Determination of Free Fatty Acids in Krill Oil during Storage Based on NH2-MMS
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals and Materials
2.2. The Preparation of NH2-MMS
2.3. The Characterization of NH2-MMS
2.4. Adsorption Experiments
2.5. SPE Procedure
2.6. Derivatization
2.7. GC-FID Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of NH2-MMS
3.2. The Adsorption Experiment of NH2-MMS
3.3. Optimization of Solid-Phase Extraction Conditions
3.4. Linearity Range, LOQs, and LODs
3.5. Recoveries and Precision
3.6. Applications in Real Samples
3.7. Comparison to the Existing Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, Z.X.; Zhu, K.; Dai, Z.Y. Preparation of Antarctic krill oil emulsion and its stability under catalase treatment. Foods 2021, 10, 2797. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.N.; Wang, S.C.; Zeb, L.; Xiu, Z.L. Effects of carboxymethyl chitosan adsorption on bioactive components of Antarctic krill oil. Food Chem. 2022, 388, 132995. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, J.; Zhao, M.; Gong, Y.; Qiao, Y.B. Effect of Coagulation Bath Temperature on Mechanical, Morphological, and Thermal Properties of Cellulose/Antarctic Krill Protein Composite Fibers. Langmuir 2020, 36, 5647–5653. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ding, Z.; Liu, Y.; Xu, Y.J. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr. Rev. Food Sci. Food Saf. 2024, 23, 13332. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Liu, Y.Z.; Ma, L.; Li, H.; Wang, Z.P.; Xu, J.; Xue, C.H. The oxidation mechanism of phospholipids in Antarctic krill oil promoted by metal ions. Food Chem. 2020, 333, 127448. [Google Scholar] [CrossRef]
- Song, G.; Wang, H.; Zhang, M.; Zhang, Y.; Wang, H.; Yu, X.; Wang, J.; Shen, Q. Real-time monitoring of the oxidation characteristics of Antarctic krill oil (Euphausia superba) during storage by electric soldering iron ionization mass spectrometry-based lipidomics. J. Agric. Food. Chem. 2020, 68, 1457–1467. [Google Scholar] [CrossRef]
- Furtado, J.D.; Beqari, J.; Campos, H. Comparison of the utility of total plasma fatty acids versus those in cholesteryl ester, phospholipid, and triglyceride as biomarkers of fatty acid intake. Nutrients 2019, 11, 2081. [Google Scholar] [CrossRef]
- Han, L.; Zhai, R.; Shi, R.; Hu, B.; Yang, J.; Xu, Z.; Li, T. Impact of cod skin peptide-ι-carrageenan conjugates prepared via the Maillard reaction on the physical and oxidative stability of Antarctic krill oil emulsions. Food Chem. 2024, 21, 101130. [Google Scholar] [CrossRef]
- AOCS. Official Method Cd 3d–63. Acid Value: Sampling and Analysis of Commercial Fats and Oils; American Oil Chemists’ Society: Urbana, IL, USA, 2009. [Google Scholar]
- Lowry, R.R.; Tinsley, I.J. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Cortés, V.; Blasco, J.; Aleixos, N.; Cubero, S.; Talens, P. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 2019, 85, 138–148. [Google Scholar] [CrossRef]
- Tang, F.; Green, H.S.; Wang, S.C.; Hatzakis, E. Analysis and authentication of avocado oil using high resolution NMR spectroscopy. Molecules 2021, 26, 310. [Google Scholar] [CrossRef] [PubMed]
- Spadafora, N.D.; Eggermont, D.; Křešťáková, V.; Chenet, T.; Rossum, F.V.; Purcaro, G. Comprehensive analysis of floral scent and fatty acids in nectar of Silene nutans through modern analytical gas chromatography techniques. J. Chromatogr. A 2023, 1696, 463977. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.Y.; Wu, H.L.; Chen, S.H.; Kou, H.S.; Wu, S.M. Simple and sensitive analysis of long-chain free fatty acids in milk by fluorogenic derivatization and highperformance liquid chromatography. J. Agric. Food Chem. 2002, 50, 71–73. [Google Scholar] [CrossRef]
- Rosales-Solano, H.; Galievsky, V.; Murtada, K.; Radovanovic, P.V.; Pawliszyn, J. Profiling of unsaturated lipids by raman spectroscopy directly on solid-phase microextraction probes. Anal. Chem. 2021, 94, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.T.; He, X.M.; He, S.; Chen, X.; Zhu, S.K.; Feng, Y.Q. Synthesis of polyethylenimine functionalized mesoporous silica for In-Pipet-Tip phosphopeptide enrichment. ACS Appl. Mater. Interfaces 2016, 8, 32182–32188. [Google Scholar] [CrossRef]
- Cha, D.; Liu, M.; Zeng, Z.; Cheng, D.; Zhan, G. Analysis of fatty acids in lung tissues using gas chromatography-mass spectrometry preceded by derivatization solid-phase microextraction with a novel fiber. Anal. Chim. Acta 2006, 572, 47–54. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, J.; Xu, Y.; Lv, D.; Rakariyatham, K.; Zhou, D. Rapid extraction of free fatty acids from edible oil after accelerated storage based on amino-modified magnetic silica nanospheres. Anal. Methods 2019, 11, 4520–4527. [Google Scholar] [CrossRef]
- Qiang, T.T.; Song, Y.Y.; Zhu, R.T.; Yuan, W.Z. Biomass material derived hierarchical porous TiO2: Adjustable pore size for protein adsorption. J. Alloys Compd. 2020, 829, 154512. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Bai, S.Y.; Shang, H.; Tian, Q.; Sun, J.H.; Wu, X.; Liu, J. One-pot assembling of hierarchical porous carbon/silica nanocomposites for cycloaddition reaction. Microporous Mesoporous Mater. 2020, 293, 109768. [Google Scholar] [CrossRef]
- Phatharachindanuwong, C.; Hansupalak, N.; Chareonpanich, M.; Chisti, Y.; Limtrakul, J.; Plank, J. Morphology and adsorption capacity of sodium silicate-based hierarchical porous silica templated on natural rubber: Influence of washing–drying methods. Mater. Lett. 2014, 130, 206–209. [Google Scholar] [CrossRef]
- May-Masnou, A.; Pasc, A.; Stébé, M.J.; Gutiérrez, J.M.; Porras, M.; Blin, J.L. Solubilization of decane into gemini surfactant with a modified Jeffamine backbone: Design of hierarchical porous silica. Microporous Mesoporous Mater. 2013, 169, 235–241. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, F.; Xiu, Z.; Duan, L.M.; Liu, Z.R.; Guan, J.Q. Enhanced phenol tert-butylation reaction activity over hierarchical porous silica-alumina materials. Catalysts 2020, 10, 1098. [Google Scholar] [CrossRef]
- Ong-on, I.; Embley, B.; Chisti, Y.; Hansupalak, N. Prediction of pore properties of hierarchical porous silica templated on natural rubber. Microporous Mesoporous Mater. 2016, 233, 1–9. [Google Scholar] [CrossRef]
- Yang, C.; Li, J.; Wang, S.; Wang, Y.; Jia, J.; Wu, W.; Hu, J.; Zhao, Q. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem. 2022, 384, 132620. [Google Scholar] [CrossRef]
- Nguyen, D.K.; Dinh, V.P.; Hưng, N.Q.; Hung, N.T. Zeolite ZSM-5 synthesized from natural silica sources and its applications: A critical review. J. Chem. Technol. Biotechnol. 2023, 98, 1339–1355. [Google Scholar] [CrossRef]
- Kadja, G.T.M.; Azhari, N.J.; Apriadi, F.; Novita, T.H.; Safira, I.R.; Rasrendra, C.B. Low-temperature synthesis of three-pore system hierarchical ZSM-5 zeolite for converting palm oil to high octane green gasoline. Microporous Mesoporous Mater. 2023, 360, 112731. [Google Scholar] [CrossRef]
- Barczak, M. Amine-modified mesoporous silicas: Morphology-controlled synthesis toward efficient removal of pharmaceuticals. Microporous Mesoporous Mater. 2019, 278, 354–365. [Google Scholar] [CrossRef]
- Mello, M.R.; Phanon, D.; Silveira, G.Q. Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 2011, 143, 174–179. [Google Scholar] [CrossRef]
- Ge, T.G.; Hua, Z.L.; Zhu, Y.; Chen, L.S.; Ren, W.C.; Yao, H.L.; Shi, J.L. Amine-modified hierarchically structured zeolites as acid-base bi-functional catalysts for one-pot deacetalization-Knoevenagel cascade reaction. RSC Adv. 2014, 4, 64871–64876. [Google Scholar] [CrossRef]
- Zhu, G.H. Synthesis of Zeolite@ MOF Nanoporous Composites as Bifunctional Catalysts. Master’s Thesis, University of Maryland, College Park, MD, USA, 2014. [Google Scholar]
- Wang, H.L.; Ma, Z.G.; Yang, J.J. Direct Amination of Benzene with NH3 and H2O2 Over Hierarchical Fe, Cu/ZSM-5 Prepared by Post-synthesis Treatment of Nanocrystallite B-ZSM-5. Catal. Lett. 2020, 150, 1454–1461. [Google Scholar] [CrossRef]
- Erika, D.; Nurdini, N.; Mulyani, I.; Kadja, G.T.M. Amine-functionalized ZSM-5-supported gold nanoparticles as a highly efficient catalyst for the reduction of p-Nitrophenol. Inorg. Chem. Commun. 2023, 147, 110253. [Google Scholar] [CrossRef]
- Sarmah, B.; Srivastava, R. Octahedral MnO2 Molecular Sieve-Decorated Meso-ZSM-5 Catalyst for Eco-Friendly Synthesis of Pyrazoles and Carbamates. Ind. Eng. Chem. Res. 2017, 56, 15017–15029. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.X.; Liu, Y.H.; Xing, B.S. Adsorption of Pb (II) and Cd (II) by magnetic activated carbon and its mechanism. Sci. Total Environ. 2012, 757, 143910. [Google Scholar] [CrossRef]
- Tseng, R.L.; Wu, F.C. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J. Hazard. Mater. 2008, 155, 277–287. [Google Scholar] [CrossRef]
- Zhang, N.; Li, J.F.; Tian, B.; Li, T.; Zhang, J.W.; Wang, Q.; Zhao, H. RIGP-Induced Surface Modification of Cellulose for the Preparation of Amidoxime-Modified Cellulose/Graphite Oxide Composites with Enhanced Uranium Adsorption. Ind. Eng. Chem. Res. 2024, 63, 2337–2346. [Google Scholar] [CrossRef]
- Iriarte-Velasco, U.; Chimeno-Alanís, N.; Gonzalez-Marcos, M.P.; Álvarez-Uriarte, J.I. Relationship between thermodynamic data and adsorption/desorption performance of acid and basic dyes onto activated carbons. J. Chem. Eng. 2021, 56, 2100–2109. [Google Scholar] [CrossRef]
- AOAC. Guidelines for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals; Association of Official Analytical Chemists: Rockville, MD, USA, 2002. [Google Scholar]
- Fu, J.J.; Fu, D.W.; Zhang, G.Y.; Zhang, Z.H.; Shao, Z.W. Oxidative stability and in vitro release behaviour of microencapsulated Antarctic krill oil and fish oil: The effect of lipid class composition. Int. J. Food Sci. Technol. 2022, 57, 7634–7643. [Google Scholar] [CrossRef]
- Wei, F.; Zhao, Q.; Lv, X.; Dong, X.Y.; Feng, Y.Q.; Chen, H. Rapid Magnetic Solid-Phase Extraction Based on Monodisperse Magnetic Single-Crystal Ferrite Nanoparticles for the Determination of Free Fatty Acid Content in Edible Oils. J. Agric. Food Chem. 2013, 61, 0021–8561. [Google Scholar] [CrossRef]
- Mhadmhan, S.; Yoosuk, B.; Chareonteraboon, B.; Janetaisong, P.; Pitakjakpipop, P.; Henpraserttae, S.; Udomsap, S. Elimination of free fatty acid from palm oil by adsorption process using a strong base anion exchange resin. Sep. Purif. Technol. 2023, 310, 123211. [Google Scholar] [CrossRef]
- Phetrungnapha, A.; Wiengnak, N.; Maikrang, K. Removal of free fatty acid from waste cooking oil using an adsorbent derived from cassava peels. Korean J. Chem. Eng. 2023, 40, 2253–2262. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwak, S.Y. Functional mesoporous silica with controlled pore size for selective adsorption of free fatty acid and chlorophyll. Microporous Mesoporous Mater. 2020, 306, 110410. [Google Scholar] [CrossRef]
Element | ZSM-5 | NH2-MMS |
---|---|---|
C | 16.69 | 31.59 |
O | 44.53 | 35.84 |
Al | 0.30 | 0.24 |
Si | 38.48 | 31.82 |
N | 0 | 0.50 |
ZSM-5 | NH2-MMS | |
---|---|---|
BET surface area (m2/g) | 220.04 | 163.58 |
Pore volume (cm2/g) | 0.21 | 0.20 |
Pore size (nm) | 10.31 | 12.93 |
T (°C) | NH2-MMS | NH2-SBA-15 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Langmuir Adsorption Isotherm Model | Freundlich Adsorption Isotherm Model | Langmuir Adsorption Isotherm Model | Freundlich Adsorption Isotherm Model | |||||||||
qm | KL | R2 | n | KF | R2 | qm | KL | R2 | n | KF | R2 | |
35 | 0.714 | 0.277 | 0.957 | 2.020 | 0.175 | 0.991 | 0.675 | 0.158 | 0.903 | 1.656 | 0.106 | 0.989 |
45 | 1.017 | 0.247 | 0.963 | 2.059 | 0.248 | 0.995 | 0.790 | 0.225 | 0.984 | 1.839 | 0.163 | 0.987 |
55 | 1.087 | 0.300 | 0.916 | 2.062 | 0.279 | 0.998 | 0.973 | 0.232 | 0.929 | 1.886 | 0.209 | 0.986 |
Adsorbents | Pseudo-First-Order Adsorption | Pseudo-Second-Order Adsorption | ||||
---|---|---|---|---|---|---|
qe | K1 | R2 | qe | K2 | R2 | |
NH2-MMS | 0.590 | 0.043 | 0.997 | 0.624 | 0.122 | 1.000 |
NH2-SBA-15 | 0.565 | 0.047 | 0.997 | 0.598 | 0.140 | 1.000 |
Analytes | Linear Equation | R2 | Linear Range | LODs | LOQs |
---|---|---|---|---|---|
C14:0 | y = 6.203x + 1.463 | 0.998 | 0.10–100 | 0.06 | 0.20 |
C16:0 | y = 5.805x + 7.404 | 0.996 | 0.10–100 | 0.06 | 0.20 |
C16:1 | y = 1.464x + 1.432 | 0.992 | 0.25–100 | 0.15 | 0.50 |
C18:0 | y = 6.612x + 1.624 | 0.998 | 0.10–100 | 0.06 | 0.20 |
C18:1n-9 | y = 7.158x + 2.352 | 0.994 | 0.10–100 | 0.06 | 0.20 |
C20:1n-9 | y = 7.549x + 1.497 | 0.999 | 0.25–100 | 0.15 | 0.50 |
Analytes | Intraday Recoveries | Interday Recoveries | ||||
---|---|---|---|---|---|---|
0.5 μg g−1 | 10 μg g−1 | 50 μg g−1 | 0.5 μg g−1 | 10 μg g−1 | 50 μg g−1 | |
C14:0 | 87.88 ± 1.92 | 89.70 ± 0.08 | 91.12 ± 1.17 | 87.43 ± 1.68 | 88.20 ± 2.12 | 92.67 ± 3.40 |
C16:0 | 88.87 ± 0.86 | 91.07 ± 0.02 | 92.04 ± 0.19 | 88.88 ± 0.70 | 90.76 ± 0.48 | 93.35 ± 1.86 |
C16:1 | 90.85 ± 4.65 | 92.06 ± 4.18 | 94.10 ± 4.52 | 88.95 ± 4.65 | 89.36 ± 5.12 | 93.59 ± 3.76 |
C18:0 | 85.96 ± 2.75 | 88.72 ± 5.00 | 93.29 ± 1.10 | 86.97 ± 2.66 | 89.19 ± 4.13 | 92.55 ± 1.39 |
C18:1n-9 | 87.44 ± 3.70 | 89.59 ± 0.63 | 91.23 ± 1.91 | 86.89 ± 3.13 | 88.87 ± 1.14 | 90.55 ± 1.83 |
C20:1n-9 | 85.42 ± 2.55 | 88.12 ± 3.08 | 91.84 ± 2.80 | 85.16 ± 2.11 | 86.39 ± 3.51 | 94.31 ± 4.17 |
Analytes | 0d | 7d | 14d | 21d | 28d | 35d |
---|---|---|---|---|---|---|
C14:0 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.68 ± 0.19 a |
C16:0 | 2.87 ± 0.18 d | 2.80 ± 0.12 d | 2.90 ± 0.26 c | 3.07 ± 0.81 b | 3.28 ± 0.61 ab | 3.42 ± 0.34 a |
C16:1n-7 | n.d. | n.d. | n.d. | 0.68 ± 0.18 bc | 0.80 ± 0.34 ab | 0.83 ± 0.51 a |
C18:0 | 1.00 ± 0.10 d | 0.97 ± 0.23 d | 1.11 ± 0.09 c | 1.22 ± 0.27 bc | 1.35 ± 0.19 b | 1.69 ± 0.19 a |
C18:1n-9 | 0.79 ± 0.40 b | 0.85 ± 0.72 a | 0.88 ± 0.37 a | 0.92 ± 0.33 a | 0.96 ± 0.26 a | 1.02 ± 0.01 a |
C20:1n-9 | 1.62 ± 0.24 c | 1.66 ± 0.21 c | 1.89 ± 0.09 bc | 1.93 ± 0.0.20 bc | 2.11 ± 0.11 b | 2.46 ± 0.36 a |
Analytes | 0d | 7d | 14d | 21d | 28d | 35d |
---|---|---|---|---|---|---|
C14:0 | n.d. | n.d. | n.d. | 0.71 ± 0.42 b | 0.92 ± 0.11 ab | 0.98 ± 0.19 a |
C16:0 | 2.70 ± 0.18 b | 2.79 ± 0.12 b | 2.98 ± 0.26 ab | 3.12 ± 0.81 ab | 3.28 ± 0.61 ab | 3.48 ± 0.34 a |
C16:1n-7 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.78 ± 0.51 a |
C18:0 | 1.00 ± 0.10 c | 1.13 ± 0.23 bc | 1.23 ± 0.09 ab | 1.31 ± 0.27 ab | 1,44 ± 0.19 ab | 1.76 ± 0.19 a |
C18:1n-9 | 0.79 ± 0.40 e | 0.80 ± 0.72 e | 0.93 ± 0.37 d | 1.06 ± 0.33 c | 1.14 ± 0.26 b | 1.51 ± 0.01 a |
C20:1n-9 | 1.65 ± 0.24 e | 1.94 ± 0.21 d | 2.14 ± 0.09 c | 2.31 ± 0.20 bc | 2.44 ± 0.11 ab | 2.57 ± 0.36 a |
Analytes | 0d | 7d | 14d | 21d | 28d | 35d |
---|---|---|---|---|---|---|
C14:0 | n.d. | n.d. | 0.72 ± 0.12 cd | 0.92 ± 0.09 bc | 1.01 ± 0.34 b | 1.27 ± 0.48 a |
C16:0 | 2.70 ± 0.18 a | 2.73 ± 0.13 a | 2.87 ± 0.82 a | 3.20 ± 0.76 b | 3.28 ± 0.06 b | 3.45 ± 0.32 b |
C16:1n-7 | n.d. | n.d. | n.d. | n.d. | 0.76 ± 0.75 ab | 1.00 ± 0.09 a |
C18:0 | 1.00 ± 0.10 b | 1.12 ± 0.12 b | 1.16 ± 0.37 b | 1.21 ± 0.32 ab | 1.38 ± 0.15 ab | 1.56 ± 0.32 a |
C18:1n-9 | 0.79 ± 0.40 e | 1.10 ± 0.28 de | 1.31 ± 0.34 cd | 1.46 ± 0.24 bc | 1.79 ± 0.03 b | 2.38 ± 0.21 a |
C20:1n-9 | 1.65 ± 0.24 e | 2.09 ± 0.22 de | 2.21 ± 0.52 cd | 2.45 ± 0.29 bc | 2.65 ± 0.20 ab | 2.88 ± 0.29 a |
Analytes | 0d | 7d | 14d | 21d | 28d | 35d |
---|---|---|---|---|---|---|
C14:0 | n.d. | 0.68 ± 0.21 a | 0.89 ± 0.20 d | 1.11 ± 0.70 c | 1.35 ± 0.49 d | 1.58 ± 0.09 a |
C16:0 | 2.70 ± 0.18 e | 2.84 ± 0.30 a | 3.04 ± 0.56 e | 3.83 ± 0.4 c | 4.02 ± 0.06 d | 4.29 ± 0.19 b |
C16:1n-7 | n.d. | n.d. | 0.74 ± 0.28 e | 0.91 ± 0.3 c | 1.35 ± 0.14 d | 1.46 ± 0.25 b |
C18:0 | 1.00 ± 0.10 e | 1.31 ± 0.15 a | 1.65 ± 0.24 e | 2.11 ± 0.24 c | 2.50 ± 0.36 d | 2.76 ± 0.11 b |
C18:1n-9 | 0.79 ± 0.40 d | 1.01 ± 0.39 a | 1.28 ± 0.19 d | 1.50 ± 0.13 c | 2.31 ± 0.09 c | 2.87 ± 0.40 b |
C20:1n-9 | 1.65 ± 0.24 d | 2.08 ± 0.45 a | 2.58 ± 0.38 c | 2.83 ± 0.15 b | 3.67 ± 0.29 b | 4.18 ± 0.25 a |
Adsorbent Materials | Morphology | Pore Structure | Reaction Conditions | Toxins in the Reactive Materials | Loading Capacity | Literatures |
---|---|---|---|---|---|---|
Magnetic single-crystal ferrite nanoparticles | Spherical | - | High temperature and pressure | - | - | Wei Fang et al. [42] |
Strong base anion exchange resin | Spherical | - | Normal temperature and pressure | Toluene and divinyl benzene | 0.3–0.8 mmol g−1 (166.7–256.4 mg g−1) | Mhadmhan et al. [43] |
Cassava peel materials | Bulk | Porous structure | High temperature and high pressure | - | 0.8 mmol g−1 (322 mg g−1) | Phetrungnapha et al. [44] |
Mesoporous silica nanoparticles | Rodlike | Mesoporous structure | Normal temperature and pressure | - | 0.528 mmol g−1 | Ahn et al. [45] |
Amino-modified SBA-15 | Cord-like domains | Mesoporous structure | Normal temperature and pressure | - | 0.75 mmol g−1 | Yang et al. [26] |
NH2-MMS | Spherical | Hierarchical pores | Normal temperature and pressure | - | 1.02 mmol g−1 | Our study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Yang, C.; Wang, X.; Wang, S.; Yin, J.; Du, Y.; Wu, D.; Hu, J.; Zhao, Q. Determination of Free Fatty Acids in Krill Oil during Storage Based on NH2-MMS. Foods 2024, 13, 2736. https://doi.org/10.3390/foods13172736
Zhang S, Wang Y, Yang C, Wang X, Wang S, Yin J, Du Y, Wu D, Hu J, Zhao Q. Determination of Free Fatty Acids in Krill Oil during Storage Based on NH2-MMS. Foods. 2024; 13(17):2736. https://doi.org/10.3390/foods13172736
Chicago/Turabian StyleZhang, Shibing, Yiran Wang, Chunyu Yang, Xi Wang, Siyi Wang, Jiping Yin, Yinan Du, Di Wu, Jiangning Hu, and Qi Zhao. 2024. "Determination of Free Fatty Acids in Krill Oil during Storage Based on NH2-MMS" Foods 13, no. 17: 2736. https://doi.org/10.3390/foods13172736
APA StyleZhang, S., Wang, Y., Yang, C., Wang, X., Wang, S., Yin, J., Du, Y., Wu, D., Hu, J., & Zhao, Q. (2024). Determination of Free Fatty Acids in Krill Oil during Storage Based on NH2-MMS. Foods, 13(17), 2736. https://doi.org/10.3390/foods13172736