Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Seed Material Collection, Cultivation, and Preparation
2.3. Extraction and Analysis of Flavonoids Using RP-HPLC–DAD Analysis
2.4. Determination of Total Protein and Total Starch Contents
2.5. Extraction and Analysis of Fatty Acids Using GC–FID
2.6. Determination of Total Saponin and Total Phenol Contents
2.7. Determination of Antioxidant Activities
2.8. Statistical Analysis
3. Results and Discussion
3.1. Variations of Vitexin and Isovitexin Contents
3.2. Variations of Total Protein and Total Starch Contents
3.3. Variations of Fatty Acid Contents
3.4. Variations of Total Saponin and Total Phenol Contents
3.5. Variations of Antioxidant Activities
3.6. Effect of Seed Weight Difference on the Analyzed Parameters
3.7. Multivariate Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Islam, M.R.; Sarker, U.; Azam, M.G.; Hossain, J.; Alam, M.A.; Ullah, R.; Bari, A.; Hossain, N.; El Sabagh, A.; Islam, M.S. Potassium augments growth, yield, nutrient content, and drought tolerance in mung bean (Vigna radiata L. Wilczek.). Sci. Rep. 2024, 14, 9378. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness 2018, 7, 11–33. [Google Scholar] [CrossRef]
- Zafar, S.H.; Umair, M.; Akhtar, M. Nutritional evaluation, proximate and chemical composition of mungbean varieties/cultivars pertaining to food quality characterization. Food Chem. Adv. 2023, 2, 100160. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X.; Li, Q.; Lu, Y.; Huang, W.; Zhang, F.; Chen, L.; Liu, R.H.; Yan, S. Integrated Transcriptomic and Metabolic Framework for Carbon Metabolism and Plant Hormones Regulation in Vigna radiata during Post-Germination Seedling Growth. Sci. Rep. 2020, 10, 3745. [Google Scholar] [CrossRef]
- Huppertz, M.; Kachhap, D.; Dalai, A.; Yadav, N.; Baby, D.; Khan, M.A.; Bauer, P.; Panigrahi, K.C. Exploring the potential of mung bean: From domestication and traditional selection to modern genetic and genomic technologies in a changing world. J. Agric. Food Res. 2023, 14, 100786. [Google Scholar] [CrossRef]
- Nair, R.M.; Pandey, A.K.; War, A.R.; Hanumantharao, B.; Shwe, T.; Alam, A.K.M.M.; Pratap, A.; Malik, S.R.; Karimi, R.; Mbeyagala, E.K.; et al. Biotic and Abiotic Constraints in Mungbean Production—Progress in Genetic Improvement. Front. Plant Sci. 2019, 10, 1340. [Google Scholar] [CrossRef]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Bai, Y.; Chang, J.; Xu, Y.; Cheng, D.; Liu, H.; Zhao, Y.; Yu, Z. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. J. Agric. Food Chem. 2016, 64, 4648–4655. [Google Scholar] [CrossRef]
- Mehta, N.; Rao, P.; Saini, R. A review on metabolites and pharmaceutical potential of food legume crop mung bean (Vigna radiata L. Wilczek). Biotechnologia 2021, 102, 425–435. [Google Scholar] [CrossRef]
- Ruan, J.C.; Peng, R.Y.; Chen, Y.T.; Xu, H.X.; Zhang, Q.F.F. In vitro and in vivo Inhibitory Activity of C-glycoside Flavonoid Extracts from Mung Bean Coat on Pancreatic Lipase and α-glucosidase. Plant Foods Hum. Nutr. 2023, 78, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem. 2016, 201, 350–360. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Min, J.W.; Kong, W.L.; He, X.H.; Li, J.X.; Peng, B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, Q.; Liu, B.; Cheng, K.W.; Chen, F.; Wang, M. Neuroprotective Potential of Mung Bean (Vigna radiata L.) Polyphenols in Alzheimer’s Disease: A Review. J. Agric. Food Chem. 2021, 69, 11554–11571. [Google Scholar] [CrossRef]
- Pathak, R.; Panchariya, P.; Choudhary, M.; Solanki, K.; Rani, R.; Kakani, R.K.; Kalia, R.K. Morphophysiological and Molecular Diversity in Mung Bean (Vigna radiata L.). In Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance; Muthu Arjuna Samy, P., Ramasamy, A., Chinnusamy, V., Sunil Kumar, B., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Somta, P.; Laosatit, K.; Yuan, X.; Chen, X. Thirty Years of Mungbean Genome Research: Where Do We Stand and What Have We Learned? Front. Plant Sci. 2022, 13, 944721. [Google Scholar] [CrossRef]
- Prinsloo, G.; Nogemane, N. The effects of season and water availability on chemical composition, secondary metabolites and biological activity in plants. Phytochem. Rev. 2018, 17, 889–902. [Google Scholar] [CrossRef]
- Priti; Mishra, G.P.; Dikshit, H.K.; Vinutha, T.; Tontang, M.T.; Stobdan, T.; Sangwan, S.; Aski, M.; Singh, A.; Kumar, R.R.; et al. Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India. Front. Plant Sci. 2021, 12, 710812. [Google Scholar] [CrossRef]
- Zhao, H.; Tang, J.; Yang, Q. Effects of geographical origin, variety, harvest season, and their interactions on multi-elements in cereal, tuber, and legume crops for authenticity. J. Food Compos. Anal. 2021, 100, 103900. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Spillane, C.; Lopez, F.; Ayele, B.T.; Ortiz, R. First the seed: Genomic advances in seed science for improved crop productivity and food security. Crop Sci. 2021, 61, 1501–1526. [Google Scholar] [CrossRef]
- Khattak, G.S.S.; Haq, M.A.; Ashraf, M.; Mcneilly, T. Genetic basis of variation of yield, and yield components in mungbean (Vigna radiata (L.) Wilczek). Hereditas 2001, 134, 211–217. [Google Scholar] [CrossRef]
- Xia, Z.; Song, Q.; Harada, K.; Chen, J.; Zhou, C. Editorial: Genetic characterization of yield- and quality-related traits in legumes. Front. Plant Sci. 2023, 14, 1281138. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.M.; Thavarajah, D.; Thavarajah, P.; Giri, R.R.; Ledesma, D.; Yang, R.Y.; Hanson, P.; Easdown, W.; Hughes, J.d.A.; Keatinge, J.D.H.D. Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compos. Anal. 2015, 39, 23–32. [Google Scholar] [CrossRef]
- Feng, Y.; Fan, X.; Zhang, S.; Wu, T.; Bai, L.; Wang, H.; Ma, Y.; Guan, X.; Wang, C.; Yang, H. Effects of variety and origin on the metabolic and texture characteristics of quinoa seeds based on ultrahigh-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Res. Int. 2022, 162, 111693. [Google Scholar] [CrossRef] [PubMed]
- Swarup, S.; Cargill, E.J.; Crosby, K.; Flagel, L.; Kniskern, J.; Glenn, K.C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Sci. 2021, 61, 839–852. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, D.S.; Kumar, J. Breeding for Enhanced Nutrition Status in Food Legumes: Retrospects and Prospects. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes; Gupta, D.S., Gupta, S., Kumar, J., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Dahiya, P.K.; Linnemann, A.R.; Nout, M.J.R.; van Boekel, M.A.J.S.; Grewal, R.B. Nutrient composition of selected newly bred and established mung bean varieties. LWT 2013, 54, 249–256. [Google Scholar] [CrossRef]
- Hakim, L. Variability and correlation of agronomic characters of mungbean germplasm and their utilization for variety improvement program. Indones. J. Agric. Sci. 2016, 9, 24. [Google Scholar] [CrossRef]
- Wang, F.; Huang, L.; Yuan, X.; Zhang, X.; Guo, L.; Xue, C.; Chen, X. Nutritional, phytochemical and antioxidant properties of 24 mung bean (Vigna radiate L.) genotypes. Food Prod. Process. Nutr. 2021, 3, 28. [Google Scholar] [CrossRef]
- Desta, K.T.; Hur, O.S.; Lee, S.; Yoon, H.; Shin, M.–J.; Yi, J.; Lee, Y.; Ro, N.Y.; Wang, X.; Choi, Y.–M. Origin and seed coat color differently affect the concentrations of metabolites and antioxidant activities in soybean (Glycine max (L.) Merrill) seeds. Food Chem. 2022, 381, 132249. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International (AOAC): Rockville, MD, USA, 2005. [Google Scholar]
- Choi, Y.-M.; Yoon, H.; Shin, M.-J.; Lee, S.; Yi, J.; Jeon, Y.-A.; Wang, X.; Desta, K.T. Multivariate Analysis of Biochemical Properties Reveals Diversity among Yardlong Beans of Different Origins. Antioxidants 2024, 13, 463. [Google Scholar] [CrossRef]
- Zhang, X.; Shang, P.; Qin, F.; Zhou, Q.; Gao, B.; Huang, H.; Yang, H.; Shi, H.; Lucy Yu, L. Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. LWT 2013, 54, 171–178. [Google Scholar] [CrossRef]
- Meenu, M.; Kamboj, U.; Sharma, A.; Guha, P.; Mishra, S. Mishra Green method for determination of phenolic compounds in mung bean (Vigna radiata L.) based on near-infrared spectroscopy and chemometrics. Int. J. Food Sci. Technol. 2016, 51, 2520–2527. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, B.; Kaur, A.; Yadav, M. Impact of growing conditions on proximate, mineral, phenolic composition, amino acid profile, and antioxidant properties of black gram, mung bean, and chickpea microgreens. J. Food Process. Preserv. 2022, 46, e16655. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, Y.; Zhu, Y.; Ren, G. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop J. 2016, 4, 398–406. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Yuan, Y.; Li, S.; Song, X.; Yin, J. Comparison of NIR and Raman spectra combined with chemometrics for the classification and quantification of mung beans (Vigna radiata L.) of different origins. Food Control 2023, 145, 109498. [Google Scholar] [CrossRef]
- Nor Azmah, U.; Makeri, M.U.; Bagirei, S.Y.; Shehu, A.B. Compositional characterization of starch, proteins and lipids of long bean, dwarf long bean, mung bean and French bean seed flours. Meas. Food 2023, 12, 100111. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, T.; Chen, J.; Ye, F.; Zhao, G. Mung Bean Starch and Mung Bean Starch Sheet Jelly: NaCl-Based Characteristics Variation. Foods 2023, 12, 4469. [Google Scholar] [CrossRef]
- Yanti; Violina, V.; Putri, C.E.; Lay, B.W. Branched Chain Amino Acid Content and Antioxidant Activity of Mung Bean Tempeh Powder for Developing Oral Nutrition Supplements. Foods 2023, 12, 2789. [Google Scholar] [CrossRef]
- Khrisanapant, P.; Kebede, B.; Leong, S.Y.; Oey, I.A. Comprehensive Characterisation of Volatile and Fatty Acid Profiles of Legume Seeds. Foods 2019, 8, 651. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2022, 56, 365–379. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeon, J.K.; Kim, S.G.; Kim, S.H.; Chun, T.; Imm, J.Y. Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int. J. Food Sci. Technol. 2011, 46, 2513–2519. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Ge, Y.Y.; Gunaratne, A.; Kong, K.W.; Li, H.-B.; Gul, K.; Kumara, K.; Arachchi, L.V.; Zhu, F.; Corke, H.; et al. Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka. Food Biosci. 2020, 37, 100705. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, V.K.; Sultan, Z.; Singh, R.; Dar, A.H. Classification, benefits, and applications of various anti-nutritional factors present in edible crops. J. Agric. Food Res. 2023, 14, 100902. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Tian, J.; Liu, C.; Cheng, X.; Ren, G. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). J. Agric. Food Chem. 2013, 61, 8104–8109. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Danielski, R.; Santhiravel, S.; Shahidi, F. Unlocking the Nutraceutical Potential of Legumes and Their By-Products: Paving theWay for the Circular Economy in the Agri-Food Industry. Antioxidants 2024, 13, 636. [Google Scholar] [CrossRef]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Chen, J.; Yan, Q.; Xue, C.; Wu, R.; Chen, X.; Yuan, X. Genome-wide association studies provide genetic insights into natural variation of seed-size-related traits in mungbean. Front. Plant Sci. 2022, 13, 997988. [Google Scholar] [CrossRef]
- Wang, Q.; Cao, H.; Wang, J.; Gu, Z.; Lin, Q.; Zhang, Z.; Zhao, X.; Gao, W.; Zhu, H.; Yan, H.; et al. Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean (Vigna radiata L.). J. Integr. Agric. 2024, 23, 2571–2588. [Google Scholar] [CrossRef]
- Wang, R.; Gangola, M.P.; Irvine, C.; Gaur, P.M.; Båga, M.; Chibbar, R.N. Co-localization of genomic regions associated with seed morphology and composition in a desi chickpea (Cicer arietinum L.) population varying in seed protein concentration. Theor. Appl. Genet. 2019, 132, 1263–1281. [Google Scholar] [CrossRef]
- Kim, E.H.; Ro, H.M.; Kim, S.L.; Kim, H.S.; Chung, I.M. Analysis of isoflavone, phenolic, soyasapogenol, and tocopherol compounds in soybean [Glycine max (L.) Merrill] germplasms of different seed weights and origins. J. Agric. Food Chem. 2012, 60, 6045–6055. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, J.J.; Moon, H.I.; Ahn, J.K.; Chun, S.C.; Jung, W.S.; Lee, O.K.; Chung, I.M. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. J. Agric. Food Chem. 2008, 56, 2751–2758. [Google Scholar] [CrossRef]
- Lee, J.H.; Choung, M.G. Comparison of nutritional components in soybean varieties with different geographical origins. J. Appl. Biol. Chem. 2011, 54, 254–263. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Yoon, H.; Lee, S.; Ko, H.-C.; Shin, M.-J.; Lee, M.C.; Hur, O.S.; Ro, N.Y.; Desta, K.T. Isoflavones, anthocyanins, phenolic content, and antioxidant activities of black soybeans (Glycine max (L.) Merrill) as affected by seed weight. Sci. Rep. 2020, 10, 19960. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hu, Q.; Yu, Y.; Yu, Y.; Yu, N.; Chen, Y. Discrimination of mung beans according to climate and growing region by untargeted metabolomics coupled with machine learning methods. Food Control 2023, 153, 109927. [Google Scholar] [CrossRef]
- Azam, M.; Zhang, S.; Qi, J.; Abdelghany, A.M.; Shaibu, A.S.; Ghosh, S.; Feng, Y.; Huai, Y.; Gebregziabher, B.S.; Li, J.; et al. Profiling and associations of seed nutritional characteristics in Chinese and USA soybean cultivars. J. Food Compos. Anal. 2021, 98, 103803. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, Y.S.; Kim, S.T.; Yoon, W.B.; Han, W.Y.; Kang, I.K.; Choung, M.G. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chem. 2017, 214, 248–258. [Google Scholar] [CrossRef]
Seed Weight | Vitexin (mg/g dw) | CV | Isovitexin (mg/g dw) | CV | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | |||
Small | 0.22 | 1.18 | 0.52 a | 0.23 | 45.44 | 0.26 | 1.58 | 0.67 a | 0.26 | 49.89 |
Medium | 0.22 | 0.95 | 0.47 a | 0.22 | 46.39 | 0.29 | 1.50 | 0.68 a | 0.29 | 53.09 |
Large | 0.21 | 1.33 | 0.48 a | 0.27 | 56.04 | 0.27 | 1.67 | 0.61 a | 0.27 | 56.37 |
Total | 0.21 | 1.33 | 0.50 | 0.21 | 48.41 | 0.26 | 1.67 | 0.66 | 0.34 | 51.95 |
Parameter | Values | Seed Weight | Total | ||
---|---|---|---|---|---|
Small | Medium | Large | |||
Total protein (g/100 g) | Min. | 22.71 | 24.73 | 22.01 | 22.01 |
Max. | 28.96 | 27.58 | 28.55 | 28.96 | |
Mean | 25.73 a | 25.90 a | 25.51 a | 25.69 | |
SD | 1.23 | 0.83 | 1.37 | 1.24 | |
CV | 4.78 | 3.21 | 5.37 | 4.82 | |
Total starch (g/100 g) | Min. | 32.62 | 36.84 | 39.45 | 32.62 |
Max. | 49.03 | 44.43 | 46.93 | 49.03 | |
Mean | 40.41 b | 40.17 b | 42.22 a | 40.85 | |
SD | 3.27 | 2.02 | 2.06 | 3.00 | |
CV | 8.09 | 5.03 | 4.87 | 7.34 | |
Palmitic acid (g/100 g) | Min. | 27.71 | 28.16 | 28.45 | 27.71 |
Max. | 31.94 | 30.57 | 31.59 | 31.94 | |
Mean | 30.13 a | 29.67 b | 29.67 b | 29.96 | |
SD | 0.67 | 0.73 | 0.77 | 0.74 | |
CV | 2.22 | 2.48 | 2.60 | 2.46 | |
Stearic acid (g/100 g) | Min. | 1.84 | 2.43 | 1.62 | 1.62 |
Max. | 7.01 | 7.12 | 8.61 | 8.61 | |
Mean | 4.05 a | 4.72 a | 4.64 a | 4.27 | |
SD | 1.26 | 1.68 | 2.08 | 1.59 | |
CV | 31.20 | 35.65 | 44.91 | 37.13 | |
Oleic acid (g/100 g) | Min. | 1.62 | 1.76 | 1.62 | 1.62 |
Max. | 3.15 | 2.93 | 3.10 | 3.15 | |
Mean | 2.36 a | 2.19 a | 2.21 a | 2.30 | |
SD | 0.35 | 0.30 | 0.37 | 0.36 | |
CV | 14.65 | 13.56 | 16.79 | 15.46 | |
Linoleic acid (g/100 g) | Min. | 37.96 | 44.76 | 39.52 | 37.96 |
Max. | 50.67 | 50.21 | 50.71 | 50.71 | |
Mean | 45.92 b | 47.26 a | 47.11 a | 46.36 | |
SD | 2.39 | 1.49 | 2.10 | 2.32 | |
CV | 5.20 | 3.15 | 4.46 | 5.00 | |
Linolenic acid (g/100 g) | Min. | 13.78 | 14.24 | 14.12 | 13.78 |
Max. | 24.89 | 19.83 | 22.55 | 24.89 | |
Mean | 17.54 a | 16.16 b | 16.38 b | 17.10 | |
SD | 2.08 | 1.33 | 1.81 | 2.04 | |
CV | 11.87 | 8.22 | 11.03 | 11.91 | |
TSFA (g/100 g) | Min. | 31.47 | 31.73 | 32.46 | 31.47 |
Max. | 37.68 | 36.56 | 36.63 | 37.68 | |
Mean | 34.23 a | 34.18 a | 34.39 a | 34.30 | |
SD | 1.35 | 1.18 | 1.37 | 1.69 | |
CV | 3.95 | 3.46 | 4.00 | 4.00 | |
TUFA (g/100 g) | Min. | 62.32 | 63.44 | 63.37 | 62.32 |
Max. | 68.53 | 68.27 | 67.54 | 68.53 | |
Mean | 65.77 a | 65.82 a | 65.61 a | 65.77 | |
SD | 1.35 | 1.18 | 1.37 | 1.35 | |
CV | 2.06 | 1.80 | 2.10 | 2.57 | |
ω-6:ω-3 ratio | Min. | 1.53 | 2.26 | 1.75 | 1.53 |
Max. | 3.51 | 3.43 | 3.41 | 3.51 | |
Mean | 2.66 b | 2.95 a | 2.92 a | 2.76 | |
SD | 0.39 | 0.27 | 0.37 | 0.39 | |
CV | 14.65 | 9.31 | 12.61 | 14.32 |
Parameter | Values | Seed Weight | Total | ||
---|---|---|---|---|---|
Small | Medium | Large | |||
TSC (mg DE/g) | Min. | 1.52 | 2.73 | 1.35 | 1.35 |
Max. | 34.56 | 9.51 | 9.47 | 34.56 | |
Mean | 8.06 a | 6.43 ab | 6.02 b | 7.37 | |
SD | 4.95 | 2.41 | 1.86 | 4.25 | |
CV | 61.41 | 37.54 | 30.97 | 57.64 | |
TPC (mg GAE/100 g) | Min. | 1.66 | 1.96 | 2.14 | 1.66 |
Max. | 4.09 | 2.97 | 3.28 | 4.09 | |
Mean | 2.80 a | 2.60 a | 2.64 a | 2.74 | |
SD | 0.45 | 0.28 | 0.32 | 0.41 | |
CV | 16.13 | 10.93 | 12.04 | 15.12 | |
DPPH (mg AAE/100 g) | Min. | 18.15 | 26.25 | 12.57 | 12.57 |
Max. | 110.21 | 49.49 | 52.63 | 110.21 | |
Mean | 38.44 a | 37.27 ab | 32.01 b | 36.66 | |
SD | 13.67 | 7.36 | 9.67 | 12.52 | |
CV | 35.56 | 19.74 | 30.22 | 34.15 | |
ABTS (mg TE/100 g) | Min. | 124.07 | 196.12 | 81.96 | 81.96 |
Max. | 446.38 | 306.49 | 296.02 | 446.38 | |
Mean | 233.55 a | 234.14 a | 211.46 a | 227.93 | |
SD | 54.10 | 33.47 | 45.91 | 51.23 | |
CV | 23.16 | 14.29 | 21.71 | 22.47 | |
FRAP (mg AAE/100 g) | Min. | 23.23 | 24.18 | 18.45 | 18.45 |
Max. | 182.14 | 67.84 | 58.68 | 182.14 | |
Mean | 47.47 a | 39.21 ab | 33.08 b | 42.92 | |
SD | 21.99 | 12.75 | 11.42 | 19.98 | |
CV | 46.32 | 32.52 | 34.51 | 46.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desta, K.T.; Choi, Y.-M.; Yi, J.; Shin, M.-J.; Jeon, Y.-a.; Yoon, H. Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights. Foods 2024, 13, 3387. https://doi.org/10.3390/foods13213387
Desta KT, Choi Y-M, Yi J, Shin M-J, Jeon Y-a, Yoon H. Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights. Foods. 2024; 13(21):3387. https://doi.org/10.3390/foods13213387
Chicago/Turabian StyleDesta, Kebede Taye, Yu-Mi Choi, Jungyoon Yi, Myoung-Jae Shin, Young-ah Jeon, and Hyemyeong Yoon. 2024. "Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights" Foods 13, no. 21: 3387. https://doi.org/10.3390/foods13213387
APA StyleDesta, K. T., Choi, Y. -M., Yi, J., Shin, M. -J., Jeon, Y. -a., & Yoon, H. (2024). Variations of Major Flavonoids, Nutritional Components, and Antioxidant Activities in Mung Beans (Vigna radiate L.) of Different Seed Weights. Foods, 13(21), 3387. https://doi.org/10.3390/foods13213387