Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design and Cold Microfiltration
2.3. Compositional Analysis
2.4. Calcium Measurements
2.4.1. Total and Soluble Calcium
- A—reading from the standard curve (mg Ca in 100 cm3);
- B—sample weight (g).
2.4.2. Ionic Calcium
2.5. Relative Proportions between Proteins
2.6. Renneting and Coagulation Time
2.7. Properties of Rennet Gels
2.7.1. Texture
2.7.2. Syneresis, Water-Holding Capacity and Protein Hydration
2.8. Statistical Analysis
3. Results and Discussion
3.1. Compositional Analysis
3.1.1. Fractionation of Components
3.1.2. The Efficiency of Protein Fractionation during Cold MF with Low Concentration Factor
3.2. Rennet Coagulation and Moisture Retention in Gels
3.3. Texture of Rennet Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, X.; Tobin, J.T.; Subhir, S.; Fenelon, M.A.; Corrigan, B.M.; McSweeney, P.L.H.; Sheehan, J.J. Effect of β-Casein Reduction and High Heat Treatment of Micellar Casein Concentrate on the Rennet Coagulation Properties, Composition and Yield of Emmental Cheese Made Therefrom. Int. Dairy J. 2022, 126, 105240. [Google Scholar] [CrossRef]
- Crowley, S.V.; Caldeo, V.; McCarthy, N.A.; Fenelon, M.A.; Kelly, A.L.; O’Mahony, J.A. Processing and Protein-Fractionation Characteristics of Different Polymeric Membranes during Filtration of Skim Milk at Refrigeration Temperatures. Int. Dairy J. 2015, 48, 23–30. [Google Scholar] [CrossRef]
- Rose, D. Relation Between Micellar and Serum Casein in Bovine Milk. J. Dairy Sci. 1968, 51, 1897–1902. [Google Scholar] [CrossRef]
- van der Schaaf, J.M.; Crowley, S.V.; Kelly, A.L.; O’Mahony, J.A. Fractionated Casein Ingredients—β-Casein. Encycl. Dairy Sci. Third Ed. 2022, 5, 31–39. [Google Scholar] [CrossRef]
- van der Schaaf, J.M.; Goulding, D.A.; Fuerer, C.; O’Regan, J.; O’Mahony, J.A.; Kelly, A.L. A Novel Approach to Isolation of β-Casein from Micellar Casein Concentrate by Cold Microfiltration Combined with Chymosin Treatment. Int. Dairy J. 2024, 148, 105796. [Google Scholar] [CrossRef]
- McCarthy, N.A.; Wijayanti, H.B.; Crowley, S.V.; O’Mahony, J.A.; Fenelon, M.A. Pilot-Scale Ceramic Membrane Filtration of Skim Milk for the Production of a Protein Base Ingredient for Use in Infant Milk Formula. Int. Dairy J. 2017, 73, 57–62. [Google Scholar] [CrossRef]
- Crowley, S.V.; Burlot, E.; Silva, J.V.C.; McCarthy, N.A.; Wijayanti, H.B.; Fenelon, M.A.; Kelly, A.L.; O’Mahony, J.A. Rehydration Behaviour of Spray-Dried Micellar Casein Concentrates Produced Using Microfiltration of Skim Milk at Cold or Warm Temperatures. Int. Dairy J. 2018, 81, 72–79. [Google Scholar] [CrossRef]
- McCarthy, N.A.; Kelly, A.L.; O’Mahony, J.A.; Fenelon, M.A. The Physical Characteristics and Emulsification Properties of Partially Dephosphorylated Bovine β-Casein. Food Chem. 2013, 138, 1304–1311. [Google Scholar] [CrossRef]
- Schäfer, J.; Schubert, T.; Atamer, Z. Pilot-Scale β-Casein Depletion from Micellar Casein via Cold Microfiltration in the Diafiltration Mode. Int. Dairy J. 2019, 97, 222–229. [Google Scholar] [CrossRef]
- Seibel, J.R.; Molitor, M.S.; Lucey, J.A. Properties of Casein Concentrates Containing Various Levels of Beta-Casein. Int. J. Dairy Technol. 2015, 68, 24–29. [Google Scholar] [CrossRef]
- Nelson, B.K.; Barbano, D.M. A Microfiltration Process to Maximize Removal of Serum Proteins from Skim Milk Before Cheese Making. J. Dairy Sci. 2005, 88, 1891–1900. [Google Scholar] [CrossRef]
- Reale, E.; Govindasamy-Lucey, S.; Johnson, M.E.; Jaeggi, J.J.; Molitor, M.; Lu, Y.; Lucey, J.A. Effects of the Depletion of Whey Proteins from Unconcentrated Milk Using Microfiltration on the Yield, Functionality, and Nutritional Profile of Cheddar Cheese. J. Dairy Sci. 2020, 103, 9906–9922. [Google Scholar] [CrossRef]
- Garem, A.; Schuck, P.; Maubois, J.-L. Cheesemaking Properties of a New Dairy-Based Powder Made by a Combination of Microfiltration and Ultrafiltration. Le Lait 2000, 80, 25–32. [Google Scholar] [CrossRef]
- Lelievre, J.; Lawrence, R.C. Manufacture of Cheese from Milk Concentrated by Ultrafiltration. J. Dairy Res. 1988, 55, 465–478. [Google Scholar] [CrossRef]
- Harper, J.M.; Iyer, M.; Knighton, D.R.; Lelieèvre, J.C. Effects of Whey Proteins on the Proteolysis of Cheddar Cheese Slurries (A Model for the Maturation of Cheeses Made from Ultrafiltered Milk). J. Dairy Sci. 1989, 72, 333–341. [Google Scholar] [CrossRef]
- Britten, M.; Giroux, H.J. Rennet Coagulation of Heated Milk: A Review. Int. Dairy J. 2022, 124, 105179. [Google Scholar] [CrossRef]
- Zulewska, J.; Kowalik, J.; Dec, B. Flux and Transmission of β-Casein during Cold Microfiltration of Skim Milk Subjected to Different Heat Treatments. J. Dairy Sci. 2018, 101, 10831–10843. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2007. [Google Scholar]
- ISO 8070:2007 [IDF 119:2007(E)]; Milk and Milk Products e Determination of Calcium, Sodium, Potassium and Magnesium Contents-Atomic Absorption Spectrometric Method. International Organisation for Standardisation: Geneva, Switzerland, 2007.
- Verdi, R.J.; Barbano, D.M.; Dellavalle, M.E.; Senyk, G.F. Variability in True Protein, Casein, Nonprotein Nitrogen, and Proteolysis in High and Low Somatic Cell Milks. J. Dairy Sci. 1987, 70, 230–242. [Google Scholar] [CrossRef]
- Harwalkar, V.R.; Kalab, M. Susceptibility of Yoghurt to Syneresis. Comparison of Centrifugation and Drainage Methods. Milchwissenschaft 1983, 38, 517–522. [Google Scholar]
- Parnell-Clunies, E.M.; Kakuda, Y.; Mullen, K.; Arnott, D.R.; DeMan, J.M. Physical Properties of Yogurt: A Comparison of Vat Versus. J. Dairy Sci. 1986, 69, 2593–2603. [Google Scholar] [CrossRef]
- France, T.C.; Kelly, A.L.; Crowley, S.V.; O’mahony, J.A. Cold Microfiltration as an Enabler of Sustainable Dairy Protein Ingredient Innovation. Foods 2021, 10, 2091. [Google Scholar] [CrossRef]
- Tan, T.J.; Wang, D.; Moraru, C.I. A Physicochemical Investigation of Membrane Fouling in Cold Microfiltration of Skim Milk. J. Dairy Sci. 2014, 97, 4759–4771. [Google Scholar] [CrossRef]
- Čurlej, J.; Zajác, P.; Čapla, J.; Golian, J.; Benešová, L.; Partika, A.; Fehér, A.; Jakabová, S. The Effect of Heat Treatment on Cow’s Milk Protein Profiles. Foods 2022, 11, 1023. [Google Scholar] [CrossRef]
- Donato, L.; Guyomarc’h, F. Formation and Properties of the Whey Protein/κ-Casein Complexes in Heated Skim Milk—A Review. Dairy Sci. Technol. 2009, 89, 3–29. [Google Scholar] [CrossRef]
- Anema, S.G.; Li, Y. Association of Denatured Whey Proteins with Casein Micelles in Heated Reconstituted Skim Milk and Its Effect on Casein Micelle Size. J. Dairy Res. 2003, 70, 73–83. [Google Scholar] [CrossRef]
- Chandavarkar, A.S. Dynamics of Fouling of Microporous Membranes by Proteins. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1990; pp. 274–284. [Google Scholar]
- Kim, K.J.; Chen, V.; Fane, A.G. Some Factors Determining Protein Aggregation during Ultrafiltration. Biotechnol. Bioeng. 1993, 42, 260–265. [Google Scholar] [CrossRef]
- Dzurec, D.J.; Zall, R.R. Effect of Heating, Cooling, and Storing Milk on Casein and Whey Proteins. J. Dairy Sci. 1985, 68, 273–280. [Google Scholar] [CrossRef]
- Huppertz, T.; Fox, P.F.; Kelly, A.L. The Caseins: Structure, Stability, and Functionality. In Proteins in Food Processing, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 49–92. [Google Scholar] [CrossRef]
- Dalgleish, D.G. On the Structural Models of Bovine Casein Micelles—Review and Possible Improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Schäfer, J.; Hinrichs, J.; Kohlus, R.; Huppertz, T.; Atamer, Z. Pilot Scale Processing and Characterisation of Calcium-Reduced Micellar Casein Concentrate Powders. Int. Dairy J. 2021, 113, 104888. [Google Scholar] [CrossRef]
- Eskin, N.A.M.; Goff, H.D. Chapter 4—Milk. In Biochemistry of Foods, 3rd ed.; Eskin, N.M., Shahidi, F., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 187–214. ISBN 978-0-12-242352-9. [Google Scholar]
- Neocleous, M.; Barbano, D.M.; Rudan, M.A. Impact of Low Concentration Factor Microfiltration on the Composition and Aging of Cheddar Cheese. J. Dairy Sci. 2002, 85, 2425–2437. [Google Scholar] [CrossRef]
- Holland, B.; Corredig, M.; Alexander, M. Gelation of Casein Micelles in β-Casein Reduced Milk Prepared Using Membrane Filtration. Food Res. Int. 2011, 44, 667–671. [Google Scholar] [CrossRef]
- Kethireddipalli, P.; Hill, A.R.; Dalgleish, D.G. Protein Interactions in Heat-Treated Milk and Effect on Rennet Coagulation. Int. Dairy J. 2010, 20, 838–843. [Google Scholar] [CrossRef]
- Lucey, J.A.; Fox, P.F. Importance of Calcium and Phosphate in Cheese Manufacture: A Review. J. Dairy Sci. 1993, 76, 1714–1724. [Google Scholar] [CrossRef]
- Van Hekken, D.; Holsinger, V. Use of Cold Microfiltration to Produce Unique β-Casein Enriched Milk Gels. Le Lait 2000, 80, 69–76. [Google Scholar] [CrossRef]
- O’Mahony, J.; McSweeney, P.; Lucey, J. Rheological Properties of Rennet Induced Skim Milk Gels Made from Milk Protein Concentrate Solutions with Different Ratios of As-: β-Casein. Milchwissenschaft 2009, 64, 135–138. [Google Scholar]
- Panthi, R.R.; Kelly, A.L.; Sheehan, J.J.; Bulbul, K.; Vollmer, A.H.; McMahon, D.J. Influence of Protein Concentration and Coagulation Temperature on Rennet-Induced Gelation Characteristics and Curd Microstructure. J. Dairy Sci. 2019, 102, 177–189. [Google Scholar] [CrossRef]
TS | Fat | CP | NCN | NPN | TP | Cn | Cn%TP | Serum Proteins | β-Cn/α-Cn | β-Cn%Cn | |
---|---|---|---|---|---|---|---|---|---|---|---|
Raw skim milk | 9.35 ± 0.80 | 0.03 ± 0.02 | 3.49 ± 0.07 | 0.85 ± 0.03 | 0.20 ± 0.02 | 3.29 ± 0.06 | 2.64 ± 0.07 | 80.19 ± 0.93 | 0.65 ± 0.03 | nd | nd |
Skim milk: | |||||||||||
Thermized | 9.14 a ± 0.22 | nd | 3.46 a ± 0.09 | 0.81 b ± 0.02 | 0.20 a ± 0.02 | 3.26 a ± 0.08 | 2.65 a ± 0.08 | 81.17 a ± 0.55 | 0.61 b ± 0.01 | 0.79 a ± 0.07 | 37.19 a ± 2.31 |
Pasteurized SM | 9.22 a ± 0.70 | nd | 3.45 a ± 0.08 | 0.80 b ± 0.03 | 0.20 a ± 0.02 | 3.25 a ± 0.08 | 2.64 a ± 0.07 | 81.31 a ± 0.43 | 0.61 b ± 0.02 | 0.80 a ± 0.10 | 37.34 a ± 3.19 |
1.4 MF milk | 9.02 a ± 0.09 | nd | 3.37 a ± 0.10 | 0.84 a ± 0.01 | 0.20 a ± 0.02 | 3.17 b ± 0.10 | 2.53 b ± 0.10 | 79.81 b ± 0.67 | 0.64 a ± 0.01 | 0.77 a ± 0.06 | 37.07 a ± 2.26 |
Retentate from: | |||||||||||
Thermized SM | 10.21 a ± 0.52 | nd | 4.69 a ± 0.25 | 1.05 ab ± 0.04 | 0.19 a ± 0.03 | 4.49 a ± 0.23 | 3.64 a ± 0.23 | 80.86 a ± 0.97 | 0.86 b ± 0.03 | 0.71 b ± 0.04 | 35.00 b ± 1.45 |
Pasteurized SM | 10.31 a ± 0.62 | nd | 4.67 a ± 0.27 | 1.03 b ± 0.04 | 0.19 a ± 0.02 | 4.49 a ± 0.25 | 3.64 a ± 0.23 | 81.15 a ± 0.86 | 0.84 b ± 0.03 | 0.75 a ± 0.03 | 35.92 a ± 1.18 |
1.4 MF SM | 9.70 b ± 0.24 | nd | 4.45 a ± 0.03 | 1.10 a ± 0.04 | 0.20 a ± 0.02 | 4.26 b ± 0.03 | 3.36 b ± 0.06 | 78.89 b ± 0.90 | 0.90 a ± 0.03 | 0.72 a ± 0.04 | 35.08 a ± 1.86 |
Product | Renneting Time (min) | Coagulation Time (min) | Syneresis (%) | Water Holding Capacity (%) | Protein Hydration (g Water/g TS) |
---|---|---|---|---|---|
Raw skim milk | 3.14 a ± 0.63 | 17.85 a ± 2.67 | 56.98 a ± 2.25 | 12.79 a ± 1.12 | 2.31 a ± 0.61 |
Skim milk: | |||||
Thermized | 4.07 a,b,B ± 0.45 | 20.57 aA ± 4.47 | 55.49 aA ± 4.88 | 12.62 aA ± 1.42 | 2.49 aA ± 0.57 |
Pasteurized | 4.85 aB ± 0.63 | 26.42 aA ± 7.93 | 54.69 aA ± 3.17 | 13.00 aA ± 1.87 | 2.54 aA ± 0.56 |
1.4 MF SM | 4.00 bA ± 1.08 | 24.14 aA ± 1.07 | 59.47 aA ± 10.24 | 11.78 aA ± 0.59 | 2.47 aA ± 0.26 |
Retentate from: | |||||
Thermized SM | 5.00 bA ± 0.45 | 20.00 bA ± 3.90 | 52.54 aA ± 5.67 | 17.75 aA ± 3.59 | 2.32 aA ± 0.51 |
Pasteurized SM | 6.07 aA ± 0.35 | 26.28 aA ± 2.06 | 50.86 aA ± 6.55 | 18.68 aA ± 2.99 | 2.30 aA± 0.64 |
1.4 MF SM | 4.86 bA ± 0.90 | 22.00 a,bA ± 5.83 | 51.93 aA ± 8.83 | 16.03 aA ± 3.64 | 2.29 aA± 0.43 |
Product | Firmness (N) | Consistency (Ns) | Cohesiveness (N) | Index of Viscosity (Ns) |
---|---|---|---|---|
Raw skim milk | 1.56 a ± 0.18 | 14.68 a ± 0.97 | 0.35 a ± 0.08 | 0.37 aA ± 0.06 |
Skim milk: | ||||
Thermized | 1.78 aB ± 0.38 | 17.19 aB ± 3.99 | 0.37 aB ± 0.06 | 0.37 aA ± 0.05 |
Pasteurized | 1.65 aA ± 0.31 | 15.86 aB ± 2.76 | 0.31 aB ± 0.07 | 0.34 aA ± 0.06 |
1.4 MF | 1.59 aB ± 0.19 | 15.12 aB ± 2.81 | 0.33 aB ± 0.06 | 0.35 aA ± 0.04 |
Retentate from: | ||||
Thermized SM | 2.67 aA ± 0.70 | 26.22 aA ± 7.11 | 0.63 aA ± 0.08 a | 0.69 aB ± 0.16 |
Pasteurized SM | 2.29 aA ± 0.62 | 23.08 aA ± 6.60 | 0.57 aA ± 0.11 a | 0.58 aB ± 0.07 |
1.4 MF SM | 2.73 aA ± 0.89 | 22.38 aA ± 7.95 | 0.56 aA ± 0.13 a | 0.54 aB ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, J.; Tarapata, J.; Lobacz, A.; Zulewska, J. Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk. Foods 2024, 13, 3296. https://doi.org/10.3390/foods13203296
Kowalik J, Tarapata J, Lobacz A, Zulewska J. Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk. Foods. 2024; 13(20):3296. https://doi.org/10.3390/foods13203296
Chicago/Turabian StyleKowalik, Jarosław, Justyna Tarapata, Adriana Lobacz, and Justyna Zulewska. 2024. "Properties of Rennet Gels from Retentate Produced by Cold Microfiltration of Heat-Treated and Microfiltered Skim Milk" Foods 13, no. 20: 3296. https://doi.org/10.3390/foods13203296