Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks
Abstract
:1. Introduction
- (1)
- We addressed the redundancy and multidimensional characteristics of hyperspectral data. Using the 1-D CNN CBD classification model, the Improved Firefly Band Selection Algorithm was developed as the objective function of the Firefly Algorithm to obtain the spectral bands most suitable for detecting CBDs.
- (2)
- The YOLOv4 and Faster R-CNN CBD classification models were constructed based on the synthesized pseudo-color images, aiming to evaluate the classification accuracy of CBDs based on two-dimensional spatial data.
- (3)
- The multidimensional YOLOv4 and Faster R-CNN CBD classification models were constructed by introducing the feature extraction module, the 1-D CNN CBD classification model, and the feature fusion layer into the YOLOv4 and Faster R-CNN CBD classification models, respectively. It allows the models to extract classification features from the one-dimensional spectral information of the localized regions and integrate them with the classification features from the two-dimensional spatial information, thereby improving the classification accuracy of CBDs. On this basis, the classification performances of the multidimensional YOLOv4 and Faster R-CNN data CBD classification models were compared.
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Data Acquisition
2.3. Spectral Image Correction
2.4. Hyperspectral Band Selection Algorithm
2.5. The Multidimensional Data CBD Classification Model
2.6. Evaluation Indicators
3. Results
3.1. Spectral Characteristics
3.2. Band Selection Results and Analysis
3.2.1. The Training of the Objective Function
3.2.2. Band Selection Result
3.3. Results of the CBD Classification Model
3.3.1. Results of the CBD Classification Model Based on Pseudo-Color Images
3.3.2. Results of the Multidimensional Data CBD Classification Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uzundumlu, A.S.; Dilli, M. Estimating Chicken Meat Productions of Leader Countries for 2019–2025 Years. Cienc. Rural 2023, 53, e20210477. [Google Scholar] [CrossRef]
- Beski, S.S.M.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Aslan, R.; Sarıca, M.; Çavdarcı, H.; Erensoy, K.; Karaçay, N. The use of partially slatted floor designs as an alternative to littered systems in broiler chickens. I. The effects on the performance, slaughter and carcass traits. Trop. Anim. Health Prod. 2024, 56, 327. [Google Scholar] [CrossRef]
- Shi, J.; Sun, G.; Tian, Y.; Han, R.; Li, G.; Huang, Y.; Wang, J.; Kang, X. Screening genes related to breast blister (keel cyst) in chicken by delta differential display. Asian J. Anim. Vet. Adv. 2012, 7, 989–997. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Jang, W.-J.; Lee, W.-H.; Kim, J.-D. Detection of needles in meat using X-ray images and convolution neural networks. J. Sens. Sci. Technol. 2020, 29, 427–432. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.; Cheng, J.H.; Wei, Q. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Kang, R.; Yang, K.; Zhang, X.X.; Wu, W.; Chen, K.J. Development of online detection and processing system for contaminants on chicken carcass surface. Appl. Eng. Agric. 2016, 32, 133–139. [Google Scholar] [CrossRef]
- Taemin, K.; Byoung-Kwan, C.; Moon, K. Emission filter design to detect poultry skin tumors using fluorescence hyperspectral imaging. Rev. Colomb. Cienc. Pecu. 2010, 23, 9–16. [Google Scholar]
- Ahmadi, S.A.; Mehrshad, N.; Razavi, S.M. Semisupervised dimensionality reduction for hyperspectral images based on the combination of semisupervised learning and metric learning. Imaging Sci. J. 2018, 66, 320–327. [Google Scholar] [CrossRef]
- Sawant, S.; Manoharan, P. Hyperspectral band selection based on metaheuristic optimization approach. Infrared Phys. Technol. 2020, 107, 103295. [Google Scholar] [CrossRef]
- Su, H.; Yong, B.; Du, Q. Hyperspectral band selection using improved firefly algorithm. IEEE Geosci. Remote Sens. Lett. 2015, 13, 68–72. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, D.; Hu, X.J.; Tong, W.H.; Han, B.L.; Tian, J.P.; Luo, H.B. Application of hyperspectral technology in detection of agricultural products and food: A Review. Food Sci. Nutr. 2020, 8, 5206–5214. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, N.; ElMasry, G.; Gou, P. Chapter 13—Hyperspectral imaging techniques for noncontact sensing of food quality. In Innovative Food Analysis; Academic Press: Cambridge, MA, USA, 2021; pp. 345–379. [Google Scholar]
- Tao, F.; Peng, Y.; Li, Y.; Chao, K.; Dhakal, S. Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Sci. 2012, 90, 851–857. [Google Scholar] [CrossRef]
- Li, D.; Zhang, F.; Yu, J.; Chen, X.; Liu, B.; Meng, X. A rapid and non-destructive detection of Escherichia coli on the surface of fresh-cut potato slices and application using hyperspectral imaging. Postharvest Biol. Technol. 2021, 171, 111352. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Sun, D.W.; ElMasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef]
- Xueying, L.; Zongmin, L.; Huimin, Q.; Guangyuan, C.; Pingping, F. Soil carbon content prediction using multi-source data feature fusion of deep learning based on spectral and hyperspectral images. Chemosphere 2023, 336, 139161. [Google Scholar] [CrossRef]
- Jernelv, I.L.; Hjelme, D.R.; Matsuura, Y.; Aksnes, A. Convolutional neural networks for classification and regression analysis of one-dimensional spectral data. arXiv 2020, arXiv:2005.07530. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.-W. Efficient extraction of deep image features using convolutional neural network (CNN) for applications in detecting and analysing complex food matrices. Trends Food Sci. Technol. 2021, 113, 193–204. [Google Scholar] [CrossRef]
- Liang, X.; Jia, X.; Huang, W.; He, X.; Li, L.; Fan, S.; Li, J.; Zhao, C.; Zhang, C. Real-Time Grading of Defect Apples Using Semantic Segmentation Combination with a Pruned YOLO V4 Network. Foods 2022, 11, 3150. [Google Scholar] [CrossRef]
- Wei, R.; Pei, Y.; Jiang, Y.; Zhou, P.; Zhang, Y. Detection of cherry defects based on improved Faster R-CNN model. Food Mach. 2021, 37, 98–105,201. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, Z. Potato surface defect detection based on deep transfer learning. Agriculture 2021, 11, 863. [Google Scholar] [CrossRef]
- Yang, B.; Yang, Z.; Xu, Y.; Cheng, W.; Zhong, F.; Ye, D.; Weng, H. A 1D-CNN model for the early detection of citrus Huanglongbing disease in the sieve plate of phloem tissue using micro-FTIR. Chemom. Intell. Lab. Syst. 2024, 252, 105202. [Google Scholar] [CrossRef]
- Shaoxiong, Y.; Guangman, S.; Guangqing, H.; Quan, W. Reshaping Hyperspectral Data into a Two-Dimensional Image for a CNN Model to Classify Plant Species from Reflectance. Remote Sens. 2022, 14, 3972. [Google Scholar] [CrossRef]
- Kumar, G.V.S.; Leelawathee, S.; Keerthana, V.; Thushitha, S. A Novel Approach for Band Selection Using Firefly Algorithm in Hyperspectral Images for Classification. Int. J. Eng. Res. Technol. (IJERT) 2017, 5, 9. [Google Scholar]
- Ouf, N.S. Leguminous seeds detection based on convolutional neural networks: Comparison of faster R-CNN and YOLOv4 on a small custom dataset. Artif. Intell. Agric. 2023, 8, 30–45. [Google Scholar] [CrossRef]
- Chagas, P.; Akiyama, R.; Meiguins, A.; Santos, C.; Saraiva, F.; Meiguins, B.; Morais, J. Evaluation of Convolutional Neural Network Architectures for Chart Image Classification. In Proceedings of the International Joint Conference on Neural Networks, Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar] [CrossRef]
- Książek, K.; Romaszewski, M.; Głomb, P.; Grabowski, B.; Cholewa, M.J.S. Blood stain classification with hyperspectral imaging and deep neural networks. Sensors 2020, 20, 6666. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.; Binding, C.; Bracher, A.J.S.d. GLORIA-A globally representative hyperspectral in situ dataset for optical sensing of water quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef]
- Ghasemi, M.; kadkhoda Mohammadi, S.; Zare, M.; Mirjalili, S.; Gil, M.; Hemmati, R. A new firefly algorithm with improved global exploration and convergence with application to engineering optimization. Decis. Anal. J. 2022, 5, 100125. [Google Scholar] [CrossRef]
Label | Precision | Recall | F1 Score | AP | mAP |
---|---|---|---|---|---|
CBC | 0.992 | 0.991 | 0.992 | 0.996 | 0.970 |
CBB | 0.977 | 0.984 | 0.980 | 0.963 | |
CBBR | 0.976 | 0.969 | 0.972 | 0.952 |
Model | Label | Precision | Recall | F1 Score | AP | IoU | mIoU | mAP | Inference Time |
---|---|---|---|---|---|---|---|---|---|
YOLOv4 | CBC | 0.634 | 0.613 | 0.624 | 0.522 | 0.894 | 0.903 | 0.649 | 29.7 |
CBB | 0.600 | 0.643 | 0.621 | 0.537 | 0.909 | ||||
CBBR | 0.967 | 0.935 | 0.951 | 0.888 | 0.902 | ||||
Faster R-CNN | CBC | 0.750 | 0.692 | 0.720 | 0.628 | 0.947 | 0.932 | 0.758 | 35.9 |
CBB | 0.787 | 0.783 | 0.808 | 0.696 | 0.925 | ||||
CBBR | 0.975 | 0.944 | 0.959 | 0.949 | 0.934 |
Label | Precision | Recall | F1 Score | AP | IoU | mIoU | mAP | Inference Time |
---|---|---|---|---|---|---|---|---|
CBC | 0.967 | 0.951 | 0.959 | 0.915 | 0.894 | 0.901 | 0.916 | 41.8 |
CBB | 0.950 | 0.966 | 0.958 | 0.862 | 0.912 | |||
CBBR | 0.983 | 0.983 | 0.983 | 0.972 | 0.897 |
Label | Precision | Recall | F1 Score | AP | IoU | mIoU | mAP | Inference Time |
---|---|---|---|---|---|---|---|---|
CBC | 0.992 | 1.000 | 0.996 | 0.996 | 0.919 | 0.924 | 0.990 | 58.2 |
CBB | 0.983 | 0.992 | 0.983 | 0.983 | 0.924 | |||
CBBR | 0.992 | 0.983 | 0.979 | 0.988 | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, L.; Bao, J.; Yang, H.; Gao, L.; Zhang, X.; Li, S.; Wang, H. Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks. Foods 2024, 13, 3745. https://doi.org/10.3390/foods13233745
Duan L, Bao J, Yang H, Gao L, Zhang X, Li S, Wang H. Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks. Foods. 2024; 13(23):3745. https://doi.org/10.3390/foods13233745
Chicago/Turabian StyleDuan, Liukui, Juanfang Bao, Hao Yang, Liuqian Gao, Xu Zhang, Shengjie Li, and Huihui Wang. 2024. "Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks" Foods 13, no. 23: 3745. https://doi.org/10.3390/foods13233745
APA StyleDuan, L., Bao, J., Yang, H., Gao, L., Zhang, X., Li, S., & Wang, H. (2024). Classification of Chicken Carcass Breast Blood-Related Defects Using Hyperspectral Imaging Combined with Convolutional Neural Networks. Foods, 13(23), 3745. https://doi.org/10.3390/foods13233745