Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cherry Tomatoes
2.2. Preparation of Carvacrol-Emitting Sachets
2.3. Design of Active PLA-Based EMAP for Cherry Tomatoes
2.4. Headspace Gas Analysis
2.5. Weight Loss
2.6. Decay
2.7. PH, Total Soluble Solids, Titratable Acidity, and Ripening Index
2.8. Texture
2.9. Color
2.10. Sensory Evaluation
2.11. Growth of Indigenous Microbiota
2.12. Statistical Analysis
3. Results and Discussion
3.1. Headspace Gas Analysis
3.2. Decay
3.3. Weight Loss
3.4. PH, Titratable Acidity, Total Soluble Solids, and Ripening Index
3.5. Texture
3.6. Color
3.7. Sensory Evaluation
3.8. Growth of Indigenous Microbiota
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaturvedi, K.; Sharma, N.; Yadav, S.K. Composite edible coatings from commercial pectin, corn flour and beetroot powder minimize post-harvest decay, reduces ripening and improves sensory liking of tomatoes. Int. J. Biol. Macromol. 2019, 133, 284–293. [Google Scholar] [CrossRef]
- Tomatoes Global Market Report 2024. The Business Research Company, January 2024, ID: 5807115, pp. 1–200. Available online: https://www.researchandmarkets.com/reports/5807115/tomatoes-global-market-report?srsltid=AfmBOooSzLaPzuhZIYqzY_8nqD6MjiVfvC19Z8pYIeJw4Om0qwv5SOaJ (accessed on 5 October 2024).
- Khalid, S.; Hassan, S.A.; Javaid, H.; Zahid, M.; Naeem, M.; Bhat, Z.F.; Abdi, G.; Aadil, R.M. Factors responsible for spoilage, drawbacks of conventional packaging, and advanced packaging systems for tomatoes. J. Agric. Food Res. 2024, 15, 100962. [Google Scholar] [CrossRef]
- Patanè, C.; Malvuccio, A.; Saita, A.; Rizzarelli, P.; Siracusa, L.; Valeria Rizzo, V.; Muratore, G. Nutritional changes during storage in fresh-cut long storage tomato as affected by biocompostable polylactide and cellulose based packaging. LWT–Food Sci. Technol. 2019, 101, 618–624. [Google Scholar] [CrossRef]
- Hu, J.; Liu, B.; Sun, T.; Zhang, J.; Yun, X.; Dong, T. Towards ductile and high barrier poly(L-lactic acid) ultra-thin packaging film by regulating chain structures for efficient preservation of cherry tomatoes. Int. J. Biol. Macromol. 2023, 25, 126335. [Google Scholar] [CrossRef]
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenth, G. Application of active and environment-friendly poly (3-hydroxybutyrate)/grapeseed oil/MgO nanocomposite packaging for prolonging the shelf-life of cherry tomatoes (Solanum lycopersicum L. var. cerasiforme). Sustain. Chem. Pharm. 2024, 41, 101681. [Google Scholar] [CrossRef]
- Sun, T.; Yi, W.; Wang, Y.; Cheng, P.; Dong, T.; Yun, X. Application of poly(L-lactic acid)-based films for equilibrium modified atmosphere packaging of “Kyoho” grapes and its favorable protection for anthocyanins. Food Chem. 2024, 452, 139573. [Google Scholar] [CrossRef] [PubMed]
- Mistriotis, A.; Briassoulis, D.; Giannoulis, A.; D’Aquino, S. Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biol. Technol. 2016, 111, 380–389. [Google Scholar] [CrossRef]
- Bremenkamp, I.; Ramos, A.V.; Lu, P.; Patange, A.; Bourke, P.; Sousa-Gallagher, M.J. Combined effect of plasma treatment and equilibrium modified atmosphere packaging on safety and quality of cherry tomatoes. Future Foods 2021, 3, 100011. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, P.; Zhu, L. Preparation of modified atmosphere packaging based on the respiratory characteristics of cherry tomato and its freshness preservation application. Sci. Hortic. 2024, 333, 113286. [Google Scholar] [CrossRef]
- Otoni, C.; Espitia, P.J.P.; Avena-Bustillos, R.J.; McHugh, T. Trends in antimicrobial food packaging systems: Emitting sachets and absorbent pads. Food Res. Int. 2016, 83, 60–73. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Skandamis, P.N. Applications of active packaging for increasing microbial stability in foods: Natural volatile antimicrobial compounds. Curr. Opin. Food Scie. 2016, 12, 1–12. [Google Scholar] [CrossRef]
- Ahmed, M.W.; Haque, M.A.; Mohibbullah, M.; Khan, M.S.I.; Islam, M.A.; Mondal, M.H.T.; Ahmmed, R. A review on active packaging for quality and safety of foods: Current trends, applications, prospects and challenges. Food Packag. Shelf Life 2022, 33, 100913. [Google Scholar] [CrossRef]
- Sharma, S.; Nakano, K.; Kumar, S.; Katiyar, V. Edible packaging to prolong postharvest shelf-life of fruits and vegetables: A review. Food Chem. Adv. 2024, 4, 100711. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Agathaggelou, E.I.; Skandamis, P.N. Storage of pork meat under modified atmospheres containing vapors from commercial alcoholic beverages. Int. J. Food Microbiol. 2014, 178, 65–75. [Google Scholar] [CrossRef]
- Hou, F.; Chen, X.; Yi, F.; Song, L.; Zhan, S.; Han, X.; Zhang, L.; Li, F.; Wang, X.; Liu, Z. Antibacterial and antibiofilm properties of cinnamon essential oil on Pseudomonas tolaasii and application of potato starch/CEO active pads in preservation of mushroom (Agaricus bisporus). Food Control 2024, 165, 110705. [Google Scholar] [CrossRef]
- Àlvarez-Hernández, M.H.; Martínez-Hernández, G.B.; Castillejo, N.; Martínez, J.A.; Artés-Hernández, F. Development of an antifungal active packaging containing thymol and an ethylene scavenger. Validation during storage of cherry tomatoes. Food Packag. Shelf Life 2021, 29, 100734. [Google Scholar] [CrossRef]
- Colín-Chávez, C.; Virgen-Ortiz, J.J.; Miranda-Ackerman, M.A.; Hernández-Cristóbal, O.; Martínez-Téllez, M.A.; Esquivel-Chávez, F.; Gallegos-Santoyo, N.L. Induction of defense mechanisms in avocado using Mexican oregano oil-based antifungal sachet. Future Foods 2022, 6, 100171. [Google Scholar] [CrossRef]
- Garavito, J.; Mendoza, S.M.; Castellanos, D.A. Configuration of biodegradable equilibrium modified atmosphere packages, including a moisture absorber for fresh cape gooseberry (Physalis peruviana L.) fruits. J. Food Eng. 2022, 314, 110761. [Google Scholar] [CrossRef]
- Colín-Chávez, C.; Virgen-Ortiz, J.J.; Martínez-Téllez, M.A.; Avelino-Ramírez, C.; Gallegos-Santoyo, N.L.; Miranda-Ackerman, M.A. Control of anthracnose (Colletotrichum gloeosporioides) growth in “Hass” avocado fruit using sachets filled with oregano oil-starch-capsules. Future Foods 2024, 6, 100394. [Google Scholar] [CrossRef]
- Khan, M.R.; Vapenka, L.; Sadiq, M.B.; Torrieri, E.; Rajchl, A. Comparative influence of active PLA and PP films on the quality of minimally processed cherry tomatoes. Food Pack. Shelf Life 2024, 44, 101313. [Google Scholar] [CrossRef]
- Psaki, O.; Athanasoulia, I.G.; Giannoulis, A.; Briassoulis, D.; Koutinas, A.; Ladakis, D. Fermentation development using fruit waste derived mixed sugars for poly(3-hydroxybutyrate) production and property evaluation. Bioresour. Technol. 2023, 382, 129077. [Google Scholar] [CrossRef] [PubMed]
- Rudnik, E.; Briassoulis, D. Comparative Biodegradation in Soil Behaviour of two Biodegradable Polymers Based on Renewable Resources. J. Polym. Environ. 2011, 19, 18–39. [Google Scholar] [CrossRef]
- Sarkar, M.; Upadhyay, A.; Pandey, D.; Sarkar, C.; Saha, S. Cellulose-Based Biodegradable Polymers: Synthesis, Properties, and Their Applications. In Biodegradable Polymers and Their Emerging Applications; Saha, S., Sarkar, C., Eds.; Springer Nature: New York, NY, USA, 2023; pp. 89–114. [Google Scholar]
- Chung, D.; Papadakis, S.E.; Yam, K.L. Simple models for evaluating effects of small leaks on the gas barrier properties of food packages. Packag. Technol. Sci. 2003, 16, 77–86. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No. 568/2013 of 18 June 2013 Approving the Active Substance Thymol, in Accordance with Regulation (EC) No. 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products in the Market. Available online: https://eur-lex.europa.eu/eli/reg_impl/2013/568/oj (accessed on 28 August 2024).
- CEN EN 13432: 2000/AC; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation-Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. European Committee for Standardization: Brussels, Belgium, 2005.
- Cantwell, M.I.; Kasmire, R.F. Postharvest handling systems: Fruit vegetables. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of California Agriculture and Natural Resources: Davis, CA, USA, 2002; pp. 457–474. [Google Scholar]
- Zheng, H.; Mei, J.; Liu, F.; Chen, L.; Li, F.; Zeng, Q.; Wang, J.J. Preparation and characterization of carvacrol essential oil-loaded halloysite nanotubes and their application in antibacterial packaging. Food Packag. Shelf Life 2022, 34, 100972. [Google Scholar] [CrossRef]
- AOAC Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1984; pp. 414–420.
- Lopez Camelo, A.F.; Gomez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Post harvest treatments of fresh produce. Phil. Trans. R. Soc. 2014, A372, 20130309. [Google Scholar] [CrossRef] [PubMed]
- Perdones, A.; Tur, N.; Chiralt, A.; Vargas, M. Effect on tomato plant and fruit of the application of biopolymer-oregano essential oil coatings. J. Sci. Food Agric. 2016, 96, 4505–4513. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Rousos, C.; Xylia, P.; Tzortzakis, N. Vapour Application of Sage Essential Oil Maintain Tomato Fruit Quality in Breaker and Red Ripening Stages. Plants 2021, 10, 2645. [Google Scholar] [CrossRef]
- Thole, V.; Vain, P.; Martin, C. Effect of Elevated Temperature on Tomato Post-Harvest Properties. Plants 2021, 10, 2359. [Google Scholar] [CrossRef]
- Buendia-Moreno, L.; Soto-Jover, S.; Ros-Chumillas, M.; Antolinos, V.; Navarro-Segura, L.; Sanchez-Martinez, M.J.; Martinez-Hernandez, G.B.; Lopez-Gomez, A. Innovative cardboard active packaging with a coating including encapsulated essential oils to extend cherry tomato shelf life. LWT–Food Sci. Technol. 2019, 116, 108584. [Google Scholar] [CrossRef]
- Shemesh, R.; Krepker, M.; Nitzan, N.; Vaxman, A.; Segal, E. Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol. Technol. 2016, 118, 175–182. [Google Scholar] [CrossRef]
- Korte, I.; Albrecht, A.; Mittler, M.; Waldhans, C.; Kreyenschmidt, J. Influence of different bio-based and conventional packaging trays on the quality loss of fresh cherry tomatoes during distribution and storage. Packag. Technol. Sci. 2023, 36, 569–583. [Google Scholar] [CrossRef]
- Locali-Pereira, A.R.; Guazi, J.S.; Conti-Silva, A.C.; Nicoletti, V.R. Active packaging for postharvest storage of cherry tomatoes: Different strategies for application of microencapsulated essential oil. Food Packag. Shelf Life 2021, 29, 100723. [Google Scholar] [CrossRef]
- Araguez, L.; Colombo, A.; Borneo, R.; Aguirre, A. Active packaging from triticale flour film for prolonging storage life of cherry tomato. Food Packag. Shelf life 2020, 25, 100520. [Google Scholar] [CrossRef]
- Cantwell, M. Report to the California Tomato Commission Tomato Variety Trials: Postharvest Evaluations for 2005. 2006, pp. 1–14. Available online: https://ucanr.edu/sites/uccemerced/files/40472.pdf (accessed on 28 August 2024).
- Buendia-Moreno, L.; Ros-Chumillas, M.; Navarro-Segura, L.; Sanchez-Martinez, M.J.; Soto-Jover, S.; Antolinos, V.; Lopez-Gomez, A. Effects of an active cardboard box using encapsulated essential oils on the tomato shelf life. Food Bioprocess Technol. 2019, 12, 1548–1558. [Google Scholar] [CrossRef]
- Fagundes, C.; Moraes, K.; Pérez-Gago, M.B.; Palou, L.; Maraschin, M.; Monteiro, A.R. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol Technol. 2015, 109, 73–81. [Google Scholar] [CrossRef]
- Brummell, D.A.; Labavitch, J.M. Effect of Antisense Suppression of Endopolygalacturonase Activity on Polyuronide Molecular Weight in Ripening Tomato Fruit and in Fruit Homogenates. Plant Physiol. 1997, 115, 717–725. [Google Scholar] [CrossRef] [PubMed]
- López-Reyes, J.G.; Spadaro, D.; Prelle, A.; Garibaldi, A.; Gullino, M.L. Efficacy of plant essential oils on postharvest control of rots caused by fungi on different stone fruits in vivo. J. Food Prot. 2013, 76, 631–639. [Google Scholar] [CrossRef]
- Domínguez, I.; Lafuente, M.T.; Hernández-Muñoz, P.; Gavara, R. Influence of modified atmosphere and ethylene levels on quality attributes of fresh tomatoes (Lycopersicon esculentum Mill.). Food Chem. 2016, 209, 211–219. [Google Scholar] [CrossRef]
- Akbudak, B.; Akbudak, N.; Seniz, V.; Atilla, E. Effect of pre-harvest harpin and modified atmosphere packaging on quality of cherry tomato cultivars “Alona” and “Cluster”. Br. Food J. 2012, 114, 180–196. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Boluda-Aguilar, M.; Taboada-Rodríguez, A.; Soto-Jover, S.; Marín-Iniesta, F.; López-Gómez, A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Eng. Rev. 2016, 8, 52–75. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 1441/2007 Amending Regulation (EC) No. 2073/2005 on Microbiological Criteria for Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32007R1441&qid=1715677591212 (accessed on 28 August 2024).
- Pirozzi, A.; Del Grosso, D.; Ferrari, G.; Donsì, F. Edible Coatings Containing Oregano Essential Oil Nanoemulsion for Improving Postharvest Quality and Shelf Life of Tomatoes. Foods 2020, 9, 1605. [Google Scholar] [CrossRef] [PubMed]
- Buendia-Moreno, L.; Sánchez-Martínez, M.J.; Antolinos, V.; Ros-Chumillas, M.; Navarro-Segura, L.; Soto-Jover, S.; Martínez-Hernández, G.B.; López-Gómez, A. Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control 2020, 107, 106763. [Google Scholar] [CrossRef]
Packaging Characteristics | Parameter | Experimental Packaging Type | ||
---|---|---|---|---|
PP | PLA | PLA-PHB-CARV | ||
General characteristics | Container dimensions | 22 × 16 × 6 cm | 22 × 16 × 6 cm | 22 × 16 × 6 cm |
Packaging dimensions | 30 × 24 × 6 cm | 30 × 24 × 6 cm | 30 × 24 × 6 cm | |
Weight of tomatoes per package | 300 ± 2 g | 300 ± 2 g | 300 ± 2 g | |
PHB sachet | Number of holes | N.A. 1 | N.A. | 14 |
Diameter per hole | N.A. | N.A. | 500 µm | |
PLA film | Number of holes | N.A. | 2 | 2 |
Diameter per hole | N.A. | 500 µm | 500 µm | |
PP film | Number of holes | 40 | N.A. | N.A. |
Diameter per hole | 6 mm | N.A. | N.A. |
Temperature | Days | PP | PLA | PLA-PHB-CARV |
---|---|---|---|---|
15 °C | 0 | 46.21 ± 2.34 Aa | 46.21 ± 2.34 Aa | 46.21 ± 2.34 Aa |
6 | 45.64 ± 1.98 Aa | 45.61 ± 1.94 ABa | 45.68 ± 2.86 BCa | |
13 | 44.56 ± 2.83 Bb | 46.26 ± 1.75 Aa | 45.28 ± 2.11 BCa | |
20 | 44.70 ± 2.10 Ba | 44.79 ± 2.09 BCa | 45.38 ± 1.85 Ba | |
26 | 44.23 ± 3.39 Ba | 44.31 ± 2.83 Ca | 44.75 ± 2.55 BCa | |
40 | 43.97 ± 2.06 Ba | 44.29 ± 2.72 Ca | 44.37 ± 2.35 Ca | |
25 °C | 0 | 46.46 ± 2.28 Aa | 46.46 ± 2.28 ABa | 46.46 ± 2.28 Aa |
2 | 46.49 ± 3.43 Aa | 47.63 ± 3.13 Ab | 46.78 ± 3.59 Aab | |
7 | 44.94 ± 4.00 Ba | 47.33 ± 4.60 ABb | 47.31 ± 4.02 Ab | |
11 | 44.00 ± 3.45 Ba | 46.62 ± 2.80 ABb | 45.01 ± 4.20 Ba | |
17 | 43.74 ± 2.96 Ba | 44.65 ± 3.03 Ca | 46.22 ± 2.80 Ab | |
24 | 43.39 ± 2.44 Ba | 46.15 ± 3.75 Bb | 46.62 ± 2.78 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapetanakou, A.E.; Mistriotis, A.; Bozinaki, D.C.; Tserotas, P.; Athanasoulia, I.-G.; Briassoulis, D.; Skandamis, P.N. Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes. Foods 2024, 13, 3371. https://doi.org/10.3390/foods13213371
Kapetanakou AE, Mistriotis A, Bozinaki DC, Tserotas P, Athanasoulia I-G, Briassoulis D, Skandamis PN. Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes. Foods. 2024; 13(21):3371. https://doi.org/10.3390/foods13213371
Chicago/Turabian StyleKapetanakou, Anastasia E., Antonis Mistriotis, Dimitra C. Bozinaki, Philippos Tserotas, Ioanna-Georgia Athanasoulia, Demetrios Briassoulis, and Panagiotis N. Skandamis. 2024. "Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes" Foods 13, no. 21: 3371. https://doi.org/10.3390/foods13213371
APA StyleKapetanakou, A. E., Mistriotis, A., Bozinaki, D. C., Tserotas, P., Athanasoulia, I. -G., Briassoulis, D., & Skandamis, P. N. (2024). Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes. Foods, 13(21), 3371. https://doi.org/10.3390/foods13213371