Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Plant Material and Chemicals
2.2. Methods
2.2.1. Herbal Powder Preparation
2.2.2. Determination of Total Yield of B. aristata Root Powder
2.2.3. Proximate Analyses
2.2.4. Tapped Density and Bulk Density
2.2.5. Hausner’s Ratio and Carr’s Index
2.2.6. Angle of Repose (°)
2.2.7. Scanning Electron Microscopy (SEM)
2.2.8. Plant Extract Preparation
2.2.9. Total Phenolic Content (TPC) Determination
2.2.10. Total Flavonoid Content (TFC) Estimation
2.2.11. DPPH Estimation
2.2.12. Amylase Inhibition Assay
2.2.13. Glucose Uptake Assays Using Dialysis Bag
2.2.14. Fourier Transform Infrared Spectroscopy (FTIR)
2.2.15. High-Performance Liquid Chromatography (HPLC)
2.2.16. Gas Chromatography/Mass Spectrophotometry
2.2.17. Statistical Analysis
3. Results
3.1. Proximate Analysis
3.2. Techno-Functional Properties
3.3. Phytochemical Analysis
3.4. Scanning Electron Microscopy (SEM)
3.5. Fourier Transform Infrared (FTIR)
3.6. High Performance Liquid Chromatography (HPLC)
3.7. Gas Chromatography-Mass Spectrophotometry (GC-MS)
3.8. α-Amylase Inhibition Assay
3.9. Glucose Inhibition Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel Pineshkumar, S.; Gajera, V.; Lambole, V.; Shah, D.P. Phytochemistry and Pharmacological Activities of Berberis aristata: An Overview. Pharma Sci. Monit. 2019, 10, 17–28. [Google Scholar]
- Choudhary, S.; Kaurav, H.; Madhusudan, S.; Chaudhary, G. Daruharidra (Berberis aristata): Review Based upon Its Ayurvedic Properties. Int. J. Res. Appl. Sci. Biotechnol. 2021, 8, 98–106. [Google Scholar] [CrossRef]
- Mohi-Ud-Din, R.; Mir, R.H.; Mir, P.A.; Farooq, S.; Raza, S.N.; Raja, W.Y.; Bhat, Z.A. Ethnomedicinal Uses, Phytochemistry and Pharmacological Aspects of the Genus Berberis Linn: A Comprehensive Review. Comb. Chem. High Throughput Screen. 2021, 24, 624–644. [Google Scholar] [CrossRef] [PubMed]
- Murad, H.M.; Abdulameer, S.A.; Asker Aljuboory, D.S.; Neamah, D.A.; Maktouf, A.H. Defensive Effects of Breberine against Cypermethrin Induced Male Reproductive System Toxicity in Rabbits. Syst. Rev. Pharm. 2020, 11, 841–846. [Google Scholar]
- Fristiohady, A.; Asasutjarit, R.; Theeramunkong, S.; Al-Ramadan, W.; Haruna, L.A.; Rahmatika, N.S.; Sahidin, I. Phytochemical Profile and Anticancer Activity from Medicinal Plants against Melanoma Skin Cancer: A Review. Indones. J. Sci. Technol. 2022, 7, 405–470. [Google Scholar] [CrossRef]
- Samadi, P.; Sarvarian, P.; Gholipour, E.; Asenjan, K.S.; Aghebati-Maleki, L.; Motavalli, R.; Yousefi, M. Berberine: A Novel Therapeutic Strategy for Cancer. IUBMB Life 2020, 72, 2065–2079. [Google Scholar] [CrossRef]
- Khameneh, B.; Eskin, N.M.; Iranshahy, M.; Fazly Bazzaz, B.S. Phytochemicals: A Promising Weapon in the Arsenal against Antibiotic-Resistant Bacteria. Antibiotics 2021, 10, 1044. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.; Kulkarni, G.T.; Dhiman, N.; Joshi, D.D.; Chander, S.; Kharkwal, A.; Kharkwal, H. Recent Advances on Berberis aristata Emphasizing Berberine Alkaloid Including Phytochemistry, Pharmacology and Drug Delivery System. J. Herb. Med. 2021, 27, 100433. [Google Scholar] [CrossRef]
- Sarraf, M.; Beig Babaei, A.; Naji-Tabasi, S. Investigating Functional Properties of Barberry Species: An Overview. J. Sci. Food Agric. 2019, 99, 5255–5269. [Google Scholar] [CrossRef]
- Potdar, D.; Hirwani, R.R.; Dhulap, S. Phytochemical and Pharmacological Applications of Berberis aristata. Fitoterapia 2012, 83, 817–830. [Google Scholar] [CrossRef]
- Chander, V.; Aswal, J.S.; Dobhal, R.; Uniyal, D.P. A Review on Pharmacological Potential of Berberine; An Active Component of Himalayan Berberis aristata. J. Phytopharm. 2017, 6, 53–58. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Mohamed, I.N. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Du, X.; Ma, H.; Yao, J. The Anti-Cancer Mechanisms of Berberine: A Review. Cancer Manag. Res. 2020, 12, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kaushik, D.; Kumar, A.; Gupta, P.; Proestos, C.; Oz, E.; Oz, F. Green Synthesis of Copper Nanoparticles from Nigella Sativa Seed Extract and Evaluation of Their Antibacterial and Antiobesity Activity. Int. J. Food Sci. Technol. 2023, 58, 2883–2892. [Google Scholar] [CrossRef]
- Manuwa, S.I.; Sedara, A.M.; Tola, F.A. Design, Fabrication and Performance Evaluation of Moringa (oleifera) Dried Leaves Pulverizer. J. Agric. Food Res. 2020, 2, 100034. [Google Scholar] [CrossRef]
- Haryanto, B.; Hasibuan, R.; Lubis, A.H.; Wangi, Y.; Khosman, H.; Sinaga, A.W. Drying Rate of Turmeric Herbal (Curcuma longa L.) Using Tray Dryer. J. Phys. Conf. Ser. 2020, 1542, 012056. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Weiss, W.J.; Isgor, O.B. Towards Performance-Based Specifications for Fly Ash and Natural Pozzolans–Insights from a Monte-Carlo Based Thermodynamic Modeling Framework. Cem. Concr. Res. 2023, 172, 107230. [Google Scholar] [CrossRef]
- Mohd Daud Khassetia, B.A. Effect of Using Different Drying Methods on the Chemical Composition (Gallic Acid) in the Piper Betle Leaves Extract. Student Project, Universiti Teknologi Mara, Shah Alam, Malaysia, 2023. [Google Scholar]
- Sharma, A.; Dhuria, R.K. A Nutritional Evaluation of Rosemary Leaf Powder and Black Cumin Seed Powder as Phytogenic Feed Additives. Pharma Innov. J. 2021, 10, 983–985. [Google Scholar]
- Akter, M.; Bithi, N.; Billah, M.; Mustak, S.; Rashid, M. Evaluation of Nutritional and Mineral Content of Dehydrated Ginger (Zingiber officinale). Eur. J. Med. Plants 2020, 17, 21–28. [Google Scholar] [CrossRef]
- Etti, C.J.; Etti, I.C.; Sani, D. Physical, Proximate and Toxicological Properties of Andrographis Paniculata Herbal Powder Beverage Mix. Food Sci. Nutr. Diet. 2020, 9, 448–454. [Google Scholar] [CrossRef]
- Mochahary, B.; Brahma, S.; Kalita, M.; Goyal, A.K. Characterisation of Indigenous Plants for Herbal Formulations Preparation Based on Pharmacognostic and Physiochemical Data. Plant Sci. Today 2022, 9, 8–17. [Google Scholar] [CrossRef]
- Dattatraya, S.K.; Dattatray, S.K.; Sunil, K.G.; Suryakant, M.S. Formulation and Evaluation of Herbal Antidiabetic Tablet. Asian J. Res. Pharm. Sci. 2020, 10, 145–148. [Google Scholar] [CrossRef]
- Kumar, M.; Kaushik, D.; Kaur, J.; Proestos, C.; Oz, F.; Kumar, A.; Xiao, J. Assessment of Anti-Obesity Potential and Techno-Functional Properties of Bougainvillea spectabilis Willd. Bracts. Separations 2022, 9, 399. [Google Scholar] [CrossRef]
- Kumar, M.; Guleria, S.; Chawla, P.; Khan, A.; Modi, V.K.; Kumar, N.; Kaushik, R. Anti-Obesity Efficacy of the Selected High Altitude Himalayan Herbs: In Vitro Studies. J. Food Sci. Technol. 2020, 57, 3081–3090. [Google Scholar] [CrossRef] [PubMed]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Azhari, N.H. Vernonia cinerea Leaves as the Source of Phenolic Compounds, Antioxidants, and Anti-Diabetic Activity Using Microwave-Assisted Extraction Technique. Ind. Crops Prod. 2018, 122, 533–544. [Google Scholar] [CrossRef]
- Asema, S.U.K.; Shaikh, A.A.; Farooqui, M.; Fatema, S. Phytochemical Analysis of Murraya koenigii Leaves Extract and Its Biological Activity. Int. J. Anal. Exp. Modal Anal. 2021, 3, 1798–1801. [Google Scholar]
- Shigwan, H.; Saklani, A.; Hamrapurkar, P.D.; Mane, T.; Bhatt, P. HPLC Method Development and Validation for Quantification of Berberine from Berberis aristata and Berberis tinctoria. Int. J. Appl. Sci. Eng. 2013, 11, 203–211. [Google Scholar]
- Sharmila, K.J.; Monisha, S.M.; Beevi, A.A.; Deebarathi, V. Antibacterial, Antioxidant, Anticancer Effects and GCMS Analysis of Berberis aristata. Biomedicine 2020, 40, 286–293. [Google Scholar]
- Paudel, K.; Ramamurthy, A.; Sharma, G. Preliminary Pharmacognostical and Phytochemical Study of the Stem Bark of Berberis aristata DC. AYUHOM 2023, 10, 7–13. [Google Scholar] [CrossRef]
- Shah, H.; Shad, A.A.; Perveen, S.; Khattak, S.; Khattak, K.F. Physiochemical Composition of Wild Medicinal Plant Berberis lycium. J. Appl. Sci. 2003, 3, 370–375. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Singh Rawat, A.K.; Mehrotra, S. Pharmacognostic Evaluation of the Root of Berberis asiatica. Pharm. Biol. 2004, 42, 467–473. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Saini, R.; Dagar, P.; Mishra, A. Molecular Modelling and In Vitro Studies of Daruharidra as a Potent Alpha-Amylase Inhibitor. J. Biomol. Struct. Dyn. 2023, 41, 3872–3883. [Google Scholar] [CrossRef] [PubMed]
- Končić, M.Z.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of Antioxidant Activities and Phenolic Content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef]
- Kato, A.N.; Jiang, Y.; Chen, W.; Seto, R.; Li, T. How surface roughness affects the interparticle interactions at a liquid interface. J. Colloid Interface Sci. 2022, 641, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.R.; Mutalik, S.; Patel, M.M.; Jani, G.K. Spherical Crystals of Celecoxib to Improve Solubility, Dissolution Rate and Micromeritic Properties. Acta Pharm. 2007, 57, 173–184. [Google Scholar] [CrossRef]
- Shtewi, F.A.; Barag, W.M.; Tarroush, A.A. Green Synthesis and Characterization of Iron Oxide Nanoparticles Using MenthaPiperita Leaves Extract. Int. Sci. Technol. J. 2021, 24, 355–372. [Google Scholar]
- Pal, P.; Banat, F. Contaminants in Industrial Lean Amine Solvent and Their Removal Using Biopolymers: A New Aspect. J. Phys. Chem. Biophys. 2014, 4, 1000135. [Google Scholar]
- Mathai, R.V.; Mitra, J.C.; Sar, S.K. Phytochemical and Qualitative Characterization of Leaves of Some Noteworthy Medicinal Plants of Chhattisgarh, India. Rasayan J. Chem. 2021, 14, 1423–1434. [Google Scholar] [CrossRef]
- Das, S.; Das, M.K.; Das, R.; Gehlot, V.; Mahant, S.; Mazumder, P.M.; Kumar, V. Isolation, Characterization of Berberine from Berberis aristata DC for Eradication of Resistant Helicobacter Pylori. Biocatal. Agric. Biotechnol. 2020, 26, 101622. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, E.J.; Kim, E.D.; Bayaraa, T.; Frost, S.C.; Hyun, C.K. Berberine Activates GLUT1-Mediated Glucose Uptake in 3T3-L1 Adipocytes. Biol. Pharm. Bull. 2007, 30, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Teja, T.S.; Patil, S.; Chawla, P.; Bains, A.; Goksen, G.; Ali, N.; Al-Asmari, A.F.; Liu, S.; Wen, F. Synthesis of Berberis aristate rhizome extract stabilized magnesium nanoparticles using green chemistry: Rhizome characterization, in vitro antimicrobial and anti-inflammatory activity. Int. J. Environ. Health Res. 2023, 34, 2752–2765. [Google Scholar] [CrossRef]
- McClements, D.J.; Gumus, C.E. Food-grade emulsifiers: Comparing the efficiency of lecithin and alternative emulsifiers. Food Hydrocoll. 2021, 111, 106393. [Google Scholar] [CrossRef]
- Ghanem, A.; Al-Juhaimi, F.Y. Evaluation of foaming properties of sodium stearoyl lactylate and its potential use in bakery products. J. Food Sci. 2019, 84, 403–411. [Google Scholar] [CrossRef]
- Singh, N.; Kaur, A. Natural thickening agents in food: Comparison of sodium alginate with alternative plant-based thickeners. Food Chem. 2020, 319, 126587. [Google Scholar] [CrossRef]
- Bhasin, J.; Thakur, B.; Kumar, S.; Kumar, V. Tree Turmeric: A Super Food and Contemporary Nutraceutical of 21st Century—A Laconic Review. J. Am. Coll. Nutr. 2021, 41, 728–746. [Google Scholar] [CrossRef]
- Hamad, A.; Indriani, N.; Ma'Ruf, A. Production of Lecithin As An Emulsifier from Vegetable Oil Using Water Degumming Process. Techno J. Fak. Tek. Univ. Muhammadiyah Purwok. 2022, 23, 139. [Google Scholar] [CrossRef]
- Berdiansyah, S.; Arifan, F. Evaluation of the effect of sesame lecithin emulsifier generated from sesame oil water degumming process on margarine production. Food Res. 2023, 7, 236–243. [Google Scholar] [CrossRef]
Proximate Analysis Parameters | Percentage Value (%) |
---|---|
Moisture content | 6.10 ± 0.34 |
Ash content | 2.86 ± 0.17 |
Fibre content | 43.34 ± 0.26 |
Fat content | 2.67 ± 0.02 |
Protein estimation | 4.69 ± 0.67 |
Techno Functional Properties | Values |
---|---|
Tap Density (gm/cm−3) | 0.65 ± 0.05 |
Bulk Density (gm/cm−3) | 0.61 ± 0.13 |
Hausner’s ratio | 1.28 ± 0.21 |
Angle of repose (°) | 21.32 ± 0.43 |
Carr’s ratio | 5.22 ± 0.34 |
Parameters | Values |
---|---|
Total phenolic content (GAE/g) | 11.42 ± 0.92 |
Total flavonoid content (QE/g) | 2.33 ± 0.53 |
DPPH (% inhibition) | 20 ± 0.94 |
Inhibition Assay | Concentration (μg/mL) | % of Inhibition | IC50 |
---|---|---|---|
α-amylase inhibition assay | 20 | 40.37 | 22.43 |
40 | 77.56 | ||
60 | 80.43 | ||
80 | 85.65 | ||
100 | 96.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awari, A.; Kumar, M.; Kaushik, D.; Amarowicz, R.; Proestos, C.; Wahab, R.; Khan, M.R.; Tomasevic, I.; Oz, E.; Oz, F. Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications. Foods 2024, 13, 2802. https://doi.org/10.3390/foods13172802
Awari A, Kumar M, Kaushik D, Amarowicz R, Proestos C, Wahab R, Khan MR, Tomasevic I, Oz E, Oz F. Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications. Foods. 2024; 13(17):2802. https://doi.org/10.3390/foods13172802
Chicago/Turabian StyleAwari, Ankita, Mukul Kumar, Deepika Kaushik, Ryszard Amarowicz, Charalampos Proestos, Rizwan Wahab, Mohammad Rizwan Khan, Igor Tomasevic, Emel Oz, and Fatih Oz. 2024. "Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications" Foods 13, no. 17: 2802. https://doi.org/10.3390/foods13172802
APA StyleAwari, A., Kumar, M., Kaushik, D., Amarowicz, R., Proestos, C., Wahab, R., Khan, M. R., Tomasevic, I., Oz, E., & Oz, F. (2024). Proximate Analysis and Techno-Functional Properties of Berberis aristata Root Powder: Implications for Food Industry Applications. Foods, 13(17), 2802. https://doi.org/10.3390/foods13172802