Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability
Abstract
:1. Introduction
2. Effects of Varying Cumulative Intake Levels of Chlorella vulgaris on the Broilers’ Carcass Traits
Starting Weight and Age | Microalga (%) in Feed and Trial Duration (days) 1 | Cumulative Microalga Intake (g/bird) 2 | Carcass Traits | References | ||||
---|---|---|---|---|---|---|---|---|
Carcass Dressing (%) | Carcass Weight (g) 3 | Thigh Yield (%) | Breast MEAT Cooking Loss (%) | Breast Meat Water Holding Capacity (%) 4 | ||||
45.1 g, 1 d-old 5 | 0.05%, 34 d | 1.40 | - | - | - | 27.1 | - | [35] |
72.56 g, 4 d-old 5,6 | 0.10%, 31 d | 3.52 | - | - | - | 12.56 | 73.49 | [34] |
45.1 g, 1 d-old 5 | 0.15%, 34 d | 4.27 | - | - | - | 26.1 | - | [35] |
40.03 g, 1 d-old 5 | 0.10%, 41 d | 4.35 | 61.3 | 1533 | 28.9 | - | - | [32] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | 70.78 | 1416 | - | 21.00 | 83.26 | [33] |
40.03 g, 1 d-old 5 | 0.20%, 41 d | 8.73 | 63.2 | 1593 | 29.6 | - | - | [32] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | 69.79 | 1450 | - | 20.33 | 86.82 | [33] |
45.1 g, 1 d-old 5 | 0.50%, 34 d | 14.1 | - | - | - | 26.5 | - | [35] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | 71.69 | 1553 | - | 21.66 | 88.33 | [33] |
788 g, 21 d-old 5 | 10%, 14 d | 176 | - | - | 23.0 | - | [18] | |
107 g, 5 d-old 5 | 10%, 34 d | 401 | 74.46 | 2099 | 26.82 | 29.18 | 79.21 | [10] |
109 g, 5 d-old 5 | 15%, 34 d | 561 | 73.11 | 1891 | 26.12 | 27.06 | 80.94 | [10] |
106 g, 5 d-old 5 | 20%, 34 d | 718 | 72.58 | 1700 | 25.81 | 24.13 | 83.62 | [10] |
Variable | Best Model Type | R-Square | Degrees of Freedom | p-Value | Model Equation |
---|---|---|---|---|---|
Carcass dressing (%) | Inverse | 0.711 | 6 | 0.009 | y = 73.444 − (48.944/x) |
Carcass weight (g) | Cubic | 0.942 | 4 | 0.006 | y = 1457.699 + 5.041x − 0.011x2 + 6.559 × 10−6x3 |
Thigh yield (%) | Exponential | 0.961 | 3 | 0.003 | y = 29.195 × e0.000x (simplified to y = 29.195) |
Breast meat cooking loss (%) | Cubic | 0.252 | 7 | 0.539 | y = 22.129 − 0.001x + 7.794 × 10 − 5x2 − 1.028 × 10−7x3 |
Breast meat water holding capacity (%) | Sigmoid | 0.311 | 5 | 0.193 | y = 4.435 − (0.329/x) |
3. Effects of Varying Cumulative Intake Levels of Chlorella vulgaris on the Broilers’ Meat Quality and Oxidative Stability
4. Safety and Regulations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Starting Weight and Age | Microalga (%) in Feed and Trial Duration (Days) 1 | Cumulative Microalga Intake (g/Bird) 2 | Abdominal Fat (%) | Breast Muscle Yield (%) | Left Breast Meat (%) 3 | Leg Meat (%) 3 | Wing Muscles (%) | Breast Meat | Leg Meat | References | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thawing Loss (%) | Drip Loss (%) | Bound Water (%) | Plasticity (cm2) | Cooking Loss (%) | |||||||||
45.1 g, 1 d-old 4 | 0.05%, 34 d | 1.40 | 1.77 | - | 6.48 | 9.04 | - | - | - | - | - | 31.8 | [35] |
72.56 g, 4 d-old 4,5 | 0.10%, 31 d | 3.52 | - | - | - | - | - | 5.20 | - | - | - | - | [34] |
45.1 g, 1 d-old 4 | 0.15%, 34 d | 4.27 | 2.01 | - | 6.48 | 9.30 | - | - | - | - | - | 32.7 | [35] |
40.03 g, 1 d-old 4 | 0.10%, 41 d | 4.35 | 2.7 | - | - | - | - | - | - | - | - | - | [32] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.7 | - | - | - | - | - | - | - | 58.25 | 2.690 | - | [33] |
40.03 g, 1 d-old 4 | 0.20%, 41 d | 8.73 | 2.68 | - | - | - | - | - | - | - | - | - | [32] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | - | - | - | - | - | - | - | 61.81 | 2.656 | - | [33] |
45.1 g, 1 d-old 4 | 0.50%, 34 d | 14.1 | 1.95 | - | 6.39 | 9.14 | - | - | - | - | - | 34.4 | [35] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | - | - | - | - | - | - | - | 63.32 | 3.210 | - | [33] |
788 g, 21 d-old 4 | 10%, 14 d | 176 | - | - | - | - | - | - | - | - | - | 27.2 | [18] |
107 g, 5 d-old 4 | 10%, 34 d | 401 | - | 25.11 | - | - | 7.24 | 3.43 | 2.17 | - | - | - | [10] |
109 g, 5 d-old 4 | 15%, 34 d | 561 | - | 24.67 | - | - | 7.38 | 3.96 | 1.98 | - | - | - | [10] |
106 g, 5 d-old 4 | 20%, 34 d | 718 | - | 24.39 | - | - | 7.38 | 4.04 | 1.92 | - | - | - | [10] |
Starting Weight and Age | Microalga (%) in Feed and Trial Duration (Days) 1 | Cumulative Microalga Intake (g/Bird) 2 | Breast Meat | Leg Meat | References | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Texture Profile Analysis 3 | Sensory Traits 4 | Chemical Composition | Colour Traits 5 | pH24h | |||||||||||||||
Protein (%) | Fat (%) | Cholesterol (mg/g) | Absolute Value (CIELAB Scale) | Absolute Value | |||||||||||||||
Ce | H | S | Co | T | J | F | OF | OA | L* | a* | b* | (pH Scale) | |||||||
45.1 g, 1 d-old 6 | 0.05%, 34 d | 1.40 | - | - | - | - | - | - | - | - | - | - | - | - | 55.5 | 2.84 | 9.01 | 5.87 | [35] |
45.1 g, 1 d-old 6 | 0.15%, 34 d | 4.27 | - | - | - | - | - | - | - | - | - | - | - | - | 52.7 | 3.47 | 7.12 | 5.94 | [35] |
45.1 g, 1 d-old 6 | 0.50%, 34 d | 14.1 | - | - | - | - | - | - | - | - | - | - | - | - | 54.4 | 3.06 | 8.63 | 5.86 | [35] |
788 g, 21 d-old 6 | 10%, 14 d | 176 | - | - | - | - | 5.76 | 4.45 | 4.44 | 0.203 | 5.27 | - | 0.97 | 0.59 | 48.7 | 8.23 | 12.0 | 5.87 | [18] |
107 g, 5 d-old 6 | 10%, 34 d | 401 | 14.16 | 28.09 | 0.77 | 0.62 | - | - | - | - | - | - | - | - | - | - | - | - | [10] |
107 g, 5 d-old 6 | 10%, 34 d | 401 | - | - | - | - | - | - | - | - | - | 25.56 | 1.95 | 0.4067 | - | - | - | - | [11] |
109 g, 5 d-old 6 | 15%, 34 d | 561 | 12.31 | 25.99 | 0.76 | 0.64 | - | - | - | - | - | - | - | - | - | - | - | - | [10] |
109 g, 5 d-old 6 | 15%, 34 d | 561 | 12.31 | 25.99 | 0.76 | 0.64 | - | - | - | - | - | 27.1 | 0.92 | 0.4300 | - | - | - | - | [11] |
106 g, 5 d-old 6 | 20%, 34 d | 718 | 13.17 | 26.91 | 0.77 | 0.61 | - | - | - | - | - | - | - | - | - | - | - | - | [10] |
106 g, 5 d-old 6 | 20%, 34 d | 718 | 13.17 | 26.91 | 0.77 | 0.61 | - | - | - | - | - | 26.89 | 1.22 | 0.3900 | - | - | - | - | [11] |
References
- Beijerinck, M.W. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Botanische Zeitung 1890, 47, 725–739. [Google Scholar]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. 2022. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 27 June 2024).
- Chaves, A.A.M.; Martins, C.F.; Carvalho, D.F.P.; Ribeiro, D.M.; Lordelo, M.; Freire, J.P.B.; Almeida, A.M. A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding-a special emphasis on tropical regions. Trop. Anim. Health Prod. 2021, 53, 396. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wareth, A.A.A.; Williams, A.N.; Salahuddin, M.; Gadekar, S.; Lohakare, J. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: Present status and future considerations. Front. Vet. Sci. 2024, 11, 1382163. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Roques, S.; Koopmans, S.J.; Mens, A.; van Harn, J.; van Krimpen, M.; Kar, S.K. Effect of Feeding 0.8% Dried Powdered Chlorella vulgaris Biomass on Growth Performance, Immune Response, and Intestinal Morphology during Grower Phase in Broiler Chickens. Animals 2022, 12, 1114. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Mahasneh, Z.M.H.; Barakat, R.A.; Alkahtani, A.M.; Madkour, M. Microalgae: A promising strategy for aflatoxin control in poultry feeds. Toxicon 2024, 244, 107770. [Google Scholar] [CrossRef]
- Rani, K.; Sandal, N.; Sahoo, P.K. A comprehensive review on chlorella-its composition, health benefits, market and regulation scenario. Pharma Innov. J. 2018, 7, 583–589. [Google Scholar]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. App. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Cabrol, M.B.; Martins, J.C.; Malhão, L.P.; Alves, S.P.; Bessa, R.J.; Almeida, A.M.; Raymundo, A.; Lordelo, M. Partial replacement of soybean meal with Chlorella vulgaris in broiler diets influences performance and improves breast meat quality and fatty acid composition. Poult. Sci. 2022, 101, 101955. [Google Scholar] [CrossRef]
- Cabrol, M.B.; Martins, J.C.; Malhão, L.P.; Alfaia, C.M.; Prates, J.A.M.; Almeida, A.M.; Lordelo, M.; Raymundo, A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods 2022, 11, 1345. [Google Scholar] [CrossRef]
- Andrade, L.M.; Andrade, C.J.; Dias, M.; Nascimento, C.A.O.; Mendes, M.A. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- Maurício, T.; Couto, D.; Lopes, D.; Conde, T.; Pais, R.; Batista, J.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Trovão, M.; et al. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Animal. Sci. Biotechnol. 2013, 4, 53. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Coudert, E.; Baéza, E.; Berri, C. Use of algae in poultry production: A review. J. World’s Poult. Sci. 2020, 76, 767–786. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Major, V.T.; Martins, C.F.; Santos, H.; Lopes, P.A.; et al. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.F.; Ribeiro, D.M.; Costa, M.; Coelho, D.; Alfaia, C.M.; Lordelo, M.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods 2021, 10, 2933. [Google Scholar] [CrossRef] [PubMed]
- Korczyński, M.; Witkowska, Z.; Opaliński, S.; Świniarska, M.; Dobrzański, Z. Algae extract as a potential feed additive. In Marine Algae Extracts: Processes, Products, Applications; Kim, S.K., Chojnacka, K., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 603–626. [Google Scholar] [CrossRef]
- Coronado-Reyes, J.A.; Salazar-Torres, J.A.; Juárez-Campos, B.; González-Hernández, J.C. Chlorella Vulgaris, a Microalgae Important to Be Used in Biotechnology: A Review. Food Sci. Technol. 2022, 42, e37320. [Google Scholar] [CrossRef]
- Pantami, H.A.; Ahamad Bustamam, M.S.; Lee, S.Y.; Ismail, I.S.; Mohd Faudzi, S.M.; Nakakuni, M.; Shaari, K. Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Mar. Drugs 2020, 18, 367. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef]
- Agarwalla, A.; Komandur, J.; Mohanty, K. Current trends in the pretreatment of microalgal biomass for efficient and enhanced bioenergy production. Bioresour. Technol. 2023, 369, 128330. [Google Scholar] [CrossRef] [PubMed]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S.L. Microalgae disruption techniques for product recovery: Influence of cell wall composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Costa, M.M.; Spínola, M.P.; Alves, V.D.; Prates, J.A.M. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024, 10, i32704. [Google Scholar] [CrossRef] [PubMed]
- Van Nerom, S.; Buyse, K.; Van Immerseel, F.; Robbens, J. Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed. Poult. Sci. 2024, 103, 103721. [Google Scholar] [CrossRef]
- Canelli, G.; Neutsch, L.; Carpine, R.; Tevere, S.; Giuffrida, F.; Rohfritsch, Z.; Dionisi, F.; Bolten, C.J.; Mathys, A. Chlorella vulgaris in a heterotrophic bioprocess: Study of the lipid bioaccessibility and oxidative stability. Algal Res. 2022, 45, 101754. [Google Scholar] [CrossRef]
- Coelho, D.; Lopes, P.A.; Cardoso, V.; Ponte, P.; Brás, J.; Madeira, M.S.; Alfaia, C.M.; Bandarra, N.M.; Gerken, H.G.; Fontes, C.M.G.A.; et al. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci. Rep. 2019, 9, 5382. [Google Scholar] [CrossRef]
- Pečjak, M.; Leskovec, J.; Levart, A.; Salobir, J.; Rezar, V. Effects of Dietary Vitamin E, Vitamin C, Selenium and Their Combination on Carcass Characteristics, Oxidative Stability and Breast Meat Quality of Broiler Chickens Exposed to Cyclic Heat Stress. Animals 2022, 12, 1789. [Google Scholar] [CrossRef]
- Esakkimuthu, S.; Siddiqui, S.A.; Cherif, M.; Saadaoui, I. Exploring strategies to enhance microalgae nutritional quality for functional poultry-sourced food products. Bioresour. Technol. Rep. 2023, 25, 101746. [Google Scholar] [CrossRef]
- Abou-Zeid, A.E.; El-Damarawy, S.Z.; Mariey, Y.A.; El-Mansy, M.M. Effect of using Spirulina platensis and/or Chlorella vulgaris algae as feed additives on productive performance of broiler chicks. J. Anim. Poult. Prod. 2015, 6, 623–634. [Google Scholar] [CrossRef]
- El-Gogary, M.; Dorra, T.; Megahed, A. Evaluation of the Role of Spirulina platensis and Chlorella vulgaris on Growth Performance, Meat Quality and Blood Parameters of Broiler Chickens. J. Anim. Poult. Prod. 2023, 14, 149–156. [Google Scholar] [CrossRef]
- El-Bahr, S.; Shousha, S.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; Sabike, I.; El-Garhy, O.; Albokhadaim, I.; Albosadah, K. Effect of dietary microalgae on growth performance, profiles of amino and fatty acids, antioxidant status, and meat quality of broiler chickens. Animals 2020, 10, 761. [Google Scholar] [CrossRef]
- An, B.-K.; Kim, K.-E.; Jeon, J.-Y.; Lee, K.W. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. SpringerPlus 2016, 5, 718. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.; Pestana, J.; Almeida, J.M.; Alfaia, C.M.; Fontes, C.M.G.A.; Moreira, O.; Prates, J.A.M. A High Dietary Incorporation Level of Chlorella vulgaris Improves the Nutritional Value of Pork Fat without Impairing the Performance of Finishing Pigs. Animals 2020, 10, 2384. [Google Scholar] [CrossRef] [PubMed]
- Pleissner, D.; Lindner, A.V.; Ambati, R.R. Techniques to Control Microbial Contaminants in Nonsterile Microalgae Cultivation. Appl. Biochem. Biotechnol. 2020, 192, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef] [PubMed]
- Enzing, C.; Ploeg, M.; Barbosa, M.; Sijtsma, L. Microalgae-Based Products for the Food and Feed Sector: An Outlook for Europe, 1st ed.; Publications Office of the European Union: Brussels, Belgium, 2014; pp. 1017–1024. [Google Scholar]
- European Parliament and Council. Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the Placing on the Market and Use of Feed. Off. J. Eur. Union 2009, 83, 1–36. [Google Scholar]
- European Parliament. Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 Laying Down Requirements for Feed Hygiene (Text with EEA Relevance). 2005. Available online: https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vhckn7azfezl (accessed on 24 June 2024).
Starting Weight and Age | Microalga (%) in Feed and Trial Duration (Days) 1 | Cumulative Microalga Intake (g/Bird) 2 | pH24h | Colour Traits 3 | References | ||
---|---|---|---|---|---|---|---|
Absolute Value | Absolute Value (CIELAB Scale) | ||||||
(pH Scale) | L* | a* | b* | ||||
45.1 g, 1 d-old 4 | 0.05%, 34 d | 1.40 | 5.69 | 60.3 | 1.24 | 7.89 | [35] |
72.56 g, 4 d-old 4,5 | 0.10%, 31 d | 3.52 | 5.86 | - | - | - | [34] |
45.1 g, 1 d-old 4 | 0.15%, 34 d | 4.27 | 5.74 | 58.6 | 0.57 | 8.15 | [35] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | 6.480 | - | - | - | [33] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | 6.610 | - | - | - | [33] |
45.1 g, 1 d-old 4,5 | 0.50%, 34 d | 14.1 | 5.68 | 58.9 | 0.87 | 7.86 | [35] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | 6.603 | - | - | - | [33] |
788 g, 21 d-old 4 | 10%, 14 d | 176 | 5.77 | 44.1 | 4.45 | 9.96 | [18] |
107 g, 5 d-old 4 | 10%, 34 d | 401 | 6.08 | 54.63 | 1.4 | 17.46 | [10] |
109 g, 5 d-old 4 | 15%, 34 d | 561 | 6.06 | 54.87 | 0.83 | 20.14 | [10] |
106 g, 5 d-old 4 | 20%, 34 d | 718 | 6.15 | 51.02 | 0.97 | 19.39 | [10] |
Starting Weight and Age | Microalga (%) in Feed and Trial Duration (Days) 1 | Cumulative Microalga Intake (g/Bird) 2 | Total Carotenoids (µg/100 g) 3 | Fatty Acids (% Total Fatty Acid) 4 | DPPH Free RSA 5 (%) | FRAP Test (mg GAE/ 100 g DW) 6 | TPC (mg GAE/ 100 g DW) 7 | References | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LA (18:2n-6) | ALA (18:3n-3) | EPA (20:5n-3) | DPA (22:5n-3) | DHA (22:6n-3) | Total PUFA | ||||||||
72.56 g, 4 d-old 8,9 | 0.10%, 31 d | 3.52 | - | 17.11 | 1.73 | 0.97 | - | 1.19 | 23.13 | - | - | - | [34] |
788 g, 21 d-old 8 | 10%, 14 d | 176 | 202 | 25.8 | 1.58 | 0.27 | 0.481 | 0.270 | 38.20 | - | - | - | [18] |
107 g, 5 d-old 8 | 10%, 34 d | 401 | 849.50 | 33.422 | 1.335 | 0.109 | 0.481 | 0.270 | 42.87 | 9.29 | 287.3 | 153.3 | [10] |
109 g, 5 d-old 8 | 15%, 34 d | 561 | 1430.50 | 28.609 | 1.563 | 0.170 | 0.919 | 0.643 | 40.72 | 11.58 | 414.09 | 174.7 | [10] |
106 g, 5 d-old 8 | 20%, 34 d | 718 | 1293.25 | 23.537 | 1.662 | 0.303 | 1.386 | 1.120 | 38.14 | 11.14 | 405.97 | 174.3 | [10] |
Variable | Best Model Type | R-Square | Degrees of Freedom | p-Value | Model Equation |
---|---|---|---|---|---|
Breast meat pH24h | Sigmoid | 0.163 | 9 | 0.219 | y = 1.817 − (0.111/x) |
Breast meat colour trait L* | Cubic | 0.909 | 3 | 0.046 | y = 60.123 − 0.163x + 0.001x2 − 4.626 × 10−7x3 |
Breast meat colour trait a* | Cubic | 0.867 | 3 | 0.079 | y = 0.701 + 0.039x + 0.000x2 + 1.096 × 10−7x3 |
Breast meat colour trait b* | Cubic | 0.998 | 3 | <0.001 | y = 7.963 − 0.004x + 0.000x2 − 1.228 × 10−7x3 (simplified to y = 7.963 − 0.004x − 1.228 × 10−7x3) |
Total carotenoids | Sigmoid | 0.983 | 2 ☨ | 0.008 | y = 7.922 − (458.036/x) |
LA (18:2n-6) | Sigmoid | 0.730 | 3 | 0.065 | y = 3.323 − (1.701/x) |
ALA (18:3n-3) | Sigmoid | 0.310 | 3 | 0.330 | y = 0.424 + (0.437/x) |
EPA (20:5n-3) | Inverse | 0.951 | 3 | 0.005 | y = 0.205 + (2.693/x) |
DPA (22:5n-3) | Exponential | 0.917 | 2 ☨ | 0.043 | y = 0.500⋅e−0.002x |
DHA (22:6n-3) | Logarithmic | 0.176 | 3 | 0.481 | y = −2.942 + 0.622lnx |
Total PUFA | Sigmoid | 0.963 | 3 | 0.003 | y = 3.693 − (1.943/x) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. Foods 2024, 13, 2753. https://doi.org/10.3390/foods13172753
Mendes AR, Spínola MP, Lordelo M, Prates JAM. Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. Foods. 2024; 13(17):2753. https://doi.org/10.3390/foods13172753
Chicago/Turabian StyleMendes, Ana R., Maria P. Spínola, Madalena Lordelo, and José A. M. Prates. 2024. "Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability" Foods 13, no. 17: 2753. https://doi.org/10.3390/foods13172753
APA StyleMendes, A. R., Spínola, M. P., Lordelo, M., & Prates, J. A. M. (2024). Assessing the Influence of Cumulative Chlorella vulgaris Intake on Broiler Carcass Traits, Meat Quality and Oxidative Stability. Foods, 13(17), 2753. https://doi.org/10.3390/foods13172753