Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Guar Gum/Pullulan/LLE Composite Film (GPE)
2.2.2. Thickness of the GPE Film
2.2.3. Light Transmittance of GPE Film
2.2.4. Water Vapor Permeability (WVP) of the GPE Film
2.2.5. Water Solubility of GPE Film
2.2.6. Moisture Content (MC) of GPE Film
2.2.7. Mechanical Properties of GPE Film
2.2.8. Fourier Transmission Infrared (FTIR) of a GPE Film
2.2.9. Crystallinity of GPE Film
2.2.10. Morphology of GPE Film
2.2.11. Antioxidant and Antibacterial Properties of GPE Film
2.2.12. Composite Film as Food Packaging for CWCs
2.2.13. Statistical Analysis
3. Results and Discussion
3.1. Characterization of GPE Film
3.2. Effect of LLE Amount on Film Thickness, Moisture Content (MC), and Water Solubility (WS) of GPE Film
3.3. Effect of LLE Amount on Mechanical Properties, WVP, and Transmittance
3.4. Effect of LLE Amount on Antioxidant Activity and Antibacterial Properties
3.5. Comparisons of Performance with Other Pullulan-Based Films
3.6. Food Packaging and Preservation Application Performance of the GPE Film
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.-G.; Li, Y.-X.; Yuan, M.-Q. Isolation, purification and identification of etiolation substrate from fresh-cut Chinese water-chestnut (Eleocharis tuberosa). Food Chem. 2015, 186, 119–122. [Google Scholar] [CrossRef]
- Giannakourou, M.C.; Tsironi, T.N. Application of processing and packaging hurdles for fresh-cut fruits and vegetables preservation. Foods 2021, 100, 830. [Google Scholar] [CrossRef]
- Yuan, R.; Li, C.; Pan, Y.; Zhang, Z.; Zhu, Y.; Nie, Y. Antibacterial and hypoglycemic activity of flavonoids in etiolated tissues from fresh-cut Chinese water-chestnuts (Eleocharis tuberosa). Sci. Hortic. 2022, 297, 110925. [Google Scholar] [CrossRef]
- Fasake, V.; Shelake, P.; Srivastava, A.; Dashora, K. Characteristics of different plastic materials, properties and their role in food packaging. Curr. Nutr. Food Sci. 2021, 170, 944–954. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Tan, K.B.; Lin, J.; Chen, M.; Zhu, Y. Polyvinyl alcohol/xanthan gum composite film with excellent food packaging, storage and biodegradation capability as potential environmentally-friendly alternative to commercial plastic bag. Int. J. Biol. Macromol. 2022, 212, 402–411. [Google Scholar] [CrossRef]
- Farris, S.; Unalan, I.U.; Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A. Pullulan-based films and coatings for food packaging: Present applications, emerging opportunities, and future challenges. J. Appl. Polym. Sci. 2014, 1310, 40539. [Google Scholar] [CrossRef]
- Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: Microbial sources, production and applications. Carbohydr. Polym. 2008, 730, 515–531. [Google Scholar] [CrossRef]
- Rai, M.; Wypij, M.; Ingle, A.P.; Trzcińska-Wencel, J.; Golińska, P. Emerging Trends in Pullulan-Based Antimicrobial Systems for Various Applications. Int. J. Mol. Sci. 2021, 220, 13596. [Google Scholar] [CrossRef]
- Thangavelu, M.; Kulandhaivelu, S.V. Development and characterization of pullulan-carboxymethyl cellulose blend film for packaging applications. Int. J. Polym. Sci. 2022, 2022, 9649726. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Rostamabadi, H.; Habibi, N.; Falsafi, S.R. Pullulan nanocomposites: Effect of nanoparticles and essential oil reinforcement on its performance and food packaging applications. Food Humanit. 2023, 1, 887–894. [Google Scholar] [CrossRef]
- Li, S.; Yi, J.; Yu, X.; Wang, Z.; Wang, L. Preparation and characterization of pullulan derivative antibacterial composite films. Mater. Sci. Eng. C 2020, 110, 110721. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Han, K.; Cai, Y.; Ma, M.; Tong, Q.; Sheng, L. Effect of nano-TiO2 on the physical, mechanical and optical properties of pullulan film. Carbohydr. Polym. 2019, 218, 95–102. [Google Scholar] [CrossRef]
- Hassannia-Kolaee, M.; Khodaiyan, F.; Pourahmad, R.; Shahabi-Ghahfarrokhi, I. Development of ecofriendly bionanocomposite: Whey protein isolate/pullulan films with nano-SiO2. Int. J. Biol. Macromol. 2016, 86, 139–144. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Khodaiyan, F.; Mousavi, M.; Azimi, S. Continuous clarification of barberry juice with pectinase immobilized by oxidized polysaccharides. Food Technol. Biotechnol. 2021, 59, 174–184. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Liu, C.; Zheng, X.; Tang, K. Tuning structure and properties of gelatin edible films through pullulan dialdehyde crosslinking. LWT 2021, 138, 110607. [Google Scholar] [CrossRef]
- Li, S.; Yi, J.; Yu, X.; Wang, Z.; Wang, L. Preparation and characterization of pullulan derivative/chitosan composite film for potential antimicrobial applications. Int. J. Biol. Macromol. 2020, 148, 258–264. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, B.; Yuan, Z.; Sheng, Q.; Jin, C.; Qi, J.; Yu, M.; Liu, Y.; Xiong, G. Preparation and performance testing of corn starch/pullulan/gallic acid multicomponent composite films for active food packaging. Food Chem. X 2023, 19, 100782. [Google Scholar] [CrossRef]
- Sharma, P.; Gummagolmath, K.C. Reforming guar industry in India: Issues and strategies. Agric. Resour. Econ. Rev. 2012, 250, 37–48. [Google Scholar]
- Nasry, M.R.; Abo-Youssef, A.M.; Abd El-Latif, H.A. Anti-diabetic activity of the petroleum ether extract of Guar gum in streptozotocin-induced diabetic rats: A comparative study. Beni-Suef Univ. J. Basic Appl. Sci. 2013, 20, 51–59. [Google Scholar] [CrossRef]
- Hamdani, A.M.; Wani, I.A.; Bhat, N.A.; Siddiqi, R.A. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme. Food Chem. 2018, 240, 1201–1209. [Google Scholar] [CrossRef]
- Bozyigit, I.; Javadi, A.; Altun, S. Strength properties of xanthan gum and guar gum treated kaolin at different water contents. J. Rock Mech. Geotechnol. Engieering 2021, 130, 1160–1172. [Google Scholar] [CrossRef]
- Mukherjee, B.; Kumari, L.; Ehsan, I.; Ghosh, P.; Banerjee, S.; Chakraborty, S.; Ray, M.; Al Hoque, A.; Sahoo, R. Chapter 6—Guar gum-based nanomaterials in drug delivery and biomedical applications. In Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications; Bera, H., Hossain, C.M., Saha, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 143–164. [Google Scholar]
- Rahman, S.; Konwar, A.; Majumdar, G.; Chowdhury, D. Guar gum-chitosan composite film as excellent material for packaging application. Carbohydr. Polym. Technol. Appl. 2021, 2, 100158. [Google Scholar] [CrossRef]
- Bhatia, S.; Shah, Y.A.; Al-Harrasi, A.; Alhadhrami, A.S.; Alhashmi, D.S.H.; Jawad, M.; Dıblan, S.; Al Dawery, S.K.H.; Esatbeyoglu, T.; Anwer, M.K.; et al. Characterization of biodegradable films based on guar gum and calcium caseinate incorporated with clary sage oil: Rheological, physicochemical, antioxidant, and antimicrobial properties. J. Agric. Food Res. 2024, 15, 100948. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiong, X.; Zhou, H.; Xiao, Q. Effect of lactoferrin on physicochemical properties and microstructure of pullulan-based edible films. J. Sci. Food Agric. 2019, 990, 4150–4157. [Google Scholar] [CrossRef]
- Tang, B.; Ma, J.; Liu, L.; Xu, J.; Zhang, H.; Li, K.; Tu, X.; Guan, Q. Preparation of pullulan-shellac edible films with improved water-resistance and UV barrier properties for Chinese cherries preservation. J. Future Foods 2025, 50, 107–118. [Google Scholar] [CrossRef]
- Medeiros Silva, V.D.; Coutinho Macedo, M.C.; Rodrigues, C.G.; Neris dos Santos, A.; de Freitas e Loyola, A.C.; Fante, C.A. Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Biosci. 2020, 38, 100750. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Song, G.; Lin, S. Ursolic acid and oleanolic acid from Eriobotrya fragrans inhibited the viability of a549 cells. Nat. Prod. Commun. 2015, 100, 239–242. [Google Scholar] [CrossRef]
- Do Nascimento, P.G.G.; Lemos, T.L.G.; Bizerra, A.M.C.; Arriaga, Â.M.C.; Ferreira, D.A.; Santiago, G.M.P.; Braz-Filho, R.; Costa, J.G.M. Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives. Molecules 2014, 190, 1317–1327. [Google Scholar] [CrossRef]
- Deka, S.R.; Verma, P.; Singh, R.; Kumar, P. Self-assembled micellar nanostructures of ursolic acid-polyethylene glycol (UA-PEG) conjugate as efficient drug transporter system. Nano-Struct. Nano-Objects 2021, 26, 100688. [Google Scholar] [CrossRef]
- Ludeña, M.; Tupa, A.; Flores, C.; Reneé, I. Ursolic acid: An overview including research performed in Peru. Rev. Bases Cienc. 2021, 6, 19–32. [Google Scholar] [CrossRef]
- Abdou, E.; Daoud, Z.; Roula, A.-M. Leaf and branch extracts of Eriobotrya japonica exert antibacterial activity against ESBL-producing Escherichia coli and Klebsiella pneumoniae. Int. J. Phytomed. 2011, 3, 120–128. [Google Scholar]
- Sun, Q.; He, M.; Zhang, M.; Zeng, S.; Chen, L.; Zhou, L.; Xu, H. Ursolic acid: A systematic review of its pharmacology, toxicity and rethink on its pharmacokinetics based on PK-PD model. Fitoterapia 2020, 147, 104735. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Bhardwaj, R.; Vyas, N. Bioactive compounds of loquat (Eriobotrya japonica (Thunb.) L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 1–21. [Google Scholar]
- Mokhtari, I.; Mokhtari, C.; Moumou, M.; Harnafi, M.; Milenkovic, D.; Amrani, S.; Hakmaoui, A.; Harnafi, H. Polyphenol-rich extract from loquat fruit peel prevents hyperlipidemia and hepato-nephrotoxicity in mice: In vivo study and in silico prediction of possible mechanisms involving identified polyphenols and/or their circulating metabolites. Food Funct. 2023, 140, 7489–7505. [Google Scholar] [CrossRef]
- Chen, J.; Su, X.; Zheng, M.; Lin, J.; Tan, K.B. Enhanced properties of chitosan/hydroxypropyl methylcellulose/polyvinyl alcohol green bacteriostatic film composited with bamboo fiber and silane-modified bamboo fiber. Polym. Compos. 2022, 430, 2440–2449. [Google Scholar] [CrossRef]
- Liu, J.; Song, F.; Chen, R.; Deng, G.; Chao, Y.; Yang, Z.; Wu, H.; Bai, M.; Zhang, P.; Hu, Y. Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydr. Polym. 2022, 275, 118704. [Google Scholar] [CrossRef]
- Nur Hazirah, M.A.S.P.; Isa, M.I.N.; Sarbon, N.M. Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packag. Shelf Life 2016, 9, 55–63. [Google Scholar] [CrossRef]
- Wang, P.; Wang, H.; Xiao, Y.; Zou, J.; Chen, H.; Chen, L.; Wang, F.; Hu, Y.; Liu, Y. Insights into metabolic characteristics and biological activity changes in Zangju (Citrus reticulata cv. Manau Gan) peel at different maturity stages through UPLC–MS/MS-based metabolomics. Food Chem. X 2024, 21, 101197. [Google Scholar] [CrossRef]
- Dou, L.; Li, B.; Zhang, K.; Chu, X.; Hou, H. Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. Int. J. Biol. Macromol. 2018, 118, 1377–1383. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Q.; Zeng, S.-M.; Chen, Y.; Guo, Y.; Huang, X. Rain-shelter cultivation affects fruit quality of pear, and the chemical properties and microbial diversity of rhizosphere soil. Can. J. Plant Sci. 2020, 100, 683–691. [Google Scholar] [CrossRef]
- Tan, K.B.; Reza, A.K.; Abdullah, A.Z.; Amini Horri, B.; Salamatinia, B. Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal. Carbohydr. Polym. 2018, 199, 92–101. [Google Scholar] [CrossRef]
- Flores-Morales, A.; Jiménez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS 13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012, 870, 61–68. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Gulcan, O.; Saber-Samandari, S.; Gazi, M. Efficient removal of anionic and cationic dyes from an aqueous solution using pullulan-graft-polyacrylamide porous hydrogel. Water Air Soil Pollut. 2014, 225, 2177. [Google Scholar] [CrossRef]
- Liu, B.; Yin, W.; Xu, K.; Zhang, Y. Inerting waste al alloy dust with natural high polymers: Sustainability of industrial waste. Materials 2022, 15, 5540. [Google Scholar] [CrossRef]
- Krstonošić, V.; Jovičić-Bata, J.; Maravić, N.; Nikolić, I.; Dokić, L. Chapter 2—Rheology, structure, and sensory perception of hydrocolloids. In Food Structure and Functionality; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 23–47. [Google Scholar]
- Jiang, T.; Singh, B.; Choi, Y.J.; Akaike, T.; Cho, C.S. 6—Liver tissue engineering using functional marine biomaterials. In Functional Marine Biomaterials; Kim, S.-K., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2015; pp. 91–106. [Google Scholar]
- Iman, M.; Maji, T.K. Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr. Polym. 2012, 890, 290–297. [Google Scholar] [CrossRef]
- Gao, H.-X.; He, Z.; Sun, Q.; He, Q.; Zeng, W.-C. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr. Polym. 2019, 215, 1–7. [Google Scholar] [CrossRef]
- Iqbal, D.D.; Nazir, A.; Iqbal, M.; Yameen, M. Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology. Green Process. Synth. 2020, 9, 212–218. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Chapter 2—Phenolic compounds: Structure, classification, and antioxidant power. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 33–50. [Google Scholar]
- Cazanevscaia, A.; Costea, G.; Botezatu, A.-V.; Furdui, B.; Dinica, R.-M. Cucumis metuliferus L. Fruits Extract with Antioxidant, Anti-Inflammatory, and Antidiabetic Properties as Source of Ursolic Acid. Separations 2023, 100, 274. [Google Scholar]
- Ahmed, J.; Arfat, Y.A.; Bher, A.; Mulla, M.; Jacob, H.; Auras, R. Active chicken meat packaging based on polylactide films and bimetallic Ag–Cu nanoparticles and essential oil. J. Food Sci. 2018, 830, 1299–1310. [Google Scholar] [CrossRef]
- Martins, J.T.; Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Souza, B.W.S.; Vicente, A.A. Synergistic effects between κ-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012, 290, 280–289. [Google Scholar] [CrossRef]
- Shan, P.; Wang, K.; Yu, F.; Yi, L.; Sun, L.; Li, H. Gelatin/sodium alginate multilayer composite film crosslinked with green tea extract for active food packaging application. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 131013. [Google Scholar] [CrossRef]
- Rukmanikrishnan, B.; Rajasekharan, S.K.; Lee, J.; Lee, J. Biocompatible agar/xanthan gum composite films: Thermal, mechanical, UV, and water barrier properties. Polym. Adv. Technol. 2019, 300, 2750–2758. [Google Scholar] [CrossRef]
- Pirouzifard, M.; Yorghanlu, R.A.; Pirsa, S. Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. J. Thermoplast. Compos. Mater. 2020, 330, 915–937. [Google Scholar] [CrossRef]
- Yan, J.J.; Li, Z.; Zhang, J.F.; Qiao, C.S. Preparation and Properties of Pullulan Composite Films. Adv. Mater. Res. 2012, 476, 2100–2104. [Google Scholar] [CrossRef]
- Su, X.; Yang, Z.; Tan, K.B.; Chen, J.; Huang, J.; Li, Q. Preparation and characterization of ethyl cellulose film modified with capsaicin. Carbohydr. Polym. 2020, 241, 116259. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Harte, B.R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll. 2010, 240, 770–775. [Google Scholar] [CrossRef]
- Wang, L.; Dong, Y.; Men, H.; Tong, J.; Zhou, J. Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocoll. 2013, 320, 35–41. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Tan, K.B.; Lin, J.; Chen, M.; Zhu, Y. Development of xanthan gum/hydroxypropyl methyl cellulose composite films incorporating tea polyphenol and its application on fresh-cut green bell peppers preservation. Int. J. Biol. Macromol. 2022, 211, 198–206. [Google Scholar] [CrossRef]
- Awwad, A.; Salem, N.; Abdeen, A. Biosynthesis of silver nanoparticles using loquat leaf extract and its antibacterial activity. Adv. Mater. Lett. 2013, 40, 338–342. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, T.; Zhang, Y.; Zhang, C.; Lu, F.; Zhao, H. Effect of tea polyphenols on curdlan/chitosan blending film properties and its application to chilled meat preservation. Coatings 2019, 9, 262. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, W.; Liu, Y. Research progress on extraction and separation of active components from loquat leaves. Separations 2023, 100, 126. [Google Scholar] [CrossRef]
- Nicholson Wayne, L.; Munakata, N.; Horneck, G.; Melosh Henry, J.; Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 2000, 640, 548–572. [Google Scholar] [CrossRef]
- Wrońska, N.; Szlaur, M.; Zawadzka, K.; Lisowska, K. The synergistic effect of triterpenoids and flavonoids—New approaches for treating bacterial infections? Molecules 2022, 270, 847. [Google Scholar] [CrossRef]
- Zheng, M.; Zhu, Y.; Zhuang, Y.; Tan, K.B.; Chen, J. Effects of grape seed extract on the properties of pullulan polysaccharide/xanthan gum active films for apple preservation. Int. J. Biol. Macromol. 2023, 241, 124617. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Banerjee, A.; Saurabh, C.K.; Tye, Y.Y.; Suriani, A.B.; Mohamed, A.; Karim, A.A.; Rizal, S.; Paridah, M.T. Biodegradable films for fruits and vegetables packaging application: Preparation and properties. Food Eng. Rev. 2018, 100, 139–153. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rastegar, S.; Rohani, A. Enhancing Mexican lime (Citrus aurantifolia cv.) shelf life with innovative edible coatings: Xanthan gum edible coating enriched with Spirulina platensis and pomegranate seed oils. BMC Plant Biol. 2024, 240, 906. [Google Scholar] [CrossRef]
Films | Thickness (mm) | Moisture Content (MC) (%) | Water Solubility (WS) (%) |
---|---|---|---|
GPE0 | 0.150 ± 0.009 a | 22.94 ± 1.67 a | 60.89 ± 1.25 a |
GPE2 | 0.152 ± 0.005 a | 20.60 ± 2.09 ab | 44.25 ± 1.38 b |
GPE4 | 0.155 ± 0.007 a | 19.12 ± 0.77 b | 40.80 ± 0.84 c |
GPE6 | 0.157 ± 0.009 a | 18.62 ± 0.73 b | 39.03 ± 2.57 c |
Sample | Light Transmittance (%) | ||||||
---|---|---|---|---|---|---|---|
250 | 300 | 350 | 380 | 400 | 500 | 800 | |
GPE0 | 0 | 29.38 | 37.07 | 54.45 | 71.78 | 82.04 | 84.72 |
GPE2 | 0 | 0.058 | 33.27 | 49.66 | 65.77 | 75.34 | 77.27 |
GPE4 | 0 | 0.011 | 24.55 | 36.22 | 47.86 | 54.70 | 54.95 |
GPE6 | 0 | 0 | 13.12 | 22.08 | 31.99 | 38.91 | 41.31 |
Films | Diameter of the Inhibition Zone (mm) | ||
---|---|---|---|
Staphylococcus aureus (ATCC6538) | Escherichia coli (ATCC25922) | Bacillus subtilis (ATCC6633) | |
GPE0 | 6.00 ± 0 d | 6.00 ± 0 c | 6.00 ± 0 d |
GPE2 | 7.82 ± 0.21 c | 8.77 ± 0.17 b | 7.12 ± 0.07 c |
GPE4 | 9.84 ± 0.07 b | 10.83 ± 0.11 a | 8.86 ± 0.10 b |
GPE6 | 10.07 ± 0.09 a | 10.96 ± 0.11 a | 9.04 ± 0.09 a |
Samples | WVP (×10−10·g.m−1 s−1·Pa−1) | Film Thickness (mm) | Tensile Strength (MPa) | Elongation at Break (%) | Antioxidant | Antibacterial Inhibition Zone (mm) | Ref. | |||
---|---|---|---|---|---|---|---|---|---|---|
DPPH (%) | ABTS+ (%) | Staphylococcus aureus | Escherichia coli | Bacillus subtilis | ||||||
Hexamethylenediamine/pullulan/sodium alginate | 0.694 | 0.013 ± 0.015 | 34 | 5 | - | - | 12.5 ± 0.12 | 11.3 ± 0.15 | - | [11] |
Diethylenetriamine/pullulan/sodium alginate | 0.833 | 0.022 ± 0.011 | 30 | 5 | - | - | 11.5 ± 0.03 | 10.1 ± 0.14 | - | [11] |
Pullulan/nano-TiO2 | 1.8333 | - | 15.9 | 45 | - | - | - | - | - | [12] |
Whey protein isolate/pullulan film with nano-SiO2 | 1.11 | - | 3.51± 1.71 | 162.26± 27.53 | - | - | - | - | - | [13] |
Polyaldehyde pullulan pectinase | - | - | - | - | 86 | 86 | - | - | - | [14] |
Gelatin pullulan dialdehyde | 5.0556 | - | 15.4 | 421 | - | - | - | - | - | [15] |
Adipic acid hydrazide-modified oxidized pullan: chitosan | 0.5556 | 0.013 ± 0.004 | 18 | 4 | - | - | 17 | - | - | [16] |
Corn starch/pullulan/gallic acid | 1.3128 | 0.168 ± 0.001 | 15.17 ± 1.05 | 64.04 ± 1.48 | 58.16 ± 0.17 | - | 22.33 ± 0.66 | 22.67 ± 0.36 | - | [17] |
Pullulan/xanthan gum/grape seed extract | 0.68 ± 0.07 | 0.207 ± 0.009 | 12.5 | 22 | 40 | - | 14.18 ± 0.38 | 9.21 ± 0.39 | 8.54 ± 0.59 | [68] |
GPE0 | 0.87282 ± 0.2246 | 0.150 ± 0.009 | 24.9 ±0.85 | 84.60 ± 2.83 | 13.87±1.25 | 15.60±0.82 | 6.00 ± 0 | 6.00 ± 0 | 6.00 ± 0 | This work |
GPE4 | 0.7672 ± 0.2689 | 0.155 ± 0.007 | 35.08 ± 0.63 | 69.98 ± 1.58 | 76.64 ± 0.94 | 81.53 ± 0.84 | 9.84 ± 0.07 | 10.83 ± 0.11 | 8.86 ± 0.10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, K.B.; Zheng, M.; Lin, J.; Zhu, Y.; Zhan, G.; Chen, J. Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods 2024, 13, 3295. https://doi.org/10.3390/foods13203295
Tan KB, Zheng M, Lin J, Zhu Y, Zhan G, Chen J. Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods. 2024; 13(20):3295. https://doi.org/10.3390/foods13203295
Chicago/Turabian StyleTan, Kok Bing, Meixia Zheng, Junyan Lin, Yujing Zhu, Guowu Zhan, and Jianfu Chen. 2024. "Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit" Foods 13, no. 20: 3295. https://doi.org/10.3390/foods13203295
APA StyleTan, K. B., Zheng, M., Lin, J., Zhu, Y., Zhan, G., & Chen, J. (2024). Properties of Guar Gum/Pullulan/Loquat Leaf Extract Green Composite Packaging in Enhancing the Preservation of Chinese Water Chestnut Fresh-Cut Fruit. Foods, 13(20), 3295. https://doi.org/10.3390/foods13203295