Structural Analysis and Antioxidant Activity of Alkaline-Extracted Glucans from Hericium erinaceus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction and Purification of Polysaccharides
2.3. General Methods
2.4. Monosaccharide Composition
2.5. Homogeneity and Molecular Weight Determination
2.6. Ultraviolet (UV) Spectrum Analysis
2.7. Fourier Transform Infrared (FT-IR) Spectroscopy
2.8. Methylation Analysis
2.9. NMR Analysis
2.10. Periodate Oxidation and Smith Degradation
2.11. MALDI-TOF MS
2.12. Antioxidant Activity Analysis In Vitro
2.12.1. Scavenging Activity on ABTS·+ Radicals
2.12.2. Scavenging Activity on DPPH Radicals
2.12.3. Scavenging Activity on Hydroxyl Radicals
2.13. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Polysaccharides
3.2. Ultraviolet (UV) and FT-IR Spectra
3.3. Methylation Analysis
3.4. NMR Structural Analysis
3.5. Periodate Oxidation
3.6. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thongbai, B.; Rapior, S.; Hyde, K.D.; Wittstein, K.; Stadler, M. Hericium erinaceus, an amazing medicinal mushroom. Mycol. Prog. 2015, 14, 91. [Google Scholar] [CrossRef]
- Ma, Q.; Yang, Y.; Zhang, Z.; Wang, C.G.; Wu, D. Progress on research and application of Hericium erinaceus polysaccharides. Acta Edulis Fungi 2021, 28, 199–216. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, C.; Tao, Q.; Li, W.Z. Optimization of hot water extraction and ethanol precipitation process for improving and extraction rate of polysaccharides from Hericium erinaceus. China Condiment 2020, 45, 1–4+19. [Google Scholar] [CrossRef]
- Zhang, S.B.; Huang, J.Z. Comparation on extraction methods of polysaccharide from Hericium erinaceus. Food Ferment. Ind. 2014, 40, 233–237. [Google Scholar] [CrossRef]
- Leong, Y.K.; Yang, F.C.; Chang, J.S. Extraction of polysaccharides from edible mushrooms: Emerging technologies and recent advances. Carbohydr. Polym. 2021, 251, 117006. [Google Scholar] [CrossRef]
- Valu, M.V.; Soare, L.C.; Sutan, N.A.; Ducu, C.; Carradori, S. Optimization of ultrasonic extraction to obtain erinacine A and polyphenols with antioxidant activity from the fungal biomass of Hericium erinaceus. Foods 2020, 9, 1889. [Google Scholar] [CrossRef]
- Qin, P.P.; Liu, T. Extraction polysaccharides from Hericium erinaceus by hot water method. J. Anhui Agric. Sci. 2014, 42, 4784–4786. [Google Scholar] [CrossRef]
- Qu, X.X.; Zheng, Y.Q.; Mao, S.; Lv, Y.P. Response surface optimizati on of complex-enzyme method for extraction of polysaccharides from Hericium. Food Sci. Technol. 2015, 40, 182–187. [Google Scholar] [CrossRef]
- Wu, M.Y.; Zhou, Y.; He, H.M.; Wang, J.S.; Wang, C.; Wang, X.Z. Study on complex enzymatic extr action and heavy metal removal process of Hericium polysaccharide. Food Res. Dev. 2013, 5, 15–17. [Google Scholar] [CrossRef]
- Zhang, H.R.; Wei, J.J.; Wang, H. Study on the technology optimization of ultrasonic extraction of polysaccharides from Hericium erinaceus. China Condiment 2021, 46, 154–156+165. [Google Scholar] [CrossRef]
- Ji, X.; Guo, J.; Tian, J.; Ma, K.; Liu, Y. Research progress on degradation methods and product properties of plant polysaccharides. J. Light Ind. 2023, 38, 55–62. [Google Scholar] [CrossRef]
- Ookushi, Y.; Sakamoto, M.; Azuma, J.I. Optimization of microwave-assisted extraction of polysaccharides from the fruiting body of mushrooms. J. Appl. Glycosci. 2006, 53, 267–272. [Google Scholar] [CrossRef]
- Ookushi, Y.; Sakamoto, M.; Azuma, J.I. Effects of microwave irradiation on water-soluble polysaccharides of the fruiting body of Hericium erinaceum. J. Appl. Glycosci. 2009, 56, 153–157. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, C.; Liu, T.; Dai, Y.; Huang, H. A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H202-induced oxidative damage in GES-1 cells. Int. J. Biol. Macromol. Struct. Funct. Interact. 2020, 154, 1460–1470. [Google Scholar] [CrossRef]
- Shang, H.M.; Song, H.; Shen, S.J.; Yao, X.; Wu, B.; Wang, L.N.; Jiang, Y.Y.; Ding, G.D. Effects of dietary polysaccharides from the submerged fermentation concentrate of Hericium caput-medusae(Bull.:Fr.) Pers. on fat deposition in broilers. J. Sci. Food Agric. 2014, 95, 267–274. [Google Scholar] [CrossRef]
- Zhuang, H.; Dong, H.; Zhang, X.; Feng, T. Antioxidant Activities and Prebiotic Activities of Water-Soluble, Alkali-Soluble Polysaccharides Extracted from the Fruiting Bodies of the Fungus Hericium erinaceus. Polymers 2023, 15, 4165. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Z.; Wei, D.; Guo, M.; Li, S.; Cui, H.; Zhang, Y.; Zhang, Y.; Chen, X. Enrichment Extraction and Activity Study of the Different Varieties of Hericium erinaceus against HCT-8 Colon Cancer Cells. Molecules 2023, 28, 6288. [Google Scholar] [CrossRef]
- Hou, C.; Liu, L.; Ren, J.; Huang, M.; Yuan, E. Structural characterization of two Hericium erinaceus polysaccharides and their protective effects on the alcohol-induced gastric mucosal injury. Food Chem. 2022, 375, 131896. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Ma, B.; Feng, T.; Zhang, S.; Zhuang, H.; Yao, L. The Inhibitory Effects of Hericium erinaceus β-glucan on in vitro Starch Digestion. Front. Nutr. 2020, 7, 621131. [Google Scholar] [CrossRef]
- Zan, X.; Cui, F.; Li, Y.; Yang, Y.; Wu, D.; Sun, W.; Ping, L. Hericium erinaceus polysaccharide-protein heg-5 inhibits sgc-7901 cell growth via cell cycle arrest and apoptosis. Int. J. Biol. Macromol. 2015, 76, 242–253. [Google Scholar] [CrossRef]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; Palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in health, disease and aging. Cns. Neurol. Disord.-Drug Targets 2011, 10, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Guo, J.; Ding, D.; Gao, J.; Hao, L.; Guo, X.; Liu, Y. Structural characterization and antioxidant activity of a novel high-molecular-weight polysaccharide from Ziziphus Jujuba cv. Muzao. J. Food Meas. Charact. 2022, 16, 2191–2200. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrović, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. Antioxidants of Edible Mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef]
- Shan, Y.L.; Edward, J.O. Determination of lovastatin, β-glucan, total polyphenols, and antioxidant activity in raw and processed oyster culinary-medicinal mushroom, Pleurotus ostreatus (higher basidiomycetes). Int. J. Med. Mushrooms 2015, 17, 117–128. [Google Scholar] [CrossRef]
- Yuki, M.; Daiki, N.; Yoshiaki, N.; Konishi, M.; Nanba, H. Soluble β-glucan from Grifola frondosa induces tumor regression in synergy with TLR9 agonist via dendritic cell-mediated immunity. J. Leukoc. Biol. 2015, 98, 1015–1025. [Google Scholar] [CrossRef]
- Lei, H.; Wang, W.; Wang, Q.; Guo, S.; Wu, B. Antioxidant and immunomodulatory effects of a α-glucan from fruit body of maitake (Grifola frondosa). Food Agric. Immunol. 2013, 24, 409–418. [Google Scholar] [CrossRef]
- Cebin, A.V.; Petravic-Tominac, V.; Djakovic, S.; Srecec, S.; Zechner-Krpan, V.; Piljac-Zegarac, J.; Isikhuemhen, O.S. Polysaccharides and antioxidants from culinary-medicinal white button mushroom, Agaricus bisporus (agaricomycetes), waste biomass. Int. J. Med. Mushrooms 2018, 20, 797–808. [Google Scholar] [CrossRef]
- Mau, J.L.; Lin, H.C.; Song, S.F. Antioxidant properties of several specialty mushrooms. Food Res. Int. 2002, 35, 519–526. [Google Scholar] [CrossRef]
- Tu, J.; Wen, Y.; Chen, P.; Liu, Z.; Liu, H. A novel polysaccharide from Hericium erinaceus: Preparation, structural characteristics, thermal stabilities, and antioxidant activities in vitro. J. Food Biochem. 2021, 17, 113871. [Google Scholar] [CrossRef]
- Ghosh, S.; Chakraborty, N.; Banerjee, A.; Chatterjee, T.; Acharya, K. Mycochemical profiling and antioxidant activity of two different tea preparations from lion’s mane medicinal mushroom, Hericium erinaceus (agaricomycetes). Int. J. Med. Mushrooms 2021, 23, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, G.; Pan, H.; Pandey, A.; He, W.; Fan, L. Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. Int. J. Biol. Macromol. 2012, 51, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.; Hamilton, J.K.; Rebers, P.A.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Sedmak, J.J.; Grossberg, S.E. A rapid, sensitive, and versatile assay for protein using coomassie brilliant blue g250. Anal. Biochem. 1977, 79, 544–552. [Google Scholar] [CrossRef]
- Qu, Y.; Zhao, X.; Guo, H.; Meng, Y.; Wang, Y.; Zhou, Y.; Sun, L. Structural analysis and macrophage activation of a novel β-glucan isolated from Cantharellus cibarius. Int. J. Mol. Med. 2021, 47, 50. [Google Scholar] [CrossRef]
- Chandra, K.; Ghosh, K.; Roy, S.K.; Mondal, S.; Maiti, D.; Ojha, A.K.; Das, D.; Mondal, S.; Islam, S.S. A water-soluble glucan isolated from an edible mushroom Termitomyces microcarpus. Carbohydr. Res. 2007, 342, 2484–2489. [Google Scholar] [CrossRef]
- Rout, D.; Mondal, S.; Chakraborty, I.; Islam, S. The structure and conformation of a water-insoluble (1→3)-,(1→6)-β-d-glucan from the fruiting bodies of Pleurotus florida. Carbohydr. Res. 2008, 343, 982–987. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sun, H.H.; Mao, W.J.; Jiao, J.Y.; Xu, J.C.; Li, H.Y.; Chen, Y.; Qi, X.-H.; Chen, Y.-L.; Xu, J.; Zhao, C.-Q. Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar. Biotechnol. 2011, 13, 1048–1055. [Google Scholar] [CrossRef]
- Ning, X.; Liu, Y.; Jia, M.; Wang, Q.; Sun, Z.; Ji, L.; Mayo, K.H.; Zhou, Y.; Sun, L. Pectic polysaccharides from Radix sophorae tonkinensis exhibit significant antioxidant effects. Carbohydr. Polym. 2021, 262, 117925. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Cheng, Y.; Tian, J.; Zhang, S.; Jing, Y.; Shi, M. Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chem. Biol. Technol. Agric. 2021, 8, 54. [Google Scholar] [CrossRef]
- Cael, J.J.; Koenig, J.L.; Blackwell, J. Infrared and Raman spectroscopy of carbohydrates. Part IV: Normal coordinate analysis of V-amylose. Biopolymers 1975, 14, 1885–1903. [Google Scholar] [CrossRef]
- Šandula, J.; Kogan, G.; Kačuráková, M.; Machováet, E. Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr. Polym. 1999, 38, 247–253. [Google Scholar] [CrossRef]
- Smiderle, F.R.; Carbonero, E.R.; Mellinger, C.G.; Sassaki, G.L.; Gorin, P.A.J.; Iacomini, M. Structural characterization of a polysaccharide and a beta-glucan isolated from the edible mushroom Flammulina velutipes. Phytochemistry 2006, 67, 2189–2196. [Google Scholar] [CrossRef] [PubMed]
- Santos-Neves, J.C.; Pereira, M.I.; Carbonero, E.R.P.; Gracher, A.H.; Alquini, G.; Gorin, P.A.J.; Sassaki, G.L.; Iacomini, M. A novel branched αβ-glucan isolated from the basidiocarps of the edible mushroom Pleurotus florida. Carbohydr. Polym. 2008, 73, 309–314. [Google Scholar] [CrossRef]
- Liu, J.; Sun, Y.; Yu, H.; Zhang, C.; Yue, L.; Yang, X.; Wang, L.; Liu, J. Purification and identification of one glucan from golden oyster mushroom (Pleurotus citrinopileatus (Fr.) Singer). Carbohydr. Polym. 2012, 87, 348–352. [Google Scholar] [CrossRef]
- Bhanja, S.K.; Rout, D.; Patra, P.; Sen, I.K.; Nandon, C.K.; Islam, S.S. Water-insoluble glucans from the edible fungus Ramaria botrytis. Bioact. Carbohydr. Diet. Fibre 2014, 3, 52–58. [Google Scholar] [CrossRef]
- Lo, T.C.T.; Chang, C.A.; Chiu, K.H.; Tsay, P.K.; Jen, J.F. Correlation evaluation of antioxidant properties on the monosaccharide components and glycosyl linkages of polysaccharide with different measuring methods. Carbohydr. Polym. 2011, 86, 320–327. [Google Scholar] [CrossRef]
- Shin, Y.J.; Lee, S.C. Antioxidant activity and β-glucan contents of hydrothermal extracts from maitake (Grifola frondosa). Food Sci Biotechnol. 2014, 23, 277–282. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chem. 2019, 294, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Nicoletta, P.; Barbara, C.; Daniele, D.R.; Sara, S.; Marta, B.; Furio, B.; Mauro, S. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumedin Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 9, 2812–2819. [Google Scholar] [CrossRef]
Methylated Sugars | Linkages | Molar (%) | Mass Fragments (m/z) |
---|---|---|---|
2,3,4-Me3-Glcp | 1,6- | 69.8 | 101, 117, 129, 161, 173, 189, 233 |
2,4-Me2-Glcp | 1,3,6- | 11.7 | 117, 129, 159, 189, 233, 261, 305 |
2,4,6-Me3-Glcp | 1,3- | 8.2 | 101, 117, 129, 161, 189, 233, 277 |
2,3,4,6-Me4-Glcp | t- | 10.3 | 101, 117, 129, 145, 161, 205 |
Linkage Type | Chemical Shift (ppm) | |||||
---|---|---|---|---|---|---|
C-1/H-1 | C-2/H-2 | C-3/H-3 | C-4/H-4 | C-5/H-5 | C-6/H-6 | |
(A)→6)-β-D-Glcp-(1→ | 101.92/4.47 | 72.00/3.27 | 74.55/3.45 | 68.39/3.43 | 73.82/3.58 | 67.77/4.16; 3.80 |
(B)→3,6)-β-D-Glcp-(1→ | 101.92/4.47 | 71.84/3.47 | 83.28/3.70 | 68.53/3.35 | 74.22/3.83 | 67.11/3.53; 3.46 |
(C)→3)-β-D-Glcp-(1→ | 101.76/4.70 | 72.00/3.27 | 83.28/3.70 | 68.44/3.41 | 74.22/3.83 | 59.51/3.86; 3.79 |
(D)→β-D-Glcp-(1→ | 101.76/4.70 | 71.84/3.47 | 74.57/3.71 | 68.55/3.58 | 73.82/3.58 | 59.64/3.88; 3.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Jia, X.; Wang, Y.; Wang, Y.; Zhou, Y.; Li, F.; Qu, Y.; Cheng, H. Structural Analysis and Antioxidant Activity of Alkaline-Extracted Glucans from Hericium erinaceus. Foods 2024, 13, 2742. https://doi.org/10.3390/foods13172742
Qiao Z, Jia X, Wang Y, Wang Y, Zhou Y, Li F, Qu Y, Cheng H. Structural Analysis and Antioxidant Activity of Alkaline-Extracted Glucans from Hericium erinaceus. Foods. 2024; 13(17):2742. https://doi.org/10.3390/foods13172742
Chicago/Turabian StyleQiao, Zhonghui, Xiushi Jia, Yuanning Wang, Yuan Wang, Yifa Zhou, Fan Li, Yunhe Qu, and Hairong Cheng. 2024. "Structural Analysis and Antioxidant Activity of Alkaline-Extracted Glucans from Hericium erinaceus" Foods 13, no. 17: 2742. https://doi.org/10.3390/foods13172742
APA StyleQiao, Z., Jia, X., Wang, Y., Wang, Y., Zhou, Y., Li, F., Qu, Y., & Cheng, H. (2024). Structural Analysis and Antioxidant Activity of Alkaline-Extracted Glucans from Hericium erinaceus. Foods, 13(17), 2742. https://doi.org/10.3390/foods13172742