Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder
Abstract
:1. Introduction
2. Materials and Methods
2.1. FSB Preparation
2.2. Drying Methods for FSB
- (1)
- ND: the fresh FSBs were placed on the surface of a tray in the sun under natural air conditions. FSBs were dried in Wuhan, Hubei Province, in October 2023. The temperature fluctuation was in the range of 24 ± 5 °C, while the relative humidity averaged 60 ± 5%. The process of ND for FSBs continued for approximately 3 days.
- (2)
- HD: the fresh FSBs were set on the stainless-steel net plate in an oven equipped with a blower (HGZF-II-101-1, Yuejin Medical Equipment Co., Ltd., Shanghai, China). The temperature was set at 45 °C for 18 h, with an air velocity of 1.0 m/s [20].
- (3)
- LNF combined with FD (LN-FD): the fresh FSBs were pre-frozen using liquid nitrogen machine (Cryogenic Science & Technology Co., Ltd., Beijing, China) under −80 °C for approximately 20 min to a central temperature of −18 °C. Pre-frozen FSBs were put in the vacuum freeze-dryer at a temperature of −40 °C and vacuum pressure of 40 Pa for 48 h.
- (4)
- LNF combined with HD (LN-HD): the fresh FSBs were pre-frozen under −80 °C liquid nitrogen to a central temperature of −18 °C. Pre-frozen FSBs were put in an oven at 45 °C for 18 h. The hot-air-drying process of LN-HD is the same as that of HD FSBs, which can be used to evaluate the effect of pre-freezing treatment on drying.
2.3. Determination of Surface Color
2.4. Determination of Proximate Composition
2.5. Determination of Rehydration Ratio
2.6. Texture Profile Analysis (TPA)
2.7. Scanning Electron Microscope (SEM) Observation
2.8. Electronic Nose (E-Nose) Determination
2.9. Gas Chromatography–Ion Mobility Spectrometry (GC-IMS) Determination
2.10. Electronic Tongue (E-Tongue) Determination
2.11. Statistical Data Analysis
3. Results and Discussion
3.1. Color Characteristics
3.2. Proximate Composition Analysis
3.3. Rehydration Curve and Rehydration Ratio Analysis
3.4. Textural Properties Analysis
3.5. Microstructure Analysis
3.6. Volatile Compounds Analysis
3.6.1. E-Nose Analysis
3.6.2. GC-IMS Analysis
3.7. E-Tongue Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lan, X.; Luo, M.; Li, M.; Mu, L.; Li, G.; Chen, G.; He, Z.; Xiao, J. Swim bladder-derived biomaterials: Structures, compositions, properties, modifications, and biomedical applications. J. Nanobiotechnol. 2024, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.O.; Alves, A.L.; Carvalho, D.N.; Martins, E.; Oliveira, C.; Silva, T.H.; Reis, R.L. Acid and enzymatic extraction of collagen from Atlantic cod (Gadus morhua) swim bladders envisaging health-related applications. J. Biomater. Sci. Polym. Ed. 2020, 31, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Mubango, E.; Wu, K.; Luo, H.; Hong, H. Unraveling the potential of blue foods: A comprehensive review on the extraction, bioactive properties, and applications of proteins and biopeptides from fish swim bladder. Trends Food Sci. Technol. 2024, 144, 104345. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, P.; Zhang, F.; Yu, Y.; Zhang, X.; Lin, L.; Linhardt, R.J. Glycosaminoglycans from fish swim bladder: Isolation, structural characterization and bioactive potential. Glycoconj. J. 2018, 35, 87–94. [Google Scholar] [CrossRef]
- de Mitcheson, Y.S.; To, A.W.-L.; Wong, N.W.; Kwan, H.Y.; Bud, W.S. Emerging from the murk: Threats, challenges and opportunities for the global swim bladder trade. Rev. Fish Biol. Fish. 2019, 29, 809–835. [Google Scholar] [CrossRef]
- Subhan, F.; Hussain, Z.; Tauseef, I.; Shehzad, A.; Wahid, F. A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr. 2021, 61, 1027–1037. [Google Scholar] [CrossRef]
- Li, Y.; Yang, L.; Wu, S.; Chen, J.; Lin, H. Structural, functional, rheological, and biological properties of the swim bladder collagen extracted from grass carp (Ctenopharyngodon idella). LWT-Food Sci. Technol. 2022, 153, 112518. [Google Scholar] [CrossRef]
- Li, H.; Tian, J.; Cao, H.; Tang, Y.; Huang, F.; Yang, Z. Preparation of enzyme-soluble swim bladder collagen from sea Eel (Muraenesox cinereus) and evaluation its wound healing capacity. Mar. Drugs 2023, 21, 525. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S. Effect of drying and frying conditions on physical and chemical characteristics of fish maw from swim bladder of seabass (Lates calcarifer). J. Sci. Food Agric. 2015, 95, 3195–3203. [Google Scholar] [CrossRef]
- Cruz-López, H.; Rodríguez-Morales, S.; Enríquez-Paredes, L.M.; Villarreal-Gómez, L.J.; True, C.; Olivera-Castillo, L.; Fernández-Velasco, D.A.; López, L.M. Swim bladder of farmed Totoaba macdonaldi: A Source of value-added collagen. Mar. Drugs 2023, 21, 173. [Google Scholar] [CrossRef]
- Nurilmala, M.; Darmawan, N.; Putri, E.A.W.; Jacoeb, A.M.; Irawadi, T.T. Pangasius fish skin and swim bladder as gelatin sources for hard capsule material. Int. J. Biomater. 2021, 2021, 6658002. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wei, X.; Wang, H.; Xu, C.; Wei, B.; Zhang, J.; He, L.; Xu, Y.; Li, S. Structure restoration of thermally denatured collagen by ultrahigh pressure treatment. Food Bioprocess Technol. 2020, 13, 367–378. [Google Scholar] [CrossRef]
- Abel, N.; Rotabakk, B.T.; Lerfall, J. Mild processing of seafood—A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 340–370. [Google Scholar] [CrossRef]
- Nie, Y.; Chen, J.; Xu, J.; Zhang, Y.; Yang, M.; Yang, L.; Wang, X.; Zhong, J. Vacuum freeze-drying of tilapia skin affects the properties of skin and extracted gelatins. Food Chem. 2022, 374, 131784. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Feng, A.; He, Y.; Wang, J.; Liu, Z.; Xia, G.; Lin, X.; Shen, X.; Zhou, D.; Li, C. The effect and mechanism of four drying methods on the quality of tilapia fillet products. Food Front. 2022, 3, 316–327. [Google Scholar] [CrossRef]
- Reyes, A.; Vega, R.; Bustos, R.; Araneda, C. Effect of processing conditions on drying kinetics and particle microstructure of carrot. Dry. Technol. 2008, 26, 1272–1285. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef] [PubMed]
- Addo, P.W.; Taylor, N.; MacPherson, S.; Raghavan, V.; Orsat, V.; Lefsrud, M. Impact of pre-freezing and microwaves on drying behavior and terpenes in hops (Humulus lupulus). J. Appl. Res. Med. Aromat. Plants 2022, 31, 100436. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Z.; Yang, X.; Zhang, Z.; Yin, X. Effects of different drying methods on structure and volatile components of tobacco bacterial cellulose. J. Light Ind. 2023, 38, 77–83. [Google Scholar]
- Natarajan, S.K.; Elangovan, E.; Elavarasan, R.M.; Balaraman, A.; Sundaram, S. Review on solar dryers for drying fish, fruits, and vegetables. Environ. Sci. Pollut. Res. 2022, 29, 40478–40506. [Google Scholar] [CrossRef]
- Milovanovic, B.; Tomovic, V.; Djekic, I.; Miocinovic, J.; Solowiej, B.G.; Lorenzo, J.M.; Barba, F.J.; Tomasevic, I. Colour assessment of milk and milk products using computer vision system and colorimeter. Int. Dairy J. 2021, 120, 105084. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Mazorra-Manzano, M.A.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Cordoba, B. A capillary electrophoresis method for the determination of hydroxyproline as a collagen content index in meat products. Food Anal. Methods 2012, 5, 464–470. [Google Scholar] [CrossRef]
- Qiu, Y.; Bi, J.; Jin, X.; Wu, X.; Hu, L.; Chen, L. Investigation on the rehydration mechanism of freeze-dried and hot-air dried shiitake mushrooms from pores and cell wall fibrous material. Food Chem. 2022, 383, 132360. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ren, G.; Zhang, L.; Duan, X.; Wang, Z.; Ren, X.; Chu, Q.; He, T. Effects of different drying methods on the drying characteristics and drying quality of Cistanche deserticola. LWT-Food Sci. Technol. 2023, 184, 115000. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, R.; Mi, S.; Chitrakar, B.; Liu, W.; Xu, Z.; Sang, Y.; Yu, W.; Wang, X. Effect of different thermal processing methods on flavor characteristics of Penaeus vannamei. LWT-Food Sci. Technol. 2024, 191, 115652. [Google Scholar] [CrossRef]
- Ling, B.; Tang, J.; Kong, F.; Mitcham, E.J.; Wang, S. Kinetics of food quality changes during thermal processing: A review. Food Bioprocess Technol. 2015, 8, 343–358. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Huang, H.; Zhong, A.; Guo, X.; Chen, J.; Wang, Z.; Cheong, K.; Zhong, S. Potential prebiotic activity and improvement effect on intestinal injury of sulfated glycosaminoglycan from swim bladder. Food Biosci. 2024, 60, 104548. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Qiao, K.; Chen, B.; Xu, M.; Cai, S.; Shi, W.; Liu, Z. Combined effects of cold and hot air drying on physicochemical properties of semi-dried Takifugu obscurus fillets. Foods 2023, 12, 1649. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Molaveisi, M.; Shi, Q. Effects of ultrasonic pre-treatment on the porosity, shrinkage behaviors, and heat pump drying kinetics of scallop adductors considering shrinkage correction. Case Stud. Therm. Eng. 2024, 61, 104900. [Google Scholar] [CrossRef]
- Renuka, V.; Zynudheen, A.A.; Panda, S.K.; Ravishankar, C.N.R. Nutritional evaluation of processing discards from tiger tooth croaker, Otolithes ruber. Food Sci. Biotechnol. 2016, 25, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Arslan, D.; Özcan, M.M. Evaluation of drying methods with respect to drying kinetics, mineral content, and color characteristics of savory leaves. Food Bioprocess Technol. 2012, 5, 983–991. [Google Scholar] [CrossRef]
- Zioud, A.; Hajji, W.; Lobón, S.; Joy, M.; Bertolin, J.R.; Smeti, S.; Chabbouh, M.; Bellagha, S.; Essid, I. Effects of drying methods on chemical composition, lipid oxidation, and fatty acid profile of a traditional dried meat kaddid. Foods 2023, 12, 3837. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dai, Z. Physicochemical, structural and antioxidant properties of collagens from the swim bladder of four fish species. Mar. Drugs 2022, 20, 550. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; Yagoub, A.E.A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem. 2021, 343, 128404. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, C.; Tian, M.; Yang, Z.; Liu, F.; Pan, S. Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber. J. Food Process. Preserv. 2017, 41, e13292. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, T.; Liu, T.; Shi, W. Quality-based selection of the optimal hot air gradient drying method for anchovy and modeling of drying kinetics. Aquac. Fish. 2024. [Google Scholar] [CrossRef]
- Rao, W.; Wang, Z.; Li, G.; Meng, T.; Suleman, R.; Zhang, D. Formation of crust of dried meat and its relationship to moisture migration during air drying. J. Food Process. Preserv. 2020, 44, e14255. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Bai, X.; Shi, S.; Kong, B.; Chen, Q.; Liu, Q.; Li, Z.; Wu, K.; Xia, X. Analysis of the influencing mechanism of the freeze–thawing cycles on in vitro chicken meat digestion based on protein structural changes. Food Chem. 2023, 399, 134020. [Google Scholar] [CrossRef]
- Sinthusamran, S.; Benjakul, S.; Kishimura, H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chem. 2013, 138, 2435–2441. [Google Scholar] [CrossRef] [PubMed]
- Fine, M.L.; King, T.L.; Ali, H.; Sidker, N.; Cameron, T.M. Wall structure and material properties cause viscous damping of swimbladder sounds in the oyster toadfish Opsanus tau. Proc. R. Soc. B Biol. Sci. 2016, 283, 20161094. [Google Scholar]
- Ren, Z.; Yu, X.; Yagoub, A.E.A.; Fakayode, O.A.; Ma, H.; Sun, Y.; Zhou, C. Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe). LWT-Food Sci. Technol. 2021, 144, 111238. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Hu, B.; Wang, J.; Si, X.; Zhu, B.; Fan, J.; Zhang, B. Freeze-thaw pretreatment improves the vacuum freeze-drying efficiency and storage stability of goji berry (Lycium barbarum. L.). LWT-Food Sci. Technol. 2023, 189, 115439. [Google Scholar] [CrossRef]
- Yuan, H.; Wu, H.; Qiao, M.; Tang, W.; Dong, P.; Deng, J. Characterization of flavor profile of sauced pork from different regions of China based on E-Nose, E-Tongue and Gas Chromatography–Ion Mobility Spectroscopy. Molecules 2024, 29, 1542. [Google Scholar] [CrossRef]
- Zhang, R.; Fang, X.; Feng, Z.; Chen, M.; Qiu, X.; Sun, J.; Wu, M.; He, J. Protein from rapeseed for food applications: Extraction, sensory quality, functional and nutritional properties. Food Chem. 2024, 439, 138109. [Google Scholar] [CrossRef]
- Xu, K.; Yi, Y.; Deng, J.; Wang, Y.; Zhao, B.; Sun, Q.; Gong, C.; Yang, Z.; Wan, H.; He, R.; et al. Evaluation of the freshness of rainbow trout (Oncorhynchus mykiss) fillets by the NIR, E-nose and SPME-GC-MS. RSC Adv. 2022, 12, 11591–11603. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J. Chromatogr. B 2018, 1099, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, J.; Pei, Z.; Wei, P.; Xiang, D.; Cao, X.; Shen, X.; Li, C. Volatile flavour components and the mechanisms underlying their production in golden pompano (Trachinotus blochii) fillets subjected to different drying methods: A comparative study using an electronic nose, an electronic tongue and SDE-GC-MS. Food Res. Int. 2019, 123, 217–225. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Zhang, J.; Wang, X.; Shi, W. Characteristic volatile compounds in different parts of grass carp by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Int. J. Food Prop. 2020, 23, 777–796. [Google Scholar] [CrossRef]
- Fontana, A.R.; Bottini, R. QuEChERS method for the determination of 3-Alkyl-2-methoxypyrazines in wines by Gas chromatography-mass apectrometry. Food Anal. Methods 2016, 9, 3352–3359. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, X.; Liu, Y. Characterization and evaluation of umami taste: A review. TrAC Trends Anal. Chem. 2020, 127, 115876. [Google Scholar] [CrossRef]
Samples | Appearance | L* Value | a* Value | b* Value | Whiteness Index | Yellowness Index |
---|---|---|---|---|---|---|
ND | 39.2 ± 3.56 bc | 1.12 ± 0.71 c | 9.65 ± 1.48 c | 38.4 ± 3.51 bc | 35.5 ± 6.32 b | |
HD | 36.9 ± 3.60 c | 2.04 ± 0.48 b | 11.63 ± 0.81 b | 35.8 ± 3.59 c | 45.6 ± 7.31 a | |
LN-FD | 90.3 ± 3.03 a | 2.05 ± 0.64 b | 8.72 ± 1.17 c | 86.7 ± 2.63 a | 13.8 ± 1.96 c | |
LN-HD | 41.8 ± 2.90 b | 4.10 ± 0.92 a | 13.54 ± 1.91 a | 40.1 ± 2.76 b | 46.3 ± 6.32 a |
Samples | Hardness (g) | Brittleness | Springiness | Chewiness |
---|---|---|---|---|
ND | 4259 ± 258 c | 4207 ± 301 c | 1.00 ± 0.00 a | 4787 ± 558 b |
HD | 5112 ± 269 b | 5087 ± 303 b | 0.98 ± 0.03 a | 4878 ± 444 b |
LN-FD | 3866 ± 592 c | 3865 ± 592 c | 0.91 ± 0.05 b | 3060 ± 614 c |
LN-HD | 6067 ± 326 a | 6066 ± 325 a | 1.00 ± 0.00 a | 6130 ± 552 a |
Re-ND | 3739 ± 251 ab | 3738 ± 251 a | 0.99 ± 0.01 a | 3524 ± 274 a |
Re-HD | 3350 ± 372 ab | 3255 ± 534 a | 0.93 ± 0.08 a | 3371 ± 40 a |
Re-LN-FD | 3189 ± 483 b | 3134 ± 455 a | 0.89 ± 0.04 a | 2659 ± 301 b |
Re-LN-HD | 4066 ± 459 a | 4065 ± 459 a | 0.91 ± 0.04 a | 3547 ± 369 a |
Types | Compound | MW | RI | Rt (s) |
---|---|---|---|---|
Alcohols (5) | 1-Octen-3-ol | 128.2 | 1010.6 | 666.361 |
2-Methyl-1-butanol | 88.1 | 734.9 | 169.433 | |
2-Octanol | 130.2 | 993.3 | 632.733 | |
4-Hexen-1-ol | 100.2 | 881.6 | 394.778 | |
2-Propanethiol | 76.2 | 593.3 | 56.881 | |
Aldehydes (13) | (E)-Hept-2-enal | 112.2 | 948.6 | 538.755 |
Benzeneacetaldehyde | 120.2 | 1052.7 | 742.829 | |
3-Methyl-2-butenal | 84.1 | 787.1 | 229.59 | |
3-Methylbutanal | 86.1 | 673.3 | 116.173 | |
3-methyl-2-butenal | 84.1 | 733 | 167.551 | |
3-methylbutanal | 86.1 | 640.6 | 91.272 | |
pentanal | 86.1 | 682.7 | 123.69 | |
2-Methylbutanal | 86.1 | 874 | 379.169 | |
Heptanal | 114.2 | 883.5 | 398.568 | |
3-Methylbutanal | 86.1 | 667.7 | 111.796 | |
2-Methylpropanal | 72.1 | 598.4 | 60.548 | |
2-Methylpentanal | 100.2 | 752.8 | 187.882 | |
octanal | 128.2 | 1013.2 | 671.32 | |
Ketones (7) | 2-Heptanone | 114.2 | 850.7 | 333.731 |
Methyl heptenone | 126.2 | 980 | 605.604 | |
cyclopentanone | 84.1 | 788.6 | 231.673 | |
Methyl isobutyl ketone | 100.2 | 734 | 168.522 | |
5-Methyl-3-heptanone | 128.2 | 940.6 | 521.395 | |
1-Penten-3-one | 84.1 | 685.6 | 126.039 | |
3-Pentanone | 86.1 | 673.9 | 116.675 | |
Esters (14) | Ethyl butanoate | 116.2 | 789.6 | 232.941 |
Acetic acid, 2-methylbutyl ester | 130.2 | 876.1 | 383.472 | |
Ethyl acetoacetate | 130.1 | 940 | 520.096 | |
Butyl formate | 102.1 | 733.6 | 168.124 | |
Methylbutanoate | 102.1 | 731.4 | 165.967 | |
Isobutyl formate | 102.1 | 667 | 111.263 | |
propyl propanoate | 116.2 | 804.1 | 254.113 | |
ethyl propanoate | 102.1 | 700.7 | 138.456 | |
Isopropyl acetate | 102.1 | 644 | 93.795 | |
Isobutyl 2-butenoate | 142.2 | 993 | 631.958 | |
propyl acetate | 102.1 | 990.6 | 627.245 | |
methyl acrylate | 86.1 | 594.8 | 57.947 | |
Ethyl formate | 74.1 | 622.7 | 78.133 | |
Butyl propanoate | 130.2 | 880.3 | 392.112 | |
Others (10) | 3-sec-Butyl-2-methoxypyrazine | 166.2 | 1091.6 | 809.63 |
1,2,3-trimethylbenzene | 120.2 | 979.8 | 605.13 | |
1,4-Dioxan | 88.1 | 726.3 | 161.108 | |
2-ethylfuran | 96.1 | 685.8 | 126.152 | |
1,2-Dimethoxyethane | 90.1 | 636.3 | 88.07 | |
3-Butenenitrile | 67.1 | 634.2 | 86.541 | |
1,2-Dimethoxyethane | 90.1 | 672.4 | 115.485 | |
Triethylamine | 101.2 | 669.3 | 113.061 | |
methyl tert-butyl ether (MTBE) | 88.1 | 643.4 | 93.327 | |
Dipropyl sulfide | 118.2 | 880.5 | 392.367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Chen, J.; Li, Y.; Wang, C.; Jiao, C.; Wang, L. Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder. Foods 2024, 13, 2790. https://doi.org/10.3390/foods13172790
Dong H, Chen J, Li Y, Wang C, Jiao C, Wang L. Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder. Foods. 2024; 13(17):2790. https://doi.org/10.3390/foods13172790
Chicago/Turabian StyleDong, Hongbing, Jiwang Chen, Yujie Li, Chao Wang, Chuyi Jiao, and Liuqing Wang. 2024. "Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder" Foods 13, no. 17: 2790. https://doi.org/10.3390/foods13172790
APA StyleDong, H., Chen, J., Li, Y., Wang, C., Jiao, C., & Wang, L. (2024). Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder. Foods, 13(17), 2790. https://doi.org/10.3390/foods13172790