.; Reale, A.; Sabbatini, R.; Milanović, V.; Alkić-Subašić, M.; Boscaino, F.; Aquilanti, L.; Pasquini, M.; Trombetta, M.; et al. Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res. Int. 2020, 137, 109369. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Kratz, P.D.A. Generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Arjeh, E.; Masoumi, A.; Barzegar, M.; Akhavan, H. Strategies to reduce microbial contaminations and increase the shelf life of pistachio fruit: A review. Food Health 2021, 4, 24–37. [Google Scholar]
- Berthold-Pluta, A.; Garbowska, M.; Stefańska, I.; Stasiak-Różańska, L.; Aleksandrzak-Piekarczyk, T.; Pluta, A. Microbiological quality of nuts, dried and candied fruits, including the prevalence of Cronobacter spp. Pathogens 2021, 10, 900. [Google Scholar] [CrossRef]
- Al-Moghazy, M.; Boveri, S.; Pulvirenti, A. Microbiological safety in pistachios and pistachio containing products. Food Control 2014, 36, 88–93. [Google Scholar] [CrossRef]
- Ban, G.-H.; Kang, D.-H. Effectiveness of superheated steam for inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, Salmonella Enteritidis phage type 30, and Listeria monocytogenes on almonds and pistachios. Int. J. Food Microbiol. 2016, 220, 19–25. [Google Scholar] [CrossRef]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, nutrients, bioactives and novel health effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef]
- Jeske, S.; Zannini, E.; Arendt, E. Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes. Plant Foods Hum. Nutr 2017, 72, 26–33. [Google Scholar] [CrossRef]
- Walther, B.; Guggisberg, D.; Badertscher, R.; Egger, L.; Portmann, R.; Dubois, S.; Haldimann, M.; Kopf-Bolanz, K.; Rhyn, P.; Zoller, O.; et al. Comparison of nutritional composition between plant-based drinks and cow’s milk. Front. Nutr. 2022, 9, 988707. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alonso, P.; Bulló, M.; Salas-Salvadó, J. Pistachios for health: What do we know about this multifaceted nut? Nutr. Today 2016, 51, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L. Pistachio nuts: Composition and potential health benefits. Nutr. Rev. 2012, 70, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Rosique-Esteban, N.; Guasch-Ferré, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Dietary magnesium and cardiovascular disease: A review with emphasis in epidemiological studies. Nutrients 2018, 10, 168. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Tabil, L.G. Pistachio (Pistacia vera L.). In Postharvest Biology and Technology of Tropical and Subtropical Fruits; Yahia, E.M., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 218–246.247e. [Google Scholar] [CrossRef]
- Sathe, S.K.; Monaghan, E.K.; Kshiesagar, H.H.; Venkatachalam, M. Chemical composition of edible nut seeds and its implications in human health. In Tree Nuts: Composition, Phytochemicals, and Health Effects; CRC Press: Boca Raton, FL, USA, 2009; pp. 11–35. [Google Scholar]
- Ma, Y.; Wang, A.; Yang, M.; Wang, S.; Wang, L.; Zhou, S.; Blecker, C. Influences of cooking and storage on γ-aminobutyric acid (GABA) content and distribution in mung bean and its noodle products. LWT—Food Sci. Technol 2022, 154, 112783. [Google Scholar] [CrossRef]
- Sarkisyan, V.A.; Kochetkova, A.A.; Bessonov, V.V.; Isakov, V.A.; Nikityuk, D.B. Estimation of gammaaminobutyric acid intake from the human diet. Vopr. Pitan. 2024, 93, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA) administration in humans. Biofactors 2006, 26, 201–208. [Google Scholar] [CrossRef]
- Yee, C.S.; Ilham, Z.; Cheng, A.; Rahim, M.H.A.; Hajar-Azhari, S.; Yuswan, M.H.; Zaini, N.A.M.; Reale, A.; Di Renzo, T.; Wan-Mohtar, W.A.A.Q.I. Optimisation of fermentation conditions for the production of Gamma-Aminobutyric Acid (GABA)-rich soy sauce. Heliyon 2024, 10, E33147. [Google Scholar] [CrossRef]
- Levata-Jovanovic, M.; Sandine, W.E. Citrate utilization and diacetyl production by various strains of Leuconostoc mesenteroides ssp. cremoris. J. Dairy Sci. 1996, 79, 1928–1935. [Google Scholar] [CrossRef]
- Liu, J.M.; Chen, L.; Dorau, R.; Lillevang, S.K.; Jensen, P.R.; Solem, C. From waste to taste—Efficient production of the butter aroma compound acetoin from low-value dairy side streams using a natural (nonengineered) Lactococcus lactis dairy isolate. J. Agric. Food Chem. 2020, 68, 5891–5899. [Google Scholar] [CrossRef]
- Comasio, A.; Harth, H.; Weckx, S.; De Vuyst, L. The addition of citrate stimulates the production of acetoin and diacetyl by a citrate-positive Lactobacillus crustorum strain during wheat sourdough fermentation. Int. J. Food Microbiol. 2019, 289, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Sedó Molina, G.E.; Tovar, M.; Quoc, H.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Isolation and characterization of plant-based lactic acid bacteria from spontaneously fermented foods using a new modified medium. LWT—Food Sci. Technol. 2024, 192, 115695. [Google Scholar] [CrossRef]
- Wätjen, A.P.; Øzmerih, S.; Shetty, R.; Todorov, S.K.; Huang, W.; Turner, M.S.; Bang-Berthelsen, C.H. Utilization of plant derived lactic acid bacteria for efficient bioconversion of brewers’ spent grain into acetoin. Int. J. Food Microbiol. 2023, 406, 110400. [Google Scholar] [CrossRef]
- Shin, S.Y.; Han, N.S. Leuconostoc spp. as starters and their beneficial roles in fermented foods. In Beneficial Microorganisms in Food and Nutraceuticals; Liong, M.T., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 27, pp. 111–132. [Google Scholar]
Total Mesophilic Bacteria | Eumycetes | Enterobacteriaceae | Total Coliforms | Fecal Coliforms | Pseudomonas spp. | Enterococci | |
---|---|---|---|---|---|---|---|
Fresh beverage | 5.8 ± 0.48 | 2.7 ± 0.05 | 5.5 ± 0.18 | 4.0 ± 0.22 | 3.0 ± 0.08 | 4.1 ± 0.32 | 2.7 ± 0.06 |
Heat treated beverage | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
Components | g/100 mL |
---|---|
Proteins (%) | 4.21 ± 0.02 |
Lipids (%) | 8.34 ± 0.29 |
Total dietary fiber | 2.15 ± 0.20 |
Ash (minerals) | 0.56 ± 0.02 |
Total carbohydrate (different from fiber) | 1.93 ± 0.49 |
Minerals | mg/L (ppm) |
Fe | 7.8 ± 0.1 |
Zn | 2.8 ± 0.0 |
Ca | 214.6 ± 4.8 |
Mg | 290.9 ± 7.5 |
Cu | 1.9 ± 0.0 |
K | 1590.5 ± 13.0 |
P | 1265.8 ± 58.7 |
Amino acid | mg/1000 mL |
---|---|
Asp | 35.0 ± 1.9 |
Glu | 242.1 ± 23.5 |
Ser | 162.6 ± 0.3 |
His | 12.2 ± 0.4 |
Gly | 15.1 ± 1.6 |
Thr | 27.1 ± 2.6 |
Arg | 248.5 ± 1.1 |
Ala | 88.1 ± 1.9 |
Pro | 34.6 ± 0.2 |
Tyr | 22.6 ± 1.5 |
Val | 17.1 ± 0.2 |
Met | 4.8 ± 0.2 |
Cys | 0.6 ± 0.0 |
Ile | 11.0 ± 0.2 |
Leu | 13.7 ± 0.2 |
Phe | 17.1 ± 0.9 |
Lys | 23.6 ± 2.1 |
GABA | 90.81 ± 1.13 |
After 24 h of Fermentation at 28 °C | After 30 Days of Storage at 4 °C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain | pH | Lactic Acid | Acetic Acid | FRU | SUC | GLU | pH | Lactic Acid | Acetic Acid | FRU | SUC | GLU |
PD4 | 3.88 ± 0.08 a | 9.12 ± 0.81 b | 0.43 ± 0.03 a | 0.22 ± 0.02 a | 0.14 ± 0.06 bc | 0.08 ± 0.03 a | 3.99 ± 0.08 a | 10.57 ± 0.12 b | 0.61 ± 0.08 ab | nd | nd | nd |
PG3 | 3.91 ± 0.07 a | 7.87 ± 0.22 c | 0.14 ± 0.12 b | 0.03 ± 0.02 c | 0.03 ± 0.01 d | 0.15 ± 0.05 a | 3.99 ± 0.05 a | 9.6 ± 0.28 d | 0.25 ± 0.11 bc | nd | nd | nd |
PN4 | 3.86 ± 0.05 a | 10.94 ± 0.18 a | 0.27 ± 0.11 b | 0.16 ± 0.04 ab | 0.17 ± 0.03 b | nd | 3.88 ± 0.08 a | 11.51 ± 0.12 a | 0.75 ± 0.21 ab | nd | nd | nd |
PT1 | 3.92 ± 0.06 a | 7.58 ± 0.38 c | 0.37 ± 0.13 ab | 0.08 ± 0.05 bc | 0.09 ± 0.04 c | nd | 3.89 ± 0.05 a | 10.78 ± 0.41 b | 0.42 ± 0.13 b | nd | nd | nd |
PU2 | 3.89 ± 0.01 a | 9.65 ± 0.58 b | 0.17 ± 0.14 b | 0.17 ± 0.04 ab | 0.08 ± 0.02 c | nd | 3.98 ± 0.08 a | 9.32 ± 0.35 d | 0.68 ± 0.14 a | nd | nd | nd |
PV2 | 3.84 ± 0.08 a | 10.05 ± 0.18 b | 0.23 ± 0.05 b | 0.24 ± 0.06 a | 0.34 ± 0.01 a | nd | 3.99 ± 0.07 a | 10.15 ± 0.11 c | 0.75 ± 0.12 a | nd | nd | nd |
RI | Compounds | Fermented Pistachio-Based Beverages | Odor * | ||||||
---|---|---|---|---|---|---|---|---|---|
CTR | PT1 | PD4 | PU2 | PV2 | PG3 | PN4 | |||
Aldehydes | |||||||||
903 | 2-Methylbutanal | 0.10 ± 0.00 | 0.13 ± 0.01 | 0.05 ± 0.00 | Nd | Nd | 0.18 ± 0.01 | Nd | Fruity |
910 | 3-Methylbutanal | 0.21 ± 0.01 | 0.09 ± 0.00 | 0.25 ± 0.01 | Nd | Nd | 0.70 ± 0.02 | 0.21 ± 0.00 | Almond |
ketones | |||||||||
968 | Diacetyl | Nd | 3.60 ± 0.02 | 30.17 ± 0.31 | 8.58 ± 0.25 | 7.77 ± 0.14 | 11.12 ± 0.20 | 7.92 ± 0.02 | Butter, fatty |
1287 | Acetoin | Nd | 0.64 ± 0.01 | 17.19 ± 0.53 | 12.29 ± 0.20 | 11.29 ± 0.65 | 0.42 ± 0.03 | 2.38 ± 0.06 | Butter, fatty |
1206 | 4-Methyl-2-heptanone | Nd | Nd | Nd | Nd | 0.16 ± 0.01 | 0.08 ± 0.00 | 0.08 ± 0.00 | Fruity |
1602 | Gamma-butyrolactone | 0.17 ± 0.01 | 0.12 ± 0.01 | Nd | 0.05 ± 0.00 | 0.09 ± 0.00 | 0.06 ± 0.00 | Nd | Caramel, sweet |
Ester and acetate | |||||||||
1316 | Ethyl lactate | Nd | Nd | Nd | Nd | Nd | Nd | 0.13 ± 0.01 | Butter, fruity |
Alcohols | |||||||||
934 | 2-Propanol | 0.78 ± 0.02 | 0.53 ± 0.02 | 0.26 ± 0.01 | 2.31 ± 0.03 | Nd | Nd | 3.26 ± 0.06 | Alcoholic, pungent |
940 | Ethanol | Nd | Nd | 15.87 ± 0.61 | Nd | 0.60 ± 0.10 | 0.90 ± 0.15 | Nd | Alcoholic |
1237 | Isoamylalcohol | 0.86 ± 0.02 | 1.66 ± 0.01 | 1.35 ± 0.02 | 1.73 ± 0.03 | 1.22 ± 0.03 | 1.51 ± 0.04 | 1.15 ± 0.01 | Alcoholic, fruity |
1313 | 3-Methyl-2-buten-1-ol | Nd | Nd | 0.38 ± 0.02 | 0.14 ± 0.01 | 0.19 ± 0.02 | Nd | 0.22 ± 0.01 | malt |
1320 | 1-Hexanol | 2.76 ± 0.05 | 0.61 ± 0.04 | 0.61 ± 0.05 | 0.57 ± 0.03 | 0.40 ± 0.03 | 0.43 ± 0.04 | 0.40 ± 0.03 | Sweet, green |
1520 | 1-Octanol | Nd | Nd | 0.07 ± 0.00 | Nd | Nd | Nd | Nd | Green, orange |
1836 | Benzene methanol | Nd | Nd | Nd | 0.27 ± 0.02 | 0.11 ± 0.00 | Nd | Nd | Floral, rose |
1862 | Phenethyl alcohol | Nd | Nd | Nd | 0.16 ± 0.00 | Nd | Nd | Nd | Floral, sweet |
Acids | |||||||||
1415 | Acetic acid | 0.11 ± 0.01 | 30.20 ± 2.37 | 37.77 ± 1.55 | 9.71 ± 0.60 | 33.28 ± 1.10 | 6.63 ± 0.5 | 23.33 ± 1.09 | Acidic, fruity |
2144 | Nonanoic acid | Nd | 1.17 ± 0.03 | Nd | Nd | Nd | Nd | Nd | Green, fat |
Terpene | |||||||||
1011 | α-Pinene | 27.65 ± 0.6 | 25.86 ± 0.2 | 29.09 ± 2.70 | 28.17 ± 2.21 | 11.04 ± 0.09 | 13.25 ± 0.24 | 7.23 ± 0.09 | Fresh, pine |
1046 | Camphene | 0.69 ± 0.04 | 0.70 ± 0.02 | 0.88 ± 0.03 | 0.59 ± 0.01 | 0.34 ± 0.04 | 0.28 ± 0.01 | 0.21 ± 0.01 | Camphor |
1074 | β-Pinene | 0.79 ± 0.01 | 1.10 ± 0.04 | 1.44 ± 0.08 | 2.02 ± 0.02 | 1.23 ± 0.07 | 0.97 ± 0.01 | 1.00 ± 0.05 | Pine, resin |
1108 | δ-3-Carene | 2.75 ± 0.35 | 3.16 ± 0.17 | 4.19 ± 0.06 | 3.90 ± 0.15 | 2.42 ± 0.06 | 3.12 ± 0.15 | 2.68 ± 0.20 | Lemon, resin |
1176 | Limonene | 3.87 ± 0.10 | 1.19 ± 0.01 | 1.38 ± 0.10 | 0.77 ± 0.03 | 0.67 ± 0.01 | 0.57 ± 0.03 | 0.35 ± 0.02 | Citrus |
1244 | Cymene | 0.55 ± 0.03 | 0.87 ± 0.01 | 0.60 ± 0.04 | 0.81 ± 0.07 | 0.14 ± 0.01 | 0.45 ± 0.01 | Nd | Citrus |
Others | |||||||||
1134 | Methylpyrrole | 3.70 ± 0.30 | 8.44 ± 0.18 | 5.06 ± 0.24 | 5.21 ± 0.34 | 2.16 ± 0.12 | 3.28 ± 0.37 | 2.68 ± 0.09 | Smoky, herbal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reale, A.; Puppo, M.C.; Boscaino, F.; Garzon, A.G.; Drago, S.R.; Marulo, S.; Di Renzo, T. Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill. Foods 2024, 13, 2342. https://doi.org/10.3390/foods13152342
Reale A, Puppo MC, Boscaino F, Garzon AG, Drago SR, Marulo S, Di Renzo T. Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill. Foods. 2024; 13(15):2342. https://doi.org/10.3390/foods13152342
Chicago/Turabian StyleReale, Anna, Maria Cecilia Puppo, Floriana Boscaino, Antonela Guadalupe Garzon, Silvina Rosa Drago, Serena Marulo, and Tiziana Di Renzo. 2024. "Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill" Foods 13, no. 15: 2342. https://doi.org/10.3390/foods13152342
APA StyleReale, A., Puppo, M. C., Boscaino, F., Garzon, A. G., Drago, S. R., Marulo, S., & Di Renzo, T. (2024). Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill. Foods, 13(15), 2342. https://doi.org/10.3390/foods13152342