Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Grape Materials and Winemaking
2.3. Meteorological Data Collection
2.4. Analysis of Physical and Chemical Parameters of Grape and Wine
2.5. GC×GC-Q-TOF MS Analysis
2.6. Qualitative and Quantitative Analyses
2.7. Odor Active Value and Aroma Series
2.8. Statistical Analysis
3. Results
3.1. Weather Data Analysis of Each Sub-Producing Area
3.2. Basic Physical and Chemical Properties of Grapes and Wine
3.3. Analysis of Volatile Compounds
3.4. Analysis of Aroma Activity (OAV)
3.5. Multivariate Statistical Analysis
3.6. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eustice, C.; McCole, D.; Rutty, M. The impact of different product messages on wine tourists’ willingness to pay: A non-hypothetical experiment. Tour. Manag. 2019, 72, 242–248. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Guardini, S.; Tedeschi, R.; Ugliano, M. Volatile terpenoids, norisoprenoids and benzenoids as markers of fine scale vineyard segmentation for Corvina grapes and wines. Food Res. Int. 2019, 125, 108507. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.; Mercenaro, L.; Urgeghe, P.; Fadda, C.; Valentoni, A.; Del Caro, A. Grape and Wine Composition in Vitis vinifera L. cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xue, H.; Shi, Q.; Zhang, F.; Ma, Q.; Sun, J.; Liu, Y.; Tang, Y.; Wang, W. Geographical identification of Chinese wine based on chemometrics combined with mineral elements, volatile components and untargeted metabonomics. Food Chem. X 2024, 22, 101412. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Ugliano, M.; Marangon, M.; Piombino, P.; Rolle, L.; Gerbi, V.; Versari, A.; Mattivi, F. Use of Untargeted Liquid Chromatography-Mass Spectrometry Metabolome to Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. J. Agric. Food Chem. 2020, 68, 13353–13366. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, J.; Wang, L.; Jin, G.; Zhang, A. Signature of Sr isotope ratios and the contents of elements as a tool to distinguish wine regions in China. Food Chem. 2024, 446, 138812. [Google Scholar] [CrossRef]
- Mei, H.; Nie, J.; Pan, M.; Rogers, K.; Guo, Z.; Li, C.; Shao, S.; Zhang, Y.; Yuan, Y. Geographical origin identification of Pujiang grapes in China using stable isotope and elemental profiles. Food Control 2024, 162, 110454. [Google Scholar] [CrossRef]
- Gilbert, J.; van der Lelie, D.; Zarraonaindia, I. Microbial for wine grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef]
- Ranaweera, R.; Bastian, S.; Gilmore, A.; Capone, D.; Jeffery, D. Absorbance-transmission and fluorescence excitation-emission matrix (A-TEEM) with multi-block data analysis and machine learning for accurate intraregional classification of Barossa Shiraz wine. Food Control. 2022, 144, 109335. [Google Scholar] [CrossRef]
- Kustos, M.; Gambetta, J.; Jeffery, D.; Heymann, H.; Goodman, S.; Bastian, S. A matter of place: Sensory and chemical characterisation of fine Australian Chardonnay and Shiraz wines of provenance. Food Res. Int. 2020, 130, 108903. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Gao, X.; Lu, H.; Peng, W.; Chen, W.; Li, S.; Li, S.; Duan, C.; Wang, J. Influence of attenuated reflected solar radiation from the vineyard floor on volatile compounds in Cabernet Sauvignon grapes and wines of the north foot of Mt. Tianshan. Food Res. Int. 2020, 137, 109688. [Google Scholar] [CrossRef] [PubMed]
- Rienth, M.; Torregrosa, L.; Sarah, G.; Ardisson, M.; Brillouet, J.; Romieu, C. Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biol. 2016, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr. Res. Food Sci. 2023, 6, 100418. [Google Scholar] [CrossRef] [PubMed]
- Foroni, F.; Vignando, M.; Aiello, M.; Parma, V.; Paoletti, M.; Squartini, A.; Rumiati, R. The smell of terroir! Olfactory discrimination between wines of different grape variety and different. Food Qual. Prefer. 2017, 58, 18–23. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, J.; Wang, L.; Jiang, Y.; Deng, Y.; Zhu, J.; Yuan, H.; Yang, Y. Comprehensive investigation on the dynamic changes of volatile metabolites in fresh scent green tea during processing by GC-E-Nose, GC-MS, and GC × GC-TOFMS. Food Res. Int. 2024, 187, 114330. [Google Scholar] [CrossRef]
- Fan, C.; Shi, X.; Pan, C.; Zhang, F.; Zhou, Y.; Hou, X.; Hui, M. GC-IMS and GC/Q-TOFMS analysis of Maotai-flavor baijiu at different aging times. LWT Food Sci. Technol. 2024, 192, 115744. [Google Scholar] [CrossRef]
- Stefanuto, P.; Perrault, K.; Dubois, L.; L’Homme, B.; Allen, C.; Loughnane, C.; Ochiai, N.; Focant, J. Advanced method optimization for volatile aroma profiling of beer using two-dimensional gas chromatography time-of-flight mass spectrometry. J. Chromatogr. A 2017, 1507, 45–52. [Google Scholar] [CrossRef]
- Idowu, I.; Johnson, W.; Francisco, O.; Obal, T.; Marvin, C.; Thomas, P.; Sandau, C.; Stetefeld, J.; Tomy, G. Comprehensive two-dimensional gas chromatography high-resolution mass spectrometry for the analysis of substituted and unsubstituted polycyclic aromatic compounds in environmental samples. J. Chromatogr. A 2018, 1579, 106–114. [Google Scholar] [CrossRef]
- Sudol, P.; Galletta, M.; Tranchida, P.; Zoccali, M.; Mondello, L.; Synovec, R. Untargeted profiling and differentiation of geographical variants of wine samples using headspace solid-phase microextraction flow-modulated comprehensive two-dimensional gas chromatography with the support of tile-based Fisher ratio analysis. J. Chromatogr. 2022, 1662, 462735. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Gu, X.; Sun, X.; Jin, G.; Zhang, J.; Ma, W. Flavor Chemical Profiles of Cabernet Sauvignon Wines: Six Vintages from 2013 to 2018 from the Eastern Foothills of the Ningxia Helan Mountains in China. Foods 2021, 11, 22. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, H.; Lv, Y.; Yin, X.; Chen, Y.; Long, W.; Fu, H.; She, Y. Untargeted metabolomic analysis of Chinese red wines for geographical origin traceability by UPLC-QTOF-MS coupled with chemometrics. Food Chem. 2022, 394, 133473. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Ge, Q.; Huo, X.; Ma, T.; Fang, Y.; Sun, X. Geographical characterization of wines from seven regions of China by chemical composition combined with chemometrics: Quality characteristics of Chinese ‘Marselan’ wines. Food Chem. X 2024, 23, 101606. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, J.; Yin, H.; Wang, J.; Wang, X.; Yang, Y.; Xi, Z. Microclimate diversity drives grape quality difference at high-altitude: Observation using PCA analysis and structural equation modeling (SEM). Food Res. Int. 2024, 191, 114644. [Google Scholar] [CrossRef]
- Ling, M.; Chai, R.; Xiang, X.; Li, J.; Zhou, P.; Shi, Y.; Duan, C.; Lan, Y. Characterization of key odor-active compounds in Chinese Dornfelder wine and its regional variations by application of molecular sensory science approaches. Food Chem. X 2023, 17, 100598. [Google Scholar] [CrossRef]
- Xi, Z.; Tao, Y.; Zhang, L.; Li, H. Impact of cover crops in vineyard on the aroma compounds of Vitis vinifera L. cv Cabernet Sauvignon wine. Food Chem. 2011, 127, 516–522. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Su, L.; Li, H.; Zhang, L.; Wei, J. Global warming effects on climate zones for wine grape in Ningxia region, China. Theor. Appl. Climatol. 2020, 140, 1527–1536. [Google Scholar] [CrossRef]
- Tan, C.; Yang, J.; Li, M. Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in Ningxia Hui Autonomous Region, China. Atmosphere 2015, 6, 1399–1421. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhang, X.; Wang, R. Characteristics and evaluation of soil fertility in different grape production areas at the eastern foot of Helan Mountain, Ningxia. Soil Fertil. Sci. China 2021, 6, 35–41. [Google Scholar] [CrossRef]
- Liu, H.; Wu, B.; Fan, P.; Li, S.; Li, L. Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J. Sci. Food Agric. 2006, 86, 1526–1536. [Google Scholar] [CrossRef]
- Godden, P.; Wilkes, E.; Johnson, D. Trends in the composition of Australian wine 1984–2014. Aust. J. Grape Wine R 2015, 21, 741–753. [Google Scholar] [CrossRef]
- Mato, I.; Suárez-Luque, S.; Huidobro, J. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res. Int. 2005, 38, 1175–1188. [Google Scholar] [CrossRef]
- Yue, T.; Chi, M.; Song, C.; Liu, M.; Meng, J.; Zhang, Z.; Li, M. Aroma Characterization of Cabernet Sauvignon Wine from the Plateau of Yunnan (China) with Different Altitudes Using SPME-GC/MS. Int. J. Food Prop. 2015, 18, 1584–1596. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Cui, M.; Fu, Y.; Wang, X.; Yang, Q.; Zhu, Y.; Yang, X.; Bi, H.; Gao, X. Aroma enhancement of blueberry wine by postharvest partial dehydration of blueberries. Food Chem. 2023, 426, 136593. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xi, Z.; Luo, M.; Zhang, Z. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Zoecklein, B.; Wolf, T.; Pélanne, L.; Miller, M.; Birkenmaier, S. Effect of vertical shoot-positioned, smart-dyson, and Geneva double-curtain training systems on Viognier grape and wine composition. Am. J. Enol. Viticult. 2008, 59, 11–21. [Google Scholar] [CrossRef]
- Waterhouse, A.; Sacks, G.; Jeffery, D. Aldehydes, Ketones, and Related Compounds. In Understanding Wine Chemistry; Wiley: Hoboken, NJ, USA, 2016; pp. 79–87. [Google Scholar]
- Ferreira, V.; de la Fuente, A.; Sáenz-Navajas, M. 1-Wine aroma vectors and sensory attributes. In Managing Wine Quality, 2nd ed.; Reynolds, A., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 3–39. [Google Scholar]
- Black, C.; Parker, M.; Siebert, T.; Capone, D.; Francis, I. Terpenoids and their role in wine flavour: Recent advances. Aust. J. Grape Wine Res. 2015, 21, 582–600. [Google Scholar] [CrossRef]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of agronomic practices on grape aroma composition: A review. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef]
- Sefton, M.; Skouroumounis, G.; Elsey, G.; Taylor, D. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. J. Agric. Food Chem. 2011, 59, 9717–9746. [Google Scholar] [CrossRef]
- Asproudi, A.; Petrozziello, M.; Cavalletto, S.; Ferrandino, A.; Mania, E.; Guidoni, S. Bunch Microclimate Affects Carotenoids Evolution in cv. Nebbiolo (V. vinifera L.). Appl. Sci. 2020, 10, 3846. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Alvarez, E. Seaweed foliar applications at two dosages to Tempranillo blanco (L.) grapevines in two seasons: Effects on grape and wine volatile composition. Food Res. Int. 2020, 130, 137–141. [Google Scholar] [CrossRef]
- Robinson, A.; Boss, P.; Heymann, H.; Solomon, P.; Trengove, R. Influence of Yeast Strain, Canopy Management, and Site on the Volatile Composition and Sensory Attributes of Cabernet Sauvignon Wines from Western Australia. J. Agric. Food Chem. 2011, 59, 3273–3284. [Google Scholar] [CrossRef] [PubMed]
- Allamy, L.; Darriet, P.; Pons, A. Molecular interpretation of dried-fruit aromas in Merlot and Cabernet Sauvignon musts and young wines: Impact of over-ripening. Food Chem. 2018, 266, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, X.; Yang, Y.; Yang, Y.; Wang, J.; Li, H. Analyses of Vineyard Microclimate in the Eastern Foothills of the Helan Mountains in Ningxia Region, China. Sustainability 2023, 15, 12740. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Sanchez-Palomo, E.; Trujillo, M.; Garcia Ruiz, A.; Gonzalez Vinas, M.A. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100 Pt 1, 201–208. [Google Scholar] [CrossRef]
- Schnabel, K.-O.; Belitz, H.-D.; von Ranson, C. Untersuchungen zur Struktur-Aktivitäts-Beziehung bei Geruchsstoffen 1. Mitteilung: Wahrnehmungsschwellenwerte und Geruchsqualitäten von gesättigten aliphatischen und alicyclischen Verbindungen mit Sauerstoff-Funktion. Z. Für Lebensm.-Unters. Und Forschung. 1988, 187, 215–223. [Google Scholar] [CrossRef]
- Ferreira, V.; Ardanuy, M.; López, R.; Cacho, J.F. Relationship between flavor dilution values and odor unit values in hydroalcoholic solutions:: Role of volatility and a practical rule for its estimation. J. Agric. Food Chem. 1998, 46, 4341–4346. [Google Scholar] [CrossRef]
- Suklje, K.; Zhang, X.Y.; Antalick, G.; Clark, A.C.; Deloire, A.; Schmidtke, L.M. Berry Shriveling Significantly Alters Shiraz (L.) Grape and Wine Chemical Composition. J. Agric. Food Chem. 2016, 64, 870–880. [Google Scholar] [CrossRef]
- Pino, J.A.; Mesa, J. Contribution of volatile compounds to mango (L.) aroma. Flavour Fragr. J. 2006, 21, 207–213. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, X.; Mao, Y.L.; Zhang, X.; Xu, B.Y.; Yang, X.S. Effect of different inoculation strategies of mixed culture Saccharomyces cerevisiae/oeni on the aroma quality of Chardonnay wine. Food Res. Int. 2024, 190, 114636. [Google Scholar] [CrossRef]
- Peinado, R.A.; Mauricio, J.C.; Moreno, J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by var. Food Chem. 2006, 94, 232–239. [Google Scholar] [CrossRef]
- Backman, E.L. Experimentella Undersökningar Öfver Luktsinnets Fysiologi; Berling: Uppsala, Sweden, 1917. [Google Scholar]
- Giri, A.; Osako, K.; Ohshima, T. Identification and characterisation of headspace volatiles of fish miso, a Japanese fish meat based fermented paste, with special emphasis on effect of fish species and meat washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Culleré, L.; Ferreira, V.; Cacho, J. Analysis, occurrence and potential sensory significance of aliphatic aldehydes in white wines. Food Chem. 2011, 127, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Fabrellas, C.; Matia, L.; Ventura, F. Determination of odour threshold concentrations and dose-response relations in water of several minor disinfection by-products: Aldehydes and alkyl nitriles. Water Sci. Technol. 2004, 49, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Gassenmeier, K.; Schieberle, P. Potent aromatic compounds in the crumb of wheat bread (French-type)—influence of pre-ferments and studies on the formation of key odorants during dough processing. Eur. Food Res. Technol. 1995, 201, 241–248. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines.: Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.W. A Preliminary Study of Aroma Composition and Impact Odorants of Cabernet Franc Wines under Different Terrain Conditions of the Loess Plateau Region (China). Molecules 2018, 23, 1096. [Google Scholar] [CrossRef]
- Buttery, R.G.; Seifert, R.M.; Ling, L.C.; Soderstrom, E.L.; Ogawa, J.M.; Turnbaugh, J.G. Additional aroma components of honeydew melon. J. Agric. Food Chem. 1982, 30, 1208–1211. [Google Scholar] [CrossRef]
- Rashash, D.M.C.; Dietrich, A.M.; Hoehn, R.C. FPA of selected odorous compounds. J. Am. Water Works Ass. 1997, 89, 131–141. [Google Scholar] [CrossRef]
- Buttery, R.G. Quantitative and Sensory Aspects of Flavor of Tomato and Other Vegetable and Fruits; Teranishi, R: Washington, DC, USA, 1993; pp. 259–286. [Google Scholar]
- Berger, R.G.; Drawert, F.; Kollmannsberger, H.; Nitz, S.; Schraufstetter, B.J. Novel volatiles in pineapple fruit and their sensory properties. J. Agric. Food Chem. 1985, 33, 232–235. [Google Scholar] [CrossRef]
- Gemert, V. Compilation of Odor Threshold Values in Air and Water; 2011 edition; Oliemans P and Partners B: Utrecht, The Netherlands, 1977. [Google Scholar]
- De-la-Fuente-Blanco, A.; Sáenz-Navajas, M.P.; Valentin, D.; Ferreira, V. Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chem. 2020, 307, 307. [Google Scholar] [CrossRef]
- Aoki, M.; Koizumi, N. Organoleptic Properties of the Volatile Components of Buckwheat Flour and their Changes during Storage after Milling Studies on the Flavor of Buckwheat Part II. Nippon. Shokuhin Kogyo Gakkaishi. 1986, 33, 769–772. [Google Scholar] [CrossRef]
- Amoore, J.E.; Pelosi, P.; Forrester, L.J. Specific Anosmias to 5α-Androst-16-En-3-One and Ω-Pentadecalactone: The Urinous and Musky Primary Odors. Chem. Senses 1977, 2, 401–425. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.A.; Medina, M. Evaluation of the Active Odorants in Amontillado Sherry Wines during the Aging Process. J. Agric. Food Chem. 2010, 58, 6900–6904. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-del-Teso, S.; Arias, I.; Escudero, A.; Ferreira, V.; Fernández-Zurbano, P.; Sáenz-Navajas, M. Effect of grape maturity on wine sensory and chemical features: The case of Moristel wines. LWT Food Sci. Technol. 2020, 118, 108848. [Google Scholar] [CrossRef]
- Lu, H.; Tian, M.; Han, X.; Shi, N.; Li, H.; Cheng, C.; Chen, W.; Li, S.; He, F.; Duan, C.Q.; et al. Vineyard soil heterogeneity and harvest date affect volatolomics and sensory attributes of Cabernet Sauvignon wines on a meso-terroir scale. Food Res. Int. 2023, 174 Pt 1, 113508. [Google Scholar] [CrossRef]
- Asproudi, A.; Ferrandino, A.; Bonello, F.; Vaudano, E.; Pollon, M.; Petrozziello, M. Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food Chem. 2018, 268, 143–152. [Google Scholar] [CrossRef]
- Boccard, J.; Rutledge, D. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal. Chim. Acta 2013, 769, 30–39. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Zhao, P.; Ma, Z.; Zhang, J.; Ma, W.; Wang, X. Investigating the effect of three phenolic fractions on the volatility of floral, fruity, and aged aromas by HS-SPME-GC-MS and NMR in model wine. Food Chem. X 2022, 13, 100281. [Google Scholar] [CrossRef]
- Karabagias, I.; Sykalia, D.; Mannu, A.; Badeka, A. Physico-chemical parameters complemented with aroma compounds fired up the varietal discrimination of wine using statistics. Eur. Food Res. Technol. 2020, 246, 2233–2248. [Google Scholar] [CrossRef]
- Cortés-Diéguez, S.; Rodriguez-Solana, R.; Domínguez, J.; Díaz, E. Impact odorants and sensory profile of young red wines from four Galician (NW of Spain) traditional cultivars. J. Inst. Brew. 2015, 121, 628–635. [Google Scholar] [CrossRef]
- Issa-Issa, H.; Guclu, G.; Noguera-Artiaga, L.; López-Lluch, D.; Poveda, R.; Kelebek, H.; Selli, S.; Carbonell-Barrachina, Á. Aroma-active compounds, sensory profile, and phenolic composition of Fondillón. Food Chem. 2020, 316, 126353. [Google Scholar] [CrossRef] [PubMed]
Aroma Category | CAS | Chemical Formula | Name | Configure Concentration Range | Standard Curve | Linearly Dependent Coefficient |
---|---|---|---|---|---|---|
C6 Compounds | 111-27-3 | C6H14O | Hexanol | 100–1600 μg/L | y = 1.2458x − 0.0375 | R2 = 0.9643 |
66-25-1 | C6H12O | Hexanal | 10–160 μg/L | y = 8.0136x + 0.011 | R2 = 0.9997 | |
928-95-0 | C6H12O | (E)-2-Hexenol | 10–160 μg/L | y = 2.4937x − 0.009 | R2 = 0.9986 | |
928-94-9 | C6H12O | (Z)-2-Hexenol | 10–160 μg/L | y = 2.6556x − 0.0033 | R2 = 0.9981 | |
6728-26-3 | C6H10O | (E)-2-Hexenal | 100–1600 μg/L | y = 3.3488x + 0.8776 | R2 = 0.9972 | |
142-83-6 | C6H8O | (E, E)-2,4-Hexadienal | 10–160 μg/L | y = 5.3355x − 0.0463 | R2 = 0.9946 | |
Alcohols | 111-87-5 | C8H18O | Octanol | 10–160 μg/L | y = 51.698x − 0.5564 | R2 = 0.9957 |
143-08-8 | C9H20O | 1-Nonanol | 10–160 μg/L | y = 71.56x − 1.2978 | R2 = 0.9913 | |
123-96-6 | C8H18O | 2-Octanol | 10–160 μg/L | y = 35.682x − 0.5183 | R2 = 0.9861 | |
3391-86-4 | C8H16O | 1-Octen-3-ol | 10–160 μg/L | y = 24.777x − 0.1763 | R2 = 0.9982 | |
111-70-6 | C7H16O | 1-Heptanol | 10–160 μg/L | y = 22.935x − 0.1722 | R2 = 0.9963 | |
123-51-3 | C5H12O | 3-Methyl-1-butanol | 10–160 μg/L | y = 4.2804x − 0.1309 | R2 = 0.9473 | |
626-89-1 | C6H14O | 4-Methyl-1-pentanol | 10–160 μg/L | y = 2.1821x + 0.2708 | R2 = 0.9911 | |
104-76-7 | C8H18O | 2-Ethylhexanol | 10–160 μg/L | y = 52.137x − 0.4486 | R2 = 0.9967 | |
60-12-8 | C8H10O | Phenethyl alcohol | 10–160 μg/L | y = 4.4301x − 0.2658 | R2 = 0.9537 | |
589-98-0 | C8H18O | 3-Octanol | 10–160 μg/L | y = 38.532x + 0.8656 | R2 = 0.9944 | |
100-51-6 | C7H8O | Benzyl alcohol | 10–160 μg/L | y = 3.3507x − 0.1344 | R2 = 0.9955 | |
137-32-6 | C5H12O | 2-Methyl-1-butanol | 100–1600 μg/L | y = 7.0677x − 0.0259 | R2 = 0.9991 | |
543-49-7 | C7H16O | 2-Heptanol | 10–160 μg/L | y = 5.8322x + 0.446 | R2 = 0.9918 | |
Esters | 123-86-4 | C6H12O2 | Butyl acetate | 10–160 μg/L | y = 6.2698x − 0.0748 | R2 = 0.9852 |
142-92-7 | C8H16O2 | Hexyl acetate | 10–160 μg/L | y = 77.214x − 2.5275 | R2 = 0.9922 | |
119-36-8 | C8H8O3 | Methyl salicylate | 10–160 μg/L | y = 33.87x − 1.4589 | R2 = 0.9913 | |
93-58-3 | C8H8O2 | Methyl benzoate | 10–160 μg/L | y = 43.754x − 1.3116 | R2 = 0.9918 | |
141-32-2 | C7H12O2 | Butyl acrylate | 10–160 μg/L | y = 42.2x − 0.8667 | R2 = 0.9926 | |
141-78-6 | C4H8O2 | Ethyl acetate | 100–1600 μg/L | y = 0.027x − 0.0002 | R2 = 0.9964 | |
105-54-4 | C6H12O2 | Ethyl butyrate | 10–160 μg/L | y = 29.542x − 0.6768 | R2 = 0.9914 | |
123-92-2 | C7H14O2 | Isoamyl acetate | 10–160 μg/L | y = 36.549x − 0.6111 | R2 = 0.9927 | |
123-66-0 | C8H16O2 | Ethyl hexanoate | 10–160 μg/L | y = 163.94x − 3.9053 | R2 = 0.9961 | |
106-32-1 | C10H20O2 | Ethyl caprylate | 10–160 μg/L | y = 229.85x − 6.9287 | R2 = 0.9948 | |
123-25-1 | C8H14O4 | Diethyl succinate | 10–160 μg/L | y = 13.16x − 0.5471 | R2 = 0.9915 | |
111-11-5 | C9H18O2 | Caprylic acid methyl ester | 10–160 μg/L | y = 179.14x − 6.1591 | R2 = 0.9921 | |
638-11-9 | C7H14O2 | Isopropyl butyrate | 10–160 μg/L | y = 13.046x − 0.3695 | R2 = 0.9948 | |
624-41-9 | C7H14O2 | 2-Methylbutyl acetate | 100–1600 μg/L | y = 102.51x − 0.0826 | R2 = 0.9971 | |
105-66-8 | C7H14O2 | Propyl butyrate | 10–160 μg/L | y = 54.77x − 0.8899 | R2 = 0.996 | |
37064-20-3 | C8H16O2 | Natural propyl 2-methylbutyrate | 10–160 μg/L | y = 86.527x − 2.316 | R2 = 0.9949 | |
112-06-1 | C9H18O2 | Heptyl acetate | 10–160 μg/L | y = 142.01x − 5.8118 | R2 = 0.9916 | |
623-42-7 | C5H10O2 | Methyl butyrate | 10–160 μg/L | y = 10.822x + 0.6266 | R2 = 0.9983 | |
868-57-5 | C6H12O2 | Methyl 2-methylbutyrate | 10–160 μg/L | y = 13.384x − 0.1074 | R2 = 0.9969 | |
7452-79-1 | C7H14O2 | Ethyl 2-methylbutyrate | 10–160 μg/L | y = 67.904x − 0.5643 | R2 = 0.9972 | |
15706-73-7 | C9H18O2 | Butyl 2-methylbutanoate | 10–160 μg/L | y = 167.71x − 6.1318 | R2 = 0.9943 | |
Aldehydes | 111-71-7 | C7H14O | Heptanal | 10–160 μg/L | y = 29.74x + 0.0397 | R2 = 0.9982 |
124-13-0 | C8H16O | Octanal | 10–160 μg/L | y = 125.84x − 2.0365 | R2 = 0.9934 | |
124-19-6 | C9H18O | Nonanal | 10–160 μg/L | y = 28.958x − 0.0203 | R2 = 0.9972 | |
100-52-7 | C7H6O | Benzaldehyde | 10–160 μg/L | y = 12.281x − 0.1913 | R2 = 0.9974 | |
18829-55-5 | C7H12O | (E)-2-Heptenal | 10–160 μg/L | y = 23.382x + 0.1089 | R2 = 0.9989 | |
2548-87-0 | C8H14O | (E)-2-Octenal | 10–160 μg/L | y = 66.898x − 1.1385 | R2 = 0.9975 | |
4313-03-5 | C7H10O | (E, E)-2,4-Heptadienal | 10–160 μg/L | y = 16.991x − 0.1225 | R2 = 0.9996 | |
5910-87-2 | C9H14O | (E, E)-2,4-Nonadienal | 10–160 μg/L | y = 32.147x − 0.9573 | R2 = 0.9921 | |
112-31-2 | C10H20O | Decanal | 10–160 μg/L | y = 259.53x − 10.679 | R2 = 0.9923 | |
18829-56-6 | C9H16O | (E)-2-Nonenal | 10–160 μg/L | y = 145.84x − 5.5835 | R2 = 0.9927 | |
557-48-2 | C9H14O | (E, Z)-2,6-Nonadienal | 10–160 μg/L | y = 47.523x − 1.0794 | R2 = 0.9998 | |
Terpenes | 99-83-2 | C10H16 | α-Phellandrene | 10–160 μg/L | y = 152.44x − 3.4687 | R2 = 0.9985 |
123-35-3 | C10H16 | β-Myrcene | 10–160 μg/L | y = 141.09x − 2.865 | R2 = 0.9971 | |
106-25-2 | C10H18O | Nerol | 10–160 μg/L | y = 35.863x − 0.6729 | R2 = 0.9937 | |
16409-43-1 | C10H18O | (Z)-Rose oxide | 10–160 μg/L | y = 209.19x − 4.503 | R2 = 0.9982 | |
78-70-6 | C10H18O | Linalool | 10–160 μg/L | y = 79.016x − 0.1611 | R2 = 0.9941 | |
562-74-3 | C10H18O | 4-Terpinenol | 10–160 μg/L | y = 69.579x − 0.3551 | R2 = 0.9995 | |
98-55-5 | C10H18O | α-Terpineol | 10–160 μg/L | y = 46.539x − 0.6597 | R2 = 0.9965 | |
106-22-9 | C10H20O | Citronellol | 10–160 μg/L | y = 67.36x − 1.497 | R2 = 0.9972 | |
106-24-1 | C10H18O | Geraniol | 10–160 μg/L | y = 29.682x − 0.3935 | R2 = 0.9939 | |
87-44-5 | C15H24 | β-Caryophyllene | 10–160 μg/L | y = 189.71x − 8.1006 | R2 = 0.9924 | |
536-59-4 | C10H16O | Dihydro cuminyl alcohol | 10–160 μg/L | y = 11.437x − 0.2996 | R2 = 0.9951 | |
99-49-0 | C10H14O | Carvone | 10–160 μg/L | y = 63.254x − 2.057 | R2 = 0.9951 | |
5989-27-5 | C10H16 | D-Limonene | 10–160 μg/L | y = 189.67x − 1.6892 | R2 = 0.9928 | |
99-87-6 | C10H14 | p-Cymene | 10–160 μg/L | y = 171.9x − 1.0382 | R2 = 0.9967 | |
502-61-4 | C15H24 | Farnesene | 10–160 μg/L | y = 69.691x − 3.4768 | R2 = 0.9871 | |
C13-Norisoprenoids | 23696-85-7 | C13H18O | β-Damascenone | 10–160 μg/L | y = 148.1x − 3.6408 | R2 = 0.9911 |
689-67-8 | C13H22O | Geranylacetone | 10–160 μg/L | y = 276.85x − 8.7723 | R2 = 0.9926 | |
79-77-6 | C13H20O | β-Ionone | 10–160 μg/L | y = 88.038x − 1.3341 | R2 = 0.9989 | |
4312-99-6 | C8H14O | 1-Octen-3-one | 10–160 μg/L | y = 48.416x − 0.3725 | R2 = 0.9973 | |
98-86-2 | C8H8O | Acetophenone | 10–160 μg/L | y = 17.348x − 0.4572 | R2 = 0.9925 | |
1604-28-0 | C8H12O | 6-Methyl-3,5-heptadiene-2-one | 10–160 μg/L | y = 18.08x − 0.3982 | R2 = 0.9974 | |
110-93-0 | C8H14O | 6-Methyl-5-hepten-2-one | 10–160 μg/L | y = 26.734x + 0.4244 | R2 = 0.9955 |
Producing Area | Name | Altitude | Latitude | Longitude |
---|---|---|---|---|
HL | Sunshine winery | 1199.8 | 38.7127 | 106.0671 |
Chateau HaiYueRenHe | 1174.8 | 38.7113 | 106.0754 | |
Domaine Charme | 1195.4 | 39.7135 | 106.0702 | |
Jade Vineyard | 1180.4 | 38.7238 | 106.0838 | |
Hejinzun Winery | 1202.1 | 38.7269 | 106.0776 | |
YC | Legacy Peak Estate | 1151.6 | 38.4411 | 106.0002 |
Chateau Baoshi | 1171.5 | 38.5720 | 106.0254 | |
Chateau Lanny | 1153.6 | 38.6526 | 106.0534 | |
Chateau Mihope | 1183 | 38.6228 | 106.0182 | |
Yuanshi Vineyard | 1192.4 | 38.5826 | 106.0145 | |
YN | LiLan Winery | 1198.9 | 38.2759 | 105.9642 |
Chateau Greatwall Terroir | 1211.6 | 38.3807 | 105.9543 | |
Fei Tswei winery | 1147.1 | 38.3739 | 105.9874 | |
Xinhunbin Winery | 1145 | 38.2405 | 106.0277 | |
Chateau Yuquan of Ning Xia State Farm | 1142.6 | 38.2627 | 106.0426 | |
QTX | Xige Estate | 1232 | 38.0769 | 105.8448 |
Zhongzexiban Winery | 1230.1 | 38.0402 | 105.8397 | |
Chateau Modern | 1208.5 | 38.0950 | 105.8657 | |
Sweet Dew Vineyard | 1171.2 | 38.1270 | 105.9359 | |
Huangkou Winery | 1184.6 | 38.0754 | 105.8978 | |
Longyu Estate | 1205.28 | 38.0470 | 105.5407 | |
HSP | Xingyu Winery | 1480.1 | 37.3405 | 106.1685 |
Roland Margo | 1482.5 | 37.3176 | 106.1640 | |
Baoyuan Dadi Winery | 1512.7 | 37.3052 | 106.1780 | |
Chateau J.L. Jiangyuan | 1456.2 | 37.3395 | 106.1567 | |
Mingyu Winery | 1454 | 37.3494 | 106.1587 |
Sample Number | Residual Sugar/(g/L) | Titratable Acid/(g/L) | pH | Alcohol/(%vol) |
---|---|---|---|---|
HL1 | 3.03 ± 0.06 c | 5.31 ± 0.04 bc | 3.54 ± 0.01 c | 12.87 ± 0.03 c |
HL2 | 4.13 ± 0.06 a | 5.74 ± 0.01 a | 3.55 ± 0.01 bc | 13.72 ± 0.04 b |
HL3 | 3.10 ± 0.10 c | 5.22 ± 0.04 cd | 3.60 ± 0.01 a | 12.85 ± 0.00 c |
HL4 | 2.87 ± 0.23 c | 5.08 ± 0.17 d | 3.60 ± 0.04 a | 12.81 ± 0.01 c |
HL5 | 3.73 ± 0.15 b | 5.45 ± 0.02 b | 3.59 ± 0.01 ab | 14.10 ± 0.03 a |
Average HL | 3.37 ± 0.51 A | 5.36 ± 0.24 AB | 3.58 ± 0.03 AB | 13.27 ± 0.56 A |
YC1 | 3.67 ± 0.15 a | 5.17 ± 0.03 d | 3.48 ± 0.00 d | 12.26 ± 0.02 b |
YC2 | 3.13 ± 0.15 b | 5.43 ± 0.04 c | 3.55 ± 0.00 b | 12.02 ± 0.02 c |
YC3 | 2.83 ± 0.06 c | 5.83 ± 0.02 a | 3.46 ± 0.01 e | 10.53 ± 0.03 d |
YC4 | 3.20 ± 0.10 b | 4.38 ± 0.01 e | 3.63 ± 0.00 a | 12.29 ± 0.06 b |
YC5 | 3.17 ± 0.15 b | 5.62 ± 0.05 b | 3.50 ± 0.01 c | 14.37 ± 0.03 a |
Average YC | 3.20 ± 0.30 A | 5.29 ± 0.52 AB | 3.52 ± 0.06 B | 12.29 ± 1.27 BC |
YN1 | 3.27 ± 0.15 b | 5.32 ± 0.03 bc | 3.60 ± 0.01 a | 13.35 ± 0.02 b |
YN2 | 3.87 ± 0.15 a | 5.67 ± 0.03 a | 3.50 ± 0.01 d | 12.85 ± 0.04 c |
YN3 | 3.10 ± 0.10 bc | 5.36 ± 0.03 b | 3.59 ± 0.01 a | 13.95 ± 0.03 a |
YN4 | 2.87 ± 0.06 c | 4.94 ± 0.01 d | 3.54 ± 0.01 b | 12.48 ± 0.05 d |
YN5 | 3.17 ± 0.06 b | 5.27 ± 0.03 c | 3.52 ± 0.01 c | 12.29 ± 0.02 e |
Average YN | 3.25 ± 0.36 A | 5.31 ± 0.24 AB | 3.55 ± 0.04 AB | 12.99 ± 0.63 AB |
QTX1 | 3.07 ± 0.12 bc | 5.41 ± 0.01 b | 3.57 ± 0.01 d | 12.51 ± 0.05 d |
QTX2 | 3.17 ± 0.06 bc | 4.97 ± 0.03 d | 3.61 ± 0.00 c | 13.50 ± 0.03 b |
QTX3 | 3.40 ± 0.17 b | 5.51 ± 0.02 a | 3.52 ± 0.00 e | 12.82 ± 0.04 c |
QTX4 | 4.17 ± 0.12 a | 4.44 ± 0.03 f | 3.49 ± 0.01 f | 11.86 ± 0.08 f |
QTX5 | 2.90 ± 0.10 c | 4.66 ± 0.03 e | 3.63 ± 0.00 b | 12.24 ± 0.01 e |
QTX6 | 3.20 ± 0.17 bc | 5.20 ± 0.01 c | 3.74 ± 0.01 a | 15.89 ± 0.11 a |
Average QTX | 3.32 ± 0.43 A | 5.03 ± 0.40 B | 3.59 ± 0.08 A | 13.14 ± 1.37 AB |
HSP1 | 3.07 ± 0.06 bc | 5.21 ± 0.04 d | 3.41 ± 0.00 d | 12.23 ± 0.03 b |
HSP2 | 3.10 ± 0.00 bc | 5.52 ± 0.02 b | 3.47 ± 0.01 a | 10.73 ± 0.01 d |
HSP3 | 2.97 ± 0.15 c | 5.94 ± 0.02 a | 3.44 ± 0.00 c | 12.41 ± 0.02 a |
HSP4 | 3.20 ± 0.10 b | 5.41 ± 0.03 c | 3.45 ± 0.01 b | 11.50 ± 0.02 c |
HSP5 | 3.43 ± 0.06 a | 5.91 ± 0.03 a | 3.34 ± 0.01 e | 12.42 ± 0.03 a |
Average HSP | 3.15 ± 0.18 A | 5.60 ± 0.30 A | 3.42 ± 0.05 C | 11.86 ± 0.68 C |
Producing Area | Location of Weather Stations | Longitude | Latitude |
---|---|---|---|
HL | Hongguang Town, Helan County, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.75 |
Hongguang Town, Helan County, Yinchuan City, Ningxia Hui Autonomous Region | 106.15 | 38.75 | |
Hongguang Town, Helan County, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.85 | |
YC | Beibao Town, Xixia District, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.65 |
Beibao Town, Xixia District, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.55 | |
Beibao Town, Xixia District, Yinchuan City, Ningxia Hui Autonomous Region | 105.95 | 38.65 | |
YN | Huangyangtan Farm, Yongning County, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.45 |
Huangyangtan Farm, Yongning County, Yinchuan City, Ningxia Hui Autonomous Region | 106.05 | 38.35 | |
Huangyangtan Farm, Yongning County, Yinchuan City, Ningxia Hui Autonomous Region | 105.95 | 38.35 | |
QTX | Qujing Town, Qingtongxia City, Wuzhong City, Ningxia Hui Autonomous Region | 105.95 | 38.15 |
Daba Town, Qingtongxia City, Wuzhong City, Ningxia Hui Autonomous Region | 105.95 | 38.05 | |
Daba Town, Qingtongxia City, Wuzhong City, Ningxia Hui Autonomous Region | 105.85 | 38.05 | |
HSP | Xinzhuangji Township, Hongsibu District, Wuzhong City, Ningxia Hui Autonomous Region | 106.15 | 37.25 |
Xinzhuangji Township, Hongsibu District, Wuzhong City, Ningxia Hui Autonomous Region | 106.15 | 37.35 | |
Xinzhuangji Township, Hongsibu District, Wuzhong City, Ningxia Hui Autonomous Region | 106.25 | 37.35 |
Meteorological Index | HL | YC | YN | QTX | HSP |
---|---|---|---|---|---|
Mean temperature of Apr (°C) | 9.90 | 9.57 | 10.67 | 10.67 | 8.33 |
Mean temperature of May–Jun period (°C) | 20.23 | 19.88 | 20.88 | 20.78 | 17.68 |
Mean temperature of Jul–Aug period (°C) | 25.38 | 25.05 | 26.04 | 25.90 | 22.65 |
Mean temperature of Sept (°C) | 20.15 | 19.78 | 20.69 | 20.53 | 17.45 |
Mean relative humidity of Apr (%) | 36.13 | 36.21 | 36.58 | 37.14 | 40.42 |
Mean relative humidity of May–Jun period (%) | 33.62 | 33.71 | 34.42 | 35.24 | 40.20 |
Mean relative humidity of Jul–Aug period (%) | 38.20 | 38.06 | 38.61 | 39.33 | 44.78 |
Mean relative humidity of Sept (%) | 42.94 | 43.26 | 44.83 | 46.38 | 53.94 |
Mean precipitation of Apr (mm) | 11.02 | 12.07 | 14.43 | 14.70 | 19.74 |
Mean precipitation of May–Jun period (mm) | 20.46 | 18.41 | 18.75 | 19.40 | 23.81 |
Mean precipitation of Jul–Aug period (mm) | 23.82 | 26.37 | 26.25 | 31.81 | 43.40 |
Mean precipitation of Sept (mm) | 29.03 | 26.36 | 22.00 | 25.18 | 29.33 |
Sunshine duration of Apr (h) | 171.98 | 171.14 | 175.58 | 177.56 | 187.51 |
Sunshine duration of May–Jun period (h) | 211.67 | 210.28 | 214.17 | 214.53 | 215.71 |
Sunshine duration of Jul–Aug period (h) | 209.89 | 208.46 | 212.49 | 213.97 | 220.32 |
Sunshine duration of Sept (h) | 157.65 | 154.11 | 154.43 | 152.27 | 157.43 |
NO. | CAS | Name | Threshold (μg/L) | Aroma Description | Type | HL | YC | YN | QTX | HSP |
---|---|---|---|---|---|---|---|---|---|---|
1 | [104-67-6] | Undecan-4-olide | 2.1 [46] a | Fruity, creamy | fruity | 4.69 | 4.69 | 4.84 | 4.71 | 4.71 |
2 | [105-54-4] | Ethyl butyrate | 20 [47] b | Apple, pineapple | fruity | 1.70 | 1.75 | 2.39 | 1.72 | 2.17 |
3 | [105-68-0] | Isoamyl propionate | 8.6 [48] a | Tropical fruit | fruity | 1.46 | 1.44 | 1.60 | 1.54 | 1.65 |
4 | [106-30-9] | Ethyl heptanoate | 18 [49] c | Fruity, cognac, rum | fruity | 0.99 | 1.00 | 1.00 | 1.03 | 1.22 |
5 | [106-32-1] | Ethyl caprylate | 5 [47] b | Fruity | waxy | 29.24 | 34.24 | 29.38 | 23.21 | 39.27 |
6 | [106-33-2] | Ethyl laurate | 20 [50] b | Sweet, waxy, flower | waxy | 1.94 | 2.15 | 1.13 | 1.41 | 1.46 |
7 | [106-70-7] | Methyl hexanoate | 10 [51] a | Fruity, bacon | fruity | 1.13 | 1.21 | 1.33 | 1.18 | 1.35 |
8 | [108-64-5] | Ethyl isovalerate | 3 [49] c | Fruity, sweet, apple, pineapple | fruity | 4.93 | 4.33 | 5.73 | 5.39 | 6.68 |
9 | [110-19-0] | Isobutyl acetate | 40 [52] d | Fruity odor, mild characteristic ester flavor | fruity | 0.58 | 1.18 | 1.33 | 0.70 | 0.78 |
10 | [111-27-3] | 1-Hexanol | 1100 [53] c | Gentle sweetness | herbal | 1.02 | 1.15 | 1.05 | 0.97 | 1.73 |
11 | [111-82-0] | Methyl laurate | 1.5 [54] e | Wax, soapy, coconut, mushroom | waxy | 7.70 | 7.60 | 6.77 | 6.92 | 7.18 |
12 | [112-12-9] | 2-Undecanone | 5.5 [55] a | Fruity flavor | fruity | 2.19 | 2.12 | 2.07 | 2.14 | 2.15 |
13 | [112-31-2] | Decanal | 1.25 [56] f | Pleasant smell | solvent | 11.10 | 11.13 | 11.36 | 0.00 | 0.00 |
14 | [112-54-9] | Dodecanal | 0.29 [57] a | Flower fragrance | solvent | 47.20 | 47.21 | 48.04 | 47.34 | 47.98 |
15 | [116-53-0] | 2-methyl-Butanoic acid | 100 [58] a | Spicy, sour, goat milk cheese | solvent | 1.88 | 1.72 | 1.26 | 1.78 | 1.83 |
16 | [122-78-1] | Benzeneacetaldehyde | 1 [59] f | Hyacinths, green | green | 11.56 | 10.83 | 12.20 | 12.61 | 9.73 |
17 | [123-66-0] | Ethyl Hexanoate | 5 [60] c | Sweet, fruity | fruity | 16.44 | 19.37 | 19.41 | 15.27 | 27.25 |
18 | [123-92-2] | Isoamyl acetate | 30 [50] b | Banana flavor | fruity | 7.38 | 9.84 | 11.10 | 7.71 | 12.18 |
19 | [124-06-1] | Ethyl myristate | 2 [52] b | Violet | waxy | 7.35 | 7.70 | 6.13 | 6.27 | 6.50 |
20 | [124-13-0] | Octanal | 2.5 [56] f | Fat, citrus | solvent | 2.17 | 0.00 | 2.20 | 2.19 | 2.05 |
21 | [124-19-6] | Nonanal | 1 [56] f | Cured, peas | solvent | 4.07 | 4.43 | 4.43 | 4.52 | 5.19 |
22 | [18829-56-6] | (E)-2-Nonenal | 0.6 [56] f | Fat, cucumber, aldehydes, citrus | fatty | 20.90 | 0.00 | 0.00 | 0.00 | 20.97 |
23 | [23726-93-4] | β-Damascenone | 0.05 [52] g | Apple, rose, honey, tobacco, sweet | fruity | 245.43 | 279.35 | 278.00 | 239.98 | 305.44 |
24 | [35854-86-5] | (6Z)-Nonen-1-ol | 1 [61] a | Cucumber | green | 8.63 | 7.28 | 7.75 | 8.12 | 9.20 |
25 | [3777-69-3] | 2-Pentyl-Furan | 5.8 [55] a | Fruity flavor | fruity | 1.81 | 1.78 | 1.75 | 1.77 | 1.81 |
26 | [432-25-7] | Beta-cyclocitral | 3 [62] a | Herbs, rose oxide, tobacco, fruity | herbal | 4.49 | 4.48 | 4.49 | 4.48 | 4.52 |
27 | [5405-41-4] | Ethyl 3-hydroxybutyrate | 20 [47] b | Fruity, grapes | fruity | 0.77 | 0.83 | 0.00 | 0.72 | 1.18 |
28 | [56805-23-3] | (E, Z)-3,6-Nonadien-1-ol | 3 [61] a | Fruity | green | 2.18 | 0.00 | 2.16 | 2.16 | 0.00 |
29 | [6066-49-5] | 3-N-Butylphthalide | 10 [63] a | Herbs, phenol, celery | herbal | 1.00 | 1.00 | 1.01 | 1.00 | 1.02 |
30 | [64187-83-3] | Ethyl 3Z-Hexenoate | 10 [64] e | Apple | green | 1.55 | 1.60 | 1.50 | 1.64 | 1.79 |
31 | [706-14-9] | γ-Decalactone | 0.7 [65] b | Coconut butter, sweet | fruity | 0.00 | 0.00 | 14.11 | 14.16 | 0.00 |
32 | [7452-79-1] | Ethyl 2-methylbutyrate | 2 [66] c | pungent, green apple, fruity | fruity | 3.01 | 2.71 | 3.17 | 2.83 | 3.38 |
33 | [79-77-6] | trans-β-Ionone | 0.007 [51] a | Flowers, berries | floral | 760.12 | 770.81 | 771.37 | 752.16 | 813.99 |
34 | [821-55-6] | 2-Nonanone | 10.9 [67] a | Soil, herb | fruity | 1.02 | 1.01 | 1.15 | 1.12 | 1.21 |
35 | [88-29-9] | Versalide | 2.4 [68] a | Musk | musk | 4.34 | 4.32 | 4.33 | 4.33 | 4.35 |
36 | [97-62-1] | Ethyl isobutyrate | 15 [69] b | Wine | fruity | 1.23 | 0.81 | 1.03 | 1.61 | 1.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cui, Z.; Li, J.; Wei, M.; Wang, Y.; Jiang, W.; Fang, Y.; Sun, X.; Ge, Q. Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics. Foods 2024, 13, 3644. https://doi.org/10.3390/foods13223644
Zhang Y, Cui Z, Li J, Wei M, Wang Y, Jiang W, Fang Y, Sun X, Ge Q. Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics. Foods. 2024; 13(22):3644. https://doi.org/10.3390/foods13223644
Chicago/Turabian StyleZhang, Yuanke, Zefang Cui, Jianing Li, Mengyuan Wei, Yue Wang, Wenguang Jiang, Yulin Fang, Xiangyu Sun, and Qian Ge. 2024. "Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics" Foods 13, no. 22: 3644. https://doi.org/10.3390/foods13223644
APA StyleZhang, Y., Cui, Z., Li, J., Wei, M., Wang, Y., Jiang, W., Fang, Y., Sun, X., & Ge, Q. (2024). Aroma Identification and Traceability of the Core Sub-Producing Area in the Helan Mountain Eastern Foothills Using Two-Dimensional Gas Chromatography and Time-of-Flight Mass Spectrometry and Chemometrics. Foods, 13(22), 3644. https://doi.org/10.3390/foods13223644