Effect of Sourdough–Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sourdough
2.3. Preparation of Corn Fagao Batter
2.4. Determination of pH and Total Titratable Acidity (TTA)
2.5. Determination of Reducing Sugar Content
2.6. Determination of Specific Gravity
2.7. Determination of Viscosity
2.8. Determination of Amylose Content
2.9. The Microstructure of Starch Particles
2.10. X-ray Diffraction (XRD)
2.11. Rapid Viscosity Analysis (RVA)
2.12. Fourier Transform Infrared Spectroscopy (FTIR)
2.13. SDS-Polyacrylamide Gel Electrophoresis
2.14. Statistical Analysis
3. Results
3.1. Effect of Co-Fermentation on the Properties of Corn Fagao Batter
3.1.1. pH and TTA of the Corn Fagao Batter
3.1.2. Reducing Sugar Content of Corn Fagao Batter
3.1.3. Specific Gravity of Corn Fagao Batter
3.1.4. Viscosity of Corn Fagao Batter
3.2. Effect of Co-Fermentation on the Properties of Starch
3.2.1. Effect of Co-Fermentation on Amylose Content
3.2.2. Effect of Co-Fermentation on the Microscopic Structure of Starch
3.2.3. Effect of Co-Fermentation on the Crystalline Structure of Starch
3.2.4. Effect of Co-Fermentation on the Pasting Properties of Starch
3.2.5. Effect of Co-Fermentation on the Short-Range Ordered Structure of Starch
3.3. Effect of Co-Fermentation on the Relative Molecular Weight of Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkay, Z.; Falah, F.; Cankurt, H.; Dertli, E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024, 13, 1732. [Google Scholar] [CrossRef] [PubMed]
- Ripari, V.; Gänzle, M.G.; Berardi, E. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials. Int. J. Food Microbiol. 2016, 232, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Gauchez, H.; Loiseau, A.L.; Schlich, P.; Martin, C. Impact of aging on the overall liking and sensory characteristics of sourdough breads and comparison of two methods to determine their sensory shelf life. J. Food Sci. 2020, 85, 3517–3526. [Google Scholar] [CrossRef]
- Cavallo, N.; Angelis, M.D.; Calasso, M.; Quinto, M.; Mentana, A.; Minervini, F.; Cappelle, S.; Gobbetti, M. Microbial cell-free extracts affect the biochemical characteristics and sensorial quality of sourdough bread. Food Chem. 2017, 237, 159–168. [Google Scholar] [CrossRef]
- Di Monaco, R.; Torrieri, E.; Pepe, O.; Masi, P.; Cavella, S. Effect of Sourdough with Exopolysaccharide (EPS)-Producing Lactic Acid Bacteria (LAB) on Sensory Quality of Bread during Shelf Life. Food Bioprocess Technol. 2015, 8, 691–701. [Google Scholar] [CrossRef]
- Gharekhani, M.; Nami, Y.; Aalami, M.; Hejazi, M.A. Sourdoughs fermented by autochthonous Lactobacillus strains improve the quality of gluten-free bread. Food Sci. Nutr. 2021, 9, 6372–6381. [Google Scholar] [CrossRef]
- Mantzourani, I.; Plessas, S.; Odatzidou, M.; Alexopoulos, A.; Galanis, A.; Bezirtzoglou, E.; Bekatorou, A. Effect of a novel Lactobacillus paracase starter on sourdough bread quality. Food Chem. 2019, 271, 259–265. [Google Scholar] [CrossRef]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, S. Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Angelis, M.D.; Cagno, R.D.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel insights on the functional/nutritional features of the sourdough fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Cagno, R.D.; Angelis, M.D. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef]
- Caponio, G.R.; Difonzo, G.; de Gennaro, G.; Calasso, M.; De Angelis, M.; Pasqualone, A. Nutritional Improvement of Gluten-Free Breadsticks by Olive Cake Addition and Sourdough Fermentation: How Texture, Sensory, and Aromatic Profile Were Affected? Front. Nutr. 2022, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Karaman, K.; Sagdic, O.; Durak, M.Z. Use of phytase active yeasts and lactic acid bacteria isolated from sourdough in the production of whole wheat bread. LWT-Food Sci. Technol. 2018, 91, 557–567. [Google Scholar] [CrossRef]
- Yao, J.; Bu, E.S.; Shan, Z.F. A piece of Fagao, a lot of flavours. Chin. Handicraft 2014, 2, 38–40. (In Chinese) [Google Scholar]
- Wei, C.; Ge, Y.; Zhao, S.; Liu, D.; Jiliu, J.; Wu, Y.; Hu, X.; Wei, M.; Wang, Y.; Wang, W.; et al. Effect of Fermentation Time on Molecular Structure and Physicochemical Properties of Corn Ballast Starch. Front. Nutr. 2022, 9, 12. [Google Scholar] [CrossRef]
- Wu, Z.H.; Lv, Y.G.; Chen, J.; Wang, L. Study on the cooperative fermentation of microwave gluten-free corn steamed sponge cake by sourdough. Cereals Oils 2023, 36, 118–123. (In Chinese) [Google Scholar]
- Caglar, N.; Ermis, E.; Durak, M.Z. Spray-dried and freeze-dried sourdough powders: Properties and evaluation of their use in breadmaking. J. Food Eng. 2021, 292, 7. [Google Scholar] [CrossRef]
- Li, Z.J.; Cui, M.Y.; Song, K.D.; Han, K.C.; Deng, C.; Ma, R.C.; Yao, Y.T. Characteristics of Non-Saccharomyces in Dough Fermentation for Steamed Bread Making. J. Henan Univ. Technol. (Nat. Sci. Ed.) 2019, 1, 44–49. (In Chinese) [Google Scholar]
- Stemler, C.D.; Scherf, K.A. Lipases as cake batter improvers compared to a traditional emulsifier. LWT-Food Sci. Technol. 2023, 174, 8. [Google Scholar] [CrossRef]
- Cui, L.; Chen, J.; Wang, Y.; Xiong, Y.L. The Effect of Batter Characteristics on Protein-Aided Control of Fat Absorption in Deep-Fried Breaded Fish Nuggets. Foods 2022, 11, 147. [Google Scholar] [CrossRef] [PubMed]
- GB/T 15683-2008; Rice-Determination of Amylose Content. Standards Institution of China. Standards Press of China: Beijing, China, 2008.
- Pan, T.; Zhao, L.; Lin, L.; Wang, J.; Liu, Q.; Wei, C. Changes in kernel morphology and starch properties of high-amylose brown rice during the cooking process. Food Hydrocoll. 2017, 66, 227–236. [Google Scholar] [CrossRef]
- Jiang, H.H.; Zhang, Y.Y.; Hong, Y.; Bi, Y.; Gu, Z.B.; Cheng, L.; Li, Z.F.; Li, C.M. Digestibility and changes to structural characteristics of green banana starch during in vitro digestion. Food Hydrocoll. 2015, 49, 192–199. [Google Scholar] [CrossRef]
- Manoukian, L.; Stein, R.S.; Correa, J.A.; Frigon, D.; Omelon, S. Short-chain polyphosphates: Extraction effects on migration and size estimation of Saccharomyces cerevisiae extracts with polyacrylamide gel electrophoresis. Electrophoresis 2023, 44, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Huang, S.; Chi, C.; Lu, P.; Chen, L.; Li, L.; Li, X. Digestibility and structure changes of rice starch following co-fermentation of yeast and Lactobacillus strains. Int. J. Biol. Macromol. 2021, 184, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Calvert, M.D.; Madden, A.A.; Nichols, L.M.; Haddad, N.M.; Lahne, J.; Dunn, R.R.; McKenney, E.A. A review of sourdough starters: Ecology, practices, and sensory quality with applications for baking and recommendations for future research. PeerJ 2021, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Paramithiotis, S.; Gioulatos, S.; Tsakalidou, E.; Kalantzopoulos, S. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 2006, 41, 2429–2433. [Google Scholar] [CrossRef]
- Katina, K.; Maina, N.H.; Juvonen, R.; Flander, L.; Johansson, L.; Virkki, L.; Laitila, A. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol. 2009, 26, 734–743. [Google Scholar] [CrossRef]
- Daba, G.M.; Elnahas, M.O.; Elkhateeb, W.A. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int. J. Biol. Macromol. 2021, 173, 79–89. [Google Scholar] [CrossRef]
- Loretan, T. The Diversity and Technological Properties of Yeasts from Indigenous Traditional South African Fermented Milks. Ph.D. Dissertation, University of the Free State, Bloemfontein, South Africa, 1999. [Google Scholar]
- Roostita, R.; Fleet, G.H. The occurrence and growth of yeasts in Camembert and blue-veined cheeses. Int. J. Food Microbiol. 1996, 28, 393–404. [Google Scholar] [CrossRef]
- Olojede, A.O.; Sanni, A.I.; Banwo, K. Rheological, textural and nutritional properties of gluten-free sourdough made with functionally important lactic acid bacteria and yeast from Nigerian sorghum. LWT-Food Sci. Technol. 2020, 120, 8. [Google Scholar] [CrossRef]
- Xu, M.; Zhai, A. Effect of different lactic acid bacteria fermentation on maize meal property. China Brew. 2009, 3, 53–55. (In Chinese) [Google Scholar]
- Zhao, T.; Li, X.; Zhu, R.; Ma, Z.; Liu, L.; Wang, X.; Hu, X. Effect of natural fermentation on the structure and physicochemical properties of wheat starch. Carbohydr. Polym. 2019, 218, 163–169. [Google Scholar] [CrossRef]
- Reyes, I.; Cruz-Sosa, F.; Roman-Guerrero, A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Structural changes of corn starch during Saccharomyces cerevisiae fermentation. Starch-Starke 2016, 68, 961–971. [Google Scholar] [CrossRef]
- Qi, X.; Yang, S.; Zhao, D.; Liu, J.; Wu, Q.; Yang, Q. Changes in Structural and Physicochemical Properties of Corn Flour after Fermentation with Lactobacillus plantarum Y1. Starch-Starke 2020, 72, 8. [Google Scholar] [CrossRef]
- Chang, F.; He, X.; Huang, Q. Effect of lauric acid on the V-amylose complex distribution and properties of swelled normal cornstarch granules. J. Cereal Sci. 2013, 58, 89–95. [Google Scholar] [CrossRef]
- Bian, X.; Chen, J.R.; Yang, Y.; Yu, D.H.; Ma, Z.Q.; Ren, L.K.; Zhang, N. Effects of fermentation on the structure and physical properties of glutinous proso millet starch. Food Hydrocoll. 2022, 123, 11. [Google Scholar] [CrossRef]
- Van Der Maarel, M.J.; Van der Veen, B.; Uitdehaag, J.C.; Leemhuis, H.; Dijkhuizen, L. Properties and applications of starch-converting enzymes of the alpha-amylase family. J. Biotechnol. 2002, 94, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Hughes, T.; Chung, H.J.; Liu, Q. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res. Int. 2010, 43, 399–413. [Google Scholar] [CrossRef]
- da Rosa Zavareze, E.; Dias, A.R.G. Impact of heat-moisture treatment and annealing in starches A review. Carbohydr. Polym. 2011, 83, 317–328. [Google Scholar] [CrossRef]
- Oyarekua, M.A. Effect of co-fermentation on nutritive quality and pasting properties of maize/cowpea/sweet potato as complementary food. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7171–7191. [Google Scholar] [CrossRef]
- Yang, W.; Kong, X.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Ye, X. Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrason. Sonochem. 2019, 59, 8. [Google Scholar] [CrossRef]
- Zheng, Y.; Tian, J.; Kong, X.; Wu, D.; Chen, S.; Liu, D.; Ye, X. Proanthocyanidins from Chinese berry leaves modified the physicochemical properties and digestive characteristic of rice starch. Food Chem. 2021, 335, 7. [Google Scholar] [CrossRef]
- Cao, X.; Tong, J.; Ding, M.; Wang, K.; Wang, L.; Cheng, D.; Gao, X. Physicochemical properties of starch in relation to rheological properties of wheat dough. Food Chem. 2019, 297, 9. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.T.; Hong, Y.; Zhang, Y.Y.; Gu, Z.B.; Cheng, L.; Li, Z.F.; Li, C.M. Combinatorial effect of fermentation and drying on the relationship between the structure and expansion properties of tapioca starch and potato starch. Int. J. Biol. Macromol. 2020, 145, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Sabino, M.A.; Pauchard, L.; Allain, C.; Mangavel, C.; Zeng, M.; Lourdin, D. Influence of dehydration rate on the vitrification of corn protein. J. Appl. Polym. Sci. 2008, 110, 1–7. [Google Scholar] [CrossRef]
- Anderson, T.J.; Lamsal, B.P. Zein Extraction from Corn, Corn Products, and Coproducts and Modifications for Various Applications: A Review. Cereal Chem. 2011, 88, 159–173. [Google Scholar] [CrossRef]
- Błaszczak, W.; Valverde, S.; Fornal, J.; Amarowicz, R.; Lewandowicz, G.; Borkowski, K. Changes in the microstructure of wheat, corn and potato starch granules during extraction of non-starch compounds with sodium dodecyl sulfate and mercaptoethanol. Carbohydr. Polym. 2003, 53, 63–73. [Google Scholar] [CrossRef]
- Novotni, D.; Gänzle, M.; Rocha, J.M. Composition and activity of microbiota in sourdough and their effect on bread quality and safety. Trends Wheat Bread Mak. 2021, 129–172. [Google Scholar] [CrossRef]
Peak Viscosity/cp | Through Viscosity/cp | Breakdown/cp | Final Viscosity/cp | Setback/cp | Pasting Temperature/°C | |
---|---|---|---|---|---|---|
SY-0 | 1632 | 1228 | 404 | 2441 | 1213 | 77.4 |
SY-15 | 1612 | 1121 | 491 | 2556 | 1435 | 78.35 |
SY-30 | 1542 | 1082 | 460 | 2572 | 1490 | 77.5 |
SY-45 | 1538 | 1146 | 392 | 2120 | 974 | 78.25 |
YY-0 | 2616 | 1958 | 658 | 4044 | 2086 | 76.65 |
YY-15 | 1665 | 1225 | 440 | 2512 | 1287 | 79.05 |
YY-30 | 1687 | 1184 | 503 | 2605 | 1421 | 63.65 |
YY-45 | 1653 | 1196 | 457 | 2624 | 1428 | 66.8 |
Sample | 1047/1022 cm−1 | Sample | 1047/1022 cm−1 |
---|---|---|---|
SY-0 | 0.962 ± 0.004 ab | YY-0 | 0.965 ± 0.005 a |
SY-15 | 0.955 ± 0.001 ab | YY-15 | 0.962 ± 0.007 ab |
SY-30 | 0.953 ± 0.007 ab | YY-30 | 0.960 ± 0.003 ab |
SY-45 | 0.950 ± 0.004 b | YY-45 | 0.956 ± 0.000 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Lyu, Y.; Wu, Z.; Li, X.; Liu, K. Effect of Sourdough–Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter. Foods 2024, 13, 2730. https://doi.org/10.3390/foods13172730
Yang Q, Lyu Y, Wu Z, Li X, Liu K. Effect of Sourdough–Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter. Foods. 2024; 13(17):2730. https://doi.org/10.3390/foods13172730
Chicago/Turabian StyleYang, Qianhui, Yingguo Lyu, Zhenhua Wu, Xueqin Li, and Kunlun Liu. 2024. "Effect of Sourdough–Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter" Foods 13, no. 17: 2730. https://doi.org/10.3390/foods13172730
APA StyleYang, Q., Lyu, Y., Wu, Z., Li, X., & Liu, K. (2024). Effect of Sourdough–Yeast Co-Fermentation on Physicochemical Properties of Corn Fagao Batter. Foods, 13(17), 2730. https://doi.org/10.3390/foods13172730