The Use of Horse and Donkey Meat to Enhance the Quality of the Traditional Meat Product (Kaddid): Analysis of Physico-Chemical Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Meat Sampling
2.2. Kaddid Preparation
2.3. Physico-Chemical Analyses
2.4. Determination of Total Amino Acid Profile
2.5. Analysis of Fatty Acid Composition
2.6. Statistical Analysis
3. Results and Discussion
3.1. Carcass Characteristics
3.2. Physico-Chemical Characterization of Asinine and Horse Raw Meat
3.3. Amino Acid Profile of Donkey and Horse Raw Meat
3.4. Fatty Acid Composition of Raw Donkey and Horse Meat
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castrica, M.; Andoni, E.; Intraina, I.; Curone, G.; Copelotti, E.; Massacci, F.R.; Terio, V.; Colombo, S.; Balzaretti, C.M. Prevalence of Listeria monocytogenes and Salmonella spp. in Different Ready to Eat Foods from Large Retailers and Canteens over a 2-Year Period in Northern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10568. [Google Scholar] [CrossRef]
- Yagoubi, Y.; Smeti, S.; Saïd, S.B.; Srihi, H.; Mekki, I.; Mahouachi, M.; Atti, N. Carcass Traits and Meat Quality of Fat-Tailed Lambs Fed Rosemary Residues as a Part of Concentrate. Animals 2021, 11, 655. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Boudechicha, H.R. Ethnic Meat Products of the North African and Mediterranean Countries: An Overview. J. Ethn. Foods 2018, 5, 83–98. [Google Scholar] [CrossRef]
- Benlacheheb, R.; Becila, S.; Sentandreu, M.A.; Hafid, K.; Boudechicha, H.R.; Boudjellal, A. El Gueddid, a Traditional Algerian Dried Salted Meat: Physicochemical, Microbiological Characteristics and Proteolysis Intensity during Its Manufacturing Process and Ripening. Food Sci. Technol. Int. 2019, 25, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Research, O.; Benyagoub, E.; Bessadet, C. A Survey on Dried and Salted Camel Meat (Kaddid): A Traditional Meat by-Product of Southern Algeria. Int. J. Nutraceuticals Funct. Foods Nov. Foods 2023, 2, 528–536. [Google Scholar] [CrossRef]
- Savvaidis, I.N.; Al Katheeri, A.; Lim, S.H.E.; Lai, K.S.; Abushelaibi, A. Traditional Foods, Food Safety Practices, and Food Culture in the Middle East. In Food Safety in the Middle East; Academic Press: Cambridge, MA, USA, 2022; pp. 1–31. [Google Scholar] [CrossRef]
- Bouchefra, A.; Idoui, T.; Montanari, C. Physicochemical Characteristics, Fatty Acid Composition, and Functional Properties of the Traditional Salted Dried Meat of Camelus Dromedarius from Algerian Eastern Sahara: “El Kaddid”. Carpathian J. Food Sci. Technol. 2019, 13, 39. [Google Scholar] [CrossRef]
- Wood, J.D. Meat Composition and Nutritional Value. In Lawrie’s Meat Science, 8th ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 635–659. [Google Scholar] [CrossRef]
- Smith, D.G.; Pearson, R.A. A Review of the Factors A¡ecting the Survival of Donkeys in Semi-Arid Regions of Sub-Saharan Africa. Trop. Anim. Health Prod. 2005, 37, 1–19. [Google Scholar]
- Camillo, F.; Rota, A.; Biagini, L.; Tesi, M.; Fanelli, D.; Panzani, D. The Current Situation and Trend of Donkey Industry in Europe. J. Equine Vet. Sci. 2018, 65, 44–49. [Google Scholar] [CrossRef]
- Marino, R.; della Malva, A.; Maggiolino, A.; De Palo, P.; D’angelo, F.; Lorenzo, J.M.; Sevi, A.; Albenzio, M. Nutritional Profile of Donkey and Horse Meat: Effect of Muscle and Aging Time. Animals 2022, 12, 746. [Google Scholar] [CrossRef]
- Polidori, P.; Vincenzetti, S. Quality and Nutritional Characteristics of Donkey Meat. In Meat and Meat Processing; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2018; pp. 155–176. [Google Scholar]
- Polidori, P.; Cammertoni, N.; Santini, G.; Klimanova, Y.; Zhang, J.J.; Vincenzetti, S. Effects of Donkeys Rearing System on Performance Indices, Carcass, and Meat Quality. Foods 2021, 10, 3119. [Google Scholar] [CrossRef]
- Ivanković, A.; Šubara, G.; Bittante, G.; Šuran, E.; Amalfitano, N.; Aladrović, J.; Kelava Ugarković, N.; Pađen, L.; Pećina, M.; Konjačić, M. Potential of Endangered Local Donkey Breeds in Meat and Milk Production. Animals 2023, 13, 2146. [Google Scholar] [CrossRef] [PubMed]
- Aroua, M.; Haj Koubaier, H.; Rekik, C.; Fatica, A.; Ben Said, S.; Malek, A.; Mahouachi, M.; Salimei, E. Comparative Study of Carcass Characteristics and Meat Quality of Local Mediterranean Donkey Breeds. Foods 2024, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.F.; Ponsano, E.H.G.; Franco, B.D.G.M.; Shimokomaki, M. Charqui Meats as Fermented Meat Products: Role of Bacteria for Some Sensorial Properties Development. Meat Sci. 2002, 61, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Chenoll, C.; Heredia, A.; Seguí, L.; Fito, P. Application of the Systematic Approach to Food Engineering Systems (SAFES) Methodology to the Salting and Drying of a Meat Product: Tasajo. J. Food Eng. 2007, 83, 258–266. [Google Scholar] [CrossRef]
- Martuzzi, F.; Catalano, A.; Sussi, C. Characteristics of Horse Meat Consumption and Production in Italy. Annali della Facoltà di Medicina Veterinaria 2001, 21, 213–233. [Google Scholar]
- Tateo, A.; De Palo, P.; Ceci, E.; Centoducati, P. Physicochemical Properties of Meat of Italian Heavy Draft Horses Slaughtered at the Age of Eleven Months. J. Anim. Sci. 2008, 86, 1205–1214. [Google Scholar] [CrossRef]
- Moscheo, C.; Licciardello, M.; Samperi, P.; La Spina, M.; Di Cataldo, A.; Russo, G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites 2022, 12, 289. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass Characteristics, Meat Quality and Nutritional Value of Horsemeat: A Review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Effect of Slaughter Age and Feeding System on the Neutral and Polar Lipid Composition of Horse Meat. Animal 2018, 12, 417–425. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 1997; Secs. 920.39, 923.03, 925.09, 954.01, 962.09, 992.16–References–Scientific Research Publishing; Available online: https://www.scirp.org/reference/referencespapers?referenceid=1339670 (accessed on 14 August 2024).
- ISO—Standards. Available online: https://www.iso.org/standards.html (accessed on 22 July 2024).
- Bowker, B.; Zhuang, H. Relationship between Water-Holding Capacity and Protein Denaturation in Broiler Breast Meat. Poult. Sci. 2015, 94, 1657–1664. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- ISO 5509:2000; Animal and Vegetable Fats and Oils—Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2000. Available online: https://www.iso.org/standard/11560.html (accessed on 18 September 2024).
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Addinsoft. XLSTAT 2016 Data Analysis and Statistical Solution for Microsoft Excel—References—Scientific Research Publishing. 2016. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2690106 (accessed on 22 July 2024).
- Stanisławczyk, R.; Rudy, M.; Rudy, S. The Quality of Horsemeat and Selected Methods of Improving the Properties of This Raw Material. Processes 2021, 9, 1672. [Google Scholar] [CrossRef]
- Isleroglu, H.; Kemerli, T.; Kaymak-Ertekin, F. Effect of Steam-Assisted Hybrid Cooking on Textural Quality Characteristics, Cooking Loss, and Free Moisture Content of Beef. Int. J. Food Prop. 2015, 18, 403–414. [Google Scholar] [CrossRef]
- Juárez, M.; Aldai, N.; López-Campos, O.; Dugan, M.E.R.; Uttaro, B.; Aalhus, J.L. Beef Texture and Juiciness. In Handbook of Meat and Meat Processing, 8th ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 177–206. [Google Scholar] [CrossRef]
- Chung, C.; Baier, S.; McClements, D.J.; Decker, E.A. Stabilization of Myoglobin from Different Species (Produced by Cellular Agriculture) Using Food-Grade Natural and Synthetic Antioxidants. Food Res. Int. 2024, 178, 113965. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Shi, J.; Muhammad, A.; Zhai, X.; Xiao, J.; Li, Z.; Povey, M.; Zou, X. Study on Cinnamon Essential Oil Release Performance Based on PH-Triggered Dynamic Mechanism of Active Packaging for Meat Preservation. Food Chem. 2023, 400, 134030. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Maggiolino, A.; Sarriés, M.V.; Polidori, P.; Franco, D.; Lanza, M.; De Palo, P. Horsemeat: Increasing Quality and Nutritional Value. In More Than Beef, Pork and Chicken—The Production, Processing, and Quality Traits of Other Sources of Meat for Human Diet; Springer: Cham, Switzerland, 2019; pp. 31–67. [Google Scholar] [CrossRef]
- Beldarrain, L.R.; Morán, L.; Sentandreu, M.Á.; Insausti, K.; Barron, L.J.R.; Aldai, N. Muscle and Subcutaneous Fatty Acid Composition and the Evaluation of Ageing Time on Meat Quality Parameters of Hispano-Bretón Horse Breed. Animals 2021, 11, 1421. [Google Scholar] [CrossRef]
- Coleman, R.J.; Rossano, M.G.; Stowe, C.J.; Johnson, S.; Davis, A.F.; Allen, J.E.; Jarrett, A.E.; Grulke, G.; Brown, L.; Clark, S. Horse Meat Production and Characteristics: A Review; Wageningen Academic: Wageningen, The Netherlands, 2015; Volume 136, ISBN 9789086868247. [Google Scholar]
- Franco, D.; Rodríguez, E.; Purriños, L.; Crecente, S.; Bermúdez, R.; Lorenzo, J.M. Meat Quality of “Galician Mountain” Foals Breed. Effect of Sex, Slaughter Age and Livestock Production System. Meat Sci. 2011, 88, 292–298. [Google Scholar] [CrossRef]
- Franco, D.; Lorenzo, J.M. Effect of Muscle and Intensity of Finishing Diet on Meat Quality of Foals Slaughtered at 15 Months. Meat Sci. 2014, 96, 327–334. [Google Scholar] [CrossRef]
- Karaca, S.; Erdoğan, S.; Kor, D.; Kor, A. Effects of Pre-Slaughter Diet/Management System and Fasting Period on Physiological Indicators and Meat Quality Traits of Lambs. Meat Sci. 2016, 116, 67–77. [Google Scholar] [CrossRef]
- Fikrie Birhanu, A. Pre-Slaughter Stress, Management of Stress and Its Effect on Meat and Carcass Quality. Int. J. Sci. Food Agric. 2020, 2020, 30–37. [Google Scholar] [CrossRef]
- Arsenoaia, V.N.; Malancus, R.N. Indicators of Pre-Slaughter Stress in Pigs and Their Impact on Meat Quality. J. Appl. Life Sci. Environ. 2023, 56, 15–23. [Google Scholar] [CrossRef]
- Seko, M.O.; Ndour, A.P.N.; Ossebi, W.; Saric, J.; Kreppel, K.; Dao, D.; Bonfoh, B. Consumer Perception on Purchase Decision Factors and Health Indicators Related to the Quality and Safety of Meat Sold in Dibiteries in Dakar, Senegal. Sustainability 2020, 12, 7428. [Google Scholar] [CrossRef]
- Testa, M.L.; Grigioni, G.; Panea, B.; Pavan, E. Color and Marbling as Predictors of Meat Quality Perception of Argentinian Consumers. Foods 2021, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, N.; Lorenzo, J.M. Recent Advances in Meat Color Research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Smeti, S.; Yagoubi, Y.; Srihi, H.; Lobón, S.; Bertolín, J.R.; Mahouachi, M.; Joy, M.; Atti, N. Effects of Using Rosemary Residues as a Cereal Substitute in Concentrate on Vitamin E, Antioxidant Activity, Color, Lipid Oxidation, and Fatty Acid Profile of Barbarine Lamb Meat. Animals 2021, 11, 2100. [Google Scholar] [CrossRef]
- Murariu, O.C.; Murariu, F.; Frunză, G.; Ciobanu, M.M.; Boișteanu, P.C. Fatty Acid Indices and the Nutritional Properties of Karakul Sheep Meat. Nutrients 2023, 15, 1061. [Google Scholar] [CrossRef]
- Junkuszew, A.; Nazar, P.; Milerski, M.; Margetin, M.; Brodzki, P.; Bazewicz, K. Chemical Composition and Fatty Acid Content in Lamb and Adult Sheep Meat. Arch. Anim. Breed. 2020, 63, 261–268. [Google Scholar] [CrossRef]
- Hocquette, J.F.; Gondret, F.; Baza, E.; Mdale, F.; Jurie, C.; Pethick, D.W. Intramuscular Fat Content in Meat-Producing Animals: Development, Genetic and Nutritional Control, and Identification of Putative Markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef]
- Listrat, A.; Lebret, B.; Louveau, I.; Astruc, T.; Bonnet, M.; Lefaucheur, L.; Picard, B.; Bugeon, J. How Muscle Structure and Composition Influence Meat and Flesh Quality. Sci. World J. 2016, 2016, 3182746. [Google Scholar] [CrossRef]
- Geor, R.J.; Harris, P.A.; Coenen, M. Equine Applied and Clinical Nutrition: Health, Welfare and Performance; Saunders Elsevier: Edinburgh, UK, 2013. [Google Scholar]
- Harris, P.A.; Ellis, A.D.; Fradinho, M.J.; Jansson, A.; Julliand, V.; Luthersson, N.; Santos, A.S.; Vervuert, I. Review: Feeding Conserved Forage to Horses: Recent Advances and Recommendations. Animal 2017, 11, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Pećina, M.; Ivanković, A.; Šubara, G.; Kelava Ugarković, N.; Konjačić, M. Amino Acid Composition of Meat from Two Local Donkey Breeds. In Proceedings of the 59th Croatian & 19th International Symposium on Agriculture, Dubrovnik, Croatia, 11–16 February 2024. [Google Scholar]
- Zhang, J.; Zhang, Y.; Wang, J.; Jin, H.; Qian, S.; Chen, P.; Wang, M.; Chen, N.; Ding, L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants 2023, 12, 459. [Google Scholar] [CrossRef]
- Cordeiro, A.R.R.d.A.; Bezerra, T.K.A.; Madruga, M.S. Valuation of Goat and Sheep By-Products: Challenges and Opportunities for Their Use. Animals 2022, 12, 3277. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Gao, X.; Guo, Y.; Xie, W. Research Progress on Bioactive Factors against Skin Aging. Int. J. Mol. Sci. 2024, 25, 3797. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Askari, M.; Suitor, K.; Bellissimo, N.; Azadbakht, L. The Association between Different Types of Amino Acid Intake and Physical Growth among Children. Clin. Nutr. ESPEN 2024, 60, 165–172. [Google Scholar] [CrossRef]
- Gunarathne, R.; Guan, X.; Feng, T.; Zhao, Y.; Lu, J. L-Lysine Dietary Supplementation for Childhood and Adolescent Growth: Promises and Precautions. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- Mediani, A.; Hamezah, H.S.; Jam, F.A.; Mahadi, N.F.; Chan, S.X.Y.; Rohani, E.R.; Che Lah, N.H.; Azlan, U.K.; Khairul Annuar, N.A.; Azman, N.A.F.; et al. A Comprehensive Review of Drying Meat Products and the Associated Effects and Changes. Front. Nutr. 2022, 9, 1057366. [Google Scholar] [CrossRef]
- Arnau, J.; Serra, X.; Comaposada, J.; Gou, P.; Garriga, M. Technologies to Shorten the Drying Period of Dry-Cured Meat Products. Meat Sci. 2007, 77, 81–89. [Google Scholar] [CrossRef]
- Aksoy, A.; Karasu, S.; Akcicek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods 2019, 8, 216. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Zhang, B.; Li, D.; Yan, J.; Yang, J.; Sun, J.; Cao, H.; Wang, Y.; Zhang, F. Effects of Different N-6/n-3 Polyunsaturated Fatty Acids Ratios on Lipid Metabolism in Patients with Hyperlipidemia: A Randomized Controlled Clinical Trial. Front. Nutr. 2023, 10, 1166702. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Omega-3 (n-3) Fatty Acid–Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease. Nutrients 2024, 16, 962. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ren, W.; Sun, Z.; Han, Z.; Zeng, Y.; Meng, J.; Yao, X. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Kazakh Horses. Meat Sci. 2024, 216, 109582. [Google Scholar] [CrossRef] [PubMed]
- Zioud, A.; Hajji, W.; Lobón, S.; Joy, M.; Bertolin, J.R.; Smeti, S.; Chabbouh, M.; Bellagha, S.; Essid, I. Effects of Drying Methods on Chemical Composition, Lipid Oxidation, and Fatty Acid Profile of a Traditional Dried Meat Kaddid. Foods 2023, 12, 3837. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.; Vasconcelos, L.; Rodrigues, S.; Pereira, E.; Domínguez-Valencia, R.; Lorenzo, J.M.; Teixeira, A. Effect of Olive Cake in Bísaro Pig Feed on Physicochemical Composition and Fatty Acid Profile of Three Different Muscles of Dry-Cured Shoulder. Animals 2024, 14, 1697. [Google Scholar] [CrossRef]
- Thippareddi, H.; Sanchez, M. Thermal Processing of Meat Products. In Thermal Food Processing New Technologies and Quality Issues; Sun, D.W., Ed.; Taylor and Group CRC Press: New York, NY, USA, 2006; pp. 156–192. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2763669 (accessed on 22 July 2024).
Performance | North African Donkey Population | Horse Arab Barb |
---|---|---|
Live weight (kg) | 205.1 ± 6.1 b | 298.6 ± 14.2 a |
Cold carcass weight (kg) | 109.9 ± 3.6 b | 193.9 ± 6.4 a |
Cold dressing (%) | 53.5 ± 2.3 b | 64.9 ± 4.2 a |
Raw Donkey Meat | Raw Horse Meat | |
---|---|---|
Protein (g/100 g) | 22.1 ± 0.50 a | 20.84 ± 0.52 b |
Fat (g/100 g) | 1.23 ± 0.24 b | 2.09 ± 0.82 a |
Ash (g/100 g) | 1.10 ± 0.09 | 0.95 ± 0.12 |
pH24h | 5.90 ± 0.10 | 6.10 ± 0.18 |
Moisture (g/100 g) | 75.7 ± 0.53 | 76.12 ± 0.50 |
CL (%) | 43.54 ± 0.93 | 42.20 ± 1.28 |
WHC (%) | 85.32 ± 0.54 | 84.82 ± 0.63 |
Color Parameters | ||
L* | 39.62 ± 0.54 a | 32.45 ± 0.92 b |
a* | 15.32 ± 0.72 b | 16.82 ± 1.14 a |
b* | 0.64 ± 0.25 b | 3.80 ± 0.84 a |
c* | 17.24 ± 0.32 | 16.22 ± 1.10 |
h* | 0.45 ± 0.02 b | 13.86 ± 0.73 a |
Raw Donkey Meat | Raw Horse Meat | ||
---|---|---|---|
Aspartic acid | 1.61 ± 0.55 | 1.70 ± 0.62 | |
Glutamine | 3.24 ± 0.52 a | 2.89 ± 0.42 b | |
Serine | 0.50 ± 0.20 | 0.48 ± 0.23 | |
Glycine | 0.71 ± 0.26 | 0.68 ± 0.24 | |
Alanine | 0.87 ± 0.19 | 0.75 ± 0.22 | |
Tyrosine | 0.66 ± 0.12 | 0.50 ± 0.08 | |
Proline | 0.54 ± 0.10 b | 0.88 ± 0.12 a | |
Histidine | 0.56 ± 0.06 b | 0.84 ± 0.08 a | |
Threonine | 1.06 ± 0.32 | 0.71 ± 0.25 | |
Arginine | 1.34 ± 0.20 | 1.15 ± 0.18 | |
Valine | 0.48 ± 0.14 | 0.57 ± 0.13 | |
Methionine | 1.08 ± 0.09 a | 0.82 ± 0.07 b | |
Phenyalanine | 0.60 ± 0.05 | 0.65 ± 0.07 | |
Isoleucine | 0.92 ± 0.08 a | 0.78 ± 0.07 b | |
Leucine | 1.53 ± 0.14 a | 1.25 ± 0.12 b | |
Lysine | 2.27 ± 0.32 b | 3.10 ± 0.44 a | |
Total AAT | 18.05 ± 0.55 | 17.82 ± 0.60 | |
EAA | 8.50 ± 0.25 | 8.72 ± 0.32 | |
EAA/AAT (%) | 47.05 ± 0.85 | 48.9 ± 0.95 |
Raw Donkey Meat | Raw Horse Meat | |
---|---|---|
C12:0 | 0.25 ± 0.04 b | 0.49 ± 0.03 a |
C14:0 | 2.98 ± 0.26 b | 4.60 ± 0.28 a |
C14:1 | 0.32 ± 0.05 | 0.34 ± 0.04 |
C15:0 | 0.44 ± 0.09 | 0.39 ± 0.05 |
C15:1 | 1.40 ± 0.06 | 1.38 ± 0.06 |
C16:0 | 24.56 ± 0.52 b | 29.52 ± 0.84 a |
C16:1 | 4.12 ± 0.28 b | 9.21 ± 0.35 a |
C18:0 | 7.02 ± 0.32 a | 4.06 ± 0.45 b |
C20:1 n-6 | 0.35 ± 0.09 | 0.33 ± 0.07 |
C18:1 n-9 | 26.25 ± 0.59 b | 29.74 ± 0.78 a |
C18:2 n-6 | 22.4 ± 0.45 a | 14.89 ± 0.36 b |
C18:3 n-3 | 2.99 ± 0.22 | 3.14 ± 0.10 |
C20:2 n-6 | 0.06 ± 0.02 | 0.04 ± 0.02 |
C20:3 n-3 | 0.36 ± 0.03 a | 0.05 ± 0.01 b |
C20:4 n-6 | 5.21 ± 0.22 a | 2.54 ± 0.25 b |
C20:5 n-3 | 0.17 ± 0.02 a | 0.04 ± 0.01 b |
C22:2 n-6 | 0.15 ± 0.03 | 0.17 ± 0.05 |
C22:6 n-3 | 0.17 ± 0.02 | 0.18 ± 0.02 |
SFAs | 36.05 ± 0.56 b | 39.37 ± 0.54 a |
MUFAs | 32.44 ± 1.25 b | 39.58 ± 1.65 a |
PUFAs | 31.51 ± 1.02 a | 21.05 ± 1.45 b |
PUFA/SFA | 0.87 ± 0.07 a | 0.53 ± 0.02 b |
n-3 | 3.69 ± 0.20 | 3.41 ± 0.31 |
n-6 | 28.17 ± 1.10 a | 17.97 ± 1.36 b |
n-6/n-3 | 7.63 ± 0.89 a | 5.26 ± 0.74 b |
AI | 0.49 ± 0.06 b | 0.63 ± 0.05 a |
TI | 0.83 ± 0.05 b | 0.97 ± 0.02 a |
Donkey Kaddid | Horse Kaddid | Drying Process Effect | |
---|---|---|---|
Protein (g/100 g) | 17.45 ± 0.43 a | 16.7 ± 0.35 b | ** |
Fat (g/100 g) | 1.45 ± 0.14 b | 2.85 ± 0.11 b | * |
Ash (g/100 g) | 1.64 ± 0.12 | 1.56 ± 0.15 | * |
pH | 6.20 ± 0.20 | 6.30 ± 0.16 | NS |
Color Parameters | |||
L* | 31.42 ± 0.65 a | 27.38 ± 0.56 b | * |
a* | 11.24 ± 0.42 b | 13.52 ± 0.86 a | * |
b* | 0.34 ± 0.12 b | 2.30± 0.65 a | * |
c* | 11.47 ±0.33 b | 13.72 ± 0.72 a | * |
h* | 1.72 ± 0.25 b | 9.65 ± 1.12 a | * |
Fatty acids (% total fatty acids) | |||
C12:0 | 0.22 ± 0.05 b | 0.48 ± 0.04 a | NS |
C14:0 | 2.92 ± 0.24 b | 4.65 ± 0.26 a | NS |
C14:1 | 0.32 ± 0.06 | 0.33 ± 0.05 | NS |
C15:0 | 0.47 ± 0.09 | 0.39 ± 0.05 | NS |
C15:1 | 1.39 ± 0.06 | 1.38 ± 0.06 | NS |
C16:0 | 26.80 ± 0.61 b | 30.44 ± 0.77 a | ** |
C16:1 | 4.12 ± 0.28 b | 9.21 ± 0.35 a | NS |
C18:0 | 8.32 ± 0.33 a | 4.86 ± 0.39 b | ** |
C20:1 n-6 | 0.35 ± 0.09 | 0.33 ± 0.07 | NS |
C18:1 n-9 | 24.2 ± 0.43 b | 27.98 ± 0.62 a | ** |
C18:2 n-6 | 21.95 ± 0.56 a | 13.97 ± 0.88 b | * |
C18:3 n-3 | 2.86 ± 0.29 | 2.93 ± 0.21 | NS |
C20:2 n-6 | 0.06 ± 0.02 | 0.04 ± 0.02 | NS |
C20:3 n-3 | 0.32 ± 0.03 a | 0.07 ± 0.01 b | NS |
C20:4 n-6 | 5.18 ± 0.26 a | 2.52 ± 0.26 b | NS |
C20:5 n-3 | 0.18 ± 0.02 a | 0.06 ± 0.01 b | NS |
C22:2 n-6 | 0.16 ± 0.04 | 0.17 ± 0.05 | NS |
C22:6 n-3 | 0.18 ± 0.02 | 0.19 ± 0.02 | NS |
SFAs | 38.73 ± 0.82 b | 40.82 ± 0.56 a | * |
MUFAs | 30.38 ± 0.69 b | 39.23 ± 0.52 a | NS |
PUFAs | 30.89 ± 0.49 a | 19.95 ± 0.38 b | NS |
PUFAs/SFAs | 0.79 ± 0.15 a | 0.48 ± 0.12 b | NS |
Amino acids (g/100 g) | |||
Aspartic acid | 1.63 ± 0.52 | 1.68 ± 0.56 | NS |
Glutamine | 3.10 ± 0.50 a | 2.79 ± 0.42 b | NS |
Serine | 0.51 ± 0.18 | 0.46 ± 0.23 | NS |
Glycine | 0.71 ± 0.24 | 0.69 ± 0.26 | NS |
Alanine | 0.83 ± 0.18 | 0.73 ± 0.24 | NS |
tyrosine | 0.66 ± 0.10 | 0.52 ± 0.10 | NS |
Proline | 0.55 ± 0.10 b | 0.84 ± 0.15 a | NS |
Histidine | 0.46 ± 0.04 b | 0.61 ± 0.05 a | NS |
Threonine | 1.05 ± 0.29 | 0.79 ± 0.26 | NS |
Arginine | 1.14 ± 0.30 | 1.08 ± 0.22 | NS |
Valine | 0.48 ± 0.12 | 0.55 ± 0.14 | NS |
Methionine | 0.88 ± 0.07 a | 0.72 ± 0.04 b | * |
Phenyalanine | 0.60 ± 0.05 | 0.62 ± 0.06 | NS |
Isoleucine | 0.93 ± 0.08 a | 0.73 ± 0.09 b | NS |
Leucine | 1.51 ± 0.16 a | 1.24 ± 0.13 b | NS |
Lysine | 1.88 ± 0.26 b | 2.56 ± 0.31 a | NS |
Total AAT | 16.96 ± 0.42 | 16.61 ± 0.60 | ** |
EAA | 7.79 ± 0.32 | 7.82 ± 0.39 | * |
EAA/AAT (%) | 45.93 ± 0.52 | 47.08 ± 0.61 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aroua, M.; Fehri, N.E.; Ben Said, S.; Quattrone, A.; Agradi, S.; Brecchia, G.; Balzaretti, C.M.; Mahouachi, M.; Castrica, M. The Use of Horse and Donkey Meat to Enhance the Quality of the Traditional Meat Product (Kaddid): Analysis of Physico-Chemical Traits. Foods 2024, 13, 2974. https://doi.org/10.3390/foods13182974
Aroua M, Fehri NE, Ben Said S, Quattrone A, Agradi S, Brecchia G, Balzaretti CM, Mahouachi M, Castrica M. The Use of Horse and Donkey Meat to Enhance the Quality of the Traditional Meat Product (Kaddid): Analysis of Physico-Chemical Traits. Foods. 2024; 13(18):2974. https://doi.org/10.3390/foods13182974
Chicago/Turabian StyleAroua, Mohamed, Nour Elhouda Fehri, Samia Ben Said, Alda Quattrone, Stella Agradi, Gabriele Brecchia, Claudia Maria Balzaretti, Mokhtar Mahouachi, and Marta Castrica. 2024. "The Use of Horse and Donkey Meat to Enhance the Quality of the Traditional Meat Product (Kaddid): Analysis of Physico-Chemical Traits" Foods 13, no. 18: 2974. https://doi.org/10.3390/foods13182974
APA StyleAroua, M., Fehri, N. E., Ben Said, S., Quattrone, A., Agradi, S., Brecchia, G., Balzaretti, C. M., Mahouachi, M., & Castrica, M. (2024). The Use of Horse and Donkey Meat to Enhance the Quality of the Traditional Meat Product (Kaddid): Analysis of Physico-Chemical Traits. Foods, 13(18), 2974. https://doi.org/10.3390/foods13182974