Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Obtention
2.2. Chemical Proximate Analysis
2.3. Mineral Composition by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)
2.4. Vitamin Content
2.5. In Vitro Protein Digestibility
2.6. Total and Resistant Starch
2.7. RDI Contribution in 50/50% NC-T/NCCF-T
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximal Analysis
3.2. Mineral Content
3.3. Vitamin Content
3.4. Amino Acid Content, In Vitro Protein Digestibility and PDCAAS
3.5. Total and Resistant Starch
3.6. Contribution of NCCF-T and NC-T to the Recommended Daily Intake (RDI) of Main Micronutrients According to Experimental Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Escobedo-Garrido, J.S.; Jaramillo-Villanueva, J.L. Las preferencias de los consumidores por tortillas de maíz. El caso de Puebla, México. Estud. Soc. Rev. Alim Cont. Des. Reg. 2019, 29, 53. [Google Scholar] [CrossRef]
- Castillo, S. El Consumo de Tortilla en México: Una Industria Sólida y en Crecimiento. Available online: https://www.hablandodenegocios.com.mx/el-consumo-de-tortilla-en-mexico-una-industria-solida-y-en-crecimient (accessed on 6 May 2024).
- CONEVAL. Evolución de la Canasta Alimentaria. Consulta del Valor de las Líneas de Bienestar. Available online: https://www.coneval.org.mx/Medicion/MP/Paginas/Lineas-de-bienestar-y-canasta-basica.aspx (accessed on 3 April 2024).
- Gutiérrez-Cortez, E.; Hernández-Becerra, E.; Londoño-Restrepo, S.M.; Millan-Malo, B.M.; Morales-Sánchez, E.; Gaytán-Martínez, M.; Rodriguez-García, M.E. Changes in the physicochemical properties of maize endosperm, endosperm fractions, and isolated starches because of nixtamalization. J. Cereal Sci. 2022, 108, 103583. [Google Scholar] [CrossRef]
- Villada, J.A.; Sanchez-Sinencio, F.; Zelaya-Angel, O.; Gutierrez-Cortez, E.; Rodríguez-García, M.E. Study of the morphological, structural, thermal, and pasting corn transformation during the traditional nixtamalization process: From corn to tortilla. J. Food Eng. 2017, 212, 242–251. [Google Scholar] [CrossRef]
- NOM-247-SSA1-2008; Productos y Servicios. Cereales y sus Productos. Cereales, Harinas de Cereales, Sémolas o Semolinas. Alimentos a Base de: Cereales, Semillas Comestibles, de Harinas, Sémolas o Semolinas o sus Mezclas. Productos de Panificación. Disposiciones y Especificaciones Sanitarias y Nutrimentales. Norma Oficial Mexicana: Alcaldía Cuauhtémoc, Mexico, 2008.
- PROY-NOM-187-SSA1/SE-2021; Productos de Maíz y Trigo-Denominaciones-Masa y Productos Derivados de Masa-Especificaciones Sanitarias-Información Comercial y Sanitaria-Métodos de Prueba. Proyecto de Norma Oficial Mexicana: Alcaldía Cuauhtémoc, Mexico, 2021.
- NOM-187-SSA1/SE-2023; Productos de Maíz Nixtamalizado—Masa, Harina, Tortillas, Tostadas y Otros Productos Derivados de Masa—Especificaciones y Disposiciones Sanitarias. Denominaciones e Información Sanitaria y Comercial. Norma Oficial Mexicana: Alcaldía Cuauhtémoc, Mexico, 2023.
- Serna-Saldivar, S.O.; Amaya, C.A.; Herrera, P.; Melesio, J.L.; Preciado, R.E.; Terron, A.D.; Vazquez, G. Evaluation of the lime-cooking and tortilla making properties of quality protein maize hybrids grown in Mexico. Plant Foods Hum. Nutr. 2008, 63, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Serna-Saldivar, S.O.; Rooney, L.W. Industrial production of maize tortillas and snacks. In Tortillas; AACC International Press: Saint Paul, MN, USA, 2015; pp. 247–281. [Google Scholar] [CrossRef]
- Bressani, R.; Rooney, L.W.; Serna-Saldivar, S.O. Nutritional quality of nixtamalized corn masa flour. Achievement through fortification with micronutrients. In Fortification of Corn Masa Flour with Iron and/or Other Nutrients: A Literature and Industry Experience Review; SUSTAIN Press: London, UK, 1997; pp. 22–67. Available online: https://pdf.usaid.gov/pdf_docs/pnacc113.pdf (accessed on 8 May 2024).
- NOM-051-SCFI/SSA1-2010; Especificaciones Generales de Etiquetado Para Alimentos y Bebidas no Alcohólicas Preenvasados-Información Comercial y Sanitaria. Norma Oficial Mexicana: Alcaldía Cuauhtémoc, Mexico, 2010.
- Luga, M.; Ávila Akerberg, V.D.; González Martínez, T.M.; Mironeasa, S. Consumer Preferences and Sensory Profile Related to the Physico-Chemical Properties and Texture of Different Maize Tortillas Types. Foods 2019, 8, 533. [Google Scholar] [CrossRef]
- Méndez-Albores, A.; Martínez-Morquecho, R.A.; Moreno-Martínez, E.; Vázquez-Durán, A. Technological properties of maize tortillas produced by microwave nixtamalization with variable alkalinity. Afr. J. Biotechnol. 2012, 11, 15178–15187. Available online: https://www.ajol.info/index.php/ajb/article/view/129515 (accessed on 15 May 2024).
- Sánchez-Vega, L.P.; Espinoza-Ortega, A.; Thomé-Ortiz, H.; Moctezuma-Pérez, S. Perception of traditional foods in societies in transition: The maize tortilla in Mexico. J. Sens. Stud. 2020, 36, e12635. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Villalpando, S.; Mejía-Rodríguez, F.; Cuevas-Nasu, L.; Gaona-Pineda, E.B.; Rangel-Baltazar, E.; Zambrano-Mujica, N. Prevalence of iron, folate, and vitamin B12 deficiencies in 20 to 49 years old women: Ensanut 2012. Salud Publ. Mex. 2015, 57, 385–393. [Google Scholar] [CrossRef]
- Morales, J.C.; García, R.A. Effect of different corn processing techniques in the nutritional composition of nixtamalized corn tortillas. J. Nutr. Food Sci. 2017, 7, 2155–9600. [Google Scholar] [CrossRef]
- Orjuela, M.A.; Mejia-Rodriguez, F.; Quezada, A.D.; Sanchez-Pimienta, T.G.; Shamah-Levy, T.; Romero-Rendón, J.; Bhatt-Carreño, S.; Ponce-Castañeda, M.V.; Castro, M.A.; Paul, L.; et al. Fortification of bakery and corn masa–based foods in Mexico and dietary intake of folic acid and folate in Mexican national survey data. Am. J. Clin. Nutr. 2019, 110, 1434–1448. [Google Scholar] [CrossRef]
- FDA. Food and Drug Administration. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-folic-acid-fortification-corn-masa-flour (accessed on 6 May 2024).
- Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Barragán-Vázquez, S.; Castellanos-Gutiérrez, A.; Reyes-García, A.; Martínez-Piña, A.; Pedroza-Tobías, A. Prevalence of inadequate intake of vitamins and minerals in the Mexican population correcting by nutrient retention factors, Ensanut 2016. Salud Públ. Mex. 2020, 62, 521–531. [Google Scholar] [CrossRef]
- Statista. Consumption of Corn Worldwide in 2022/2023 by Country. Available online: https://www.statista.com/statistics/691175/consumption-corn-worldwide-by-country/ (accessed on 8 May 2024).
- Rosado, J.L.; Cassís, L.; Solano, L.; Duarte-Vázquez, M.A. Nutrient addition to corn masa flour: Effect on corn flour stability, nutrient loss, and acceptability of fortified corn tortillas. Food Nutr. Bull. 2005, 26, 266–272. [Google Scholar] [CrossRef]
- Cardoso, R.V.C.; Fernandes, Â.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Flour fortification for nutritional and health improvement: A review. Food Res. Int. 2019, 125, 108576. [Google Scholar] [CrossRef]
- Cornejo-Villegas, M.A.; Acosta-Osorio, A.A.; Rojas-Molina, I.; Gutiérrez-Cortéz, E.; Quiroga, M.A.; Gaytán, M.; Herrera, G.; Rodríguez-García, M.E. Study of the physicochemical and pasting properties of instant corn flour added with calcium and fibers from nopal powder. J. Food Eng. 2010, 96, 401–409. [Google Scholar] [CrossRef]
- Contreras, B.; Oseguera, M.E.; Garcia, L.; Martínez, R.; González, C.A.; Curiel, F.; Rodriguez-Garcia, M.E. Physicochemical study of nixtamalized corn masa and tortillas fortified with “chapulin” (grasshopper, Sphenarium purpurascens) flour. CyTA-J. Food 2020, 18, 527–534. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Ramirez-Gutierrez, C.F.; Contreras-Jiménez, B.L.; Londoño-Restrepo, S.M. Characterization of starches isolated from Mexican pulse crops: Structural, physicochemical, and rheological properties. Int. J. Biol. Macromol. 2024, 268, 131576. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.W.; Vavak, D.l.; Satterlee, L.; Miller, G.A. A multienzyme technique for estimating protein digestibility. J. Food Sci. 1977, 42, 1269–1273. [Google Scholar] [CrossRef]
- Rojas-Molina, I.; Nieves-Hernandez, M.G.; Gutierrez-Cortez, E.; Barrón-García, O.Y.; Gaytán-Martínez, M.; Rodriguez-Garcia, M.E. Physicochemical changes in starch during the conversion of corn to tortilla in the traditional nixtamalization process associated with RS2. Food Chem. 2024, 439, 138088. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Wassinger, A.B.; Jackson, D.S. Extraction and characterization of starch from alkaline cooked corn masa. Cereal Chem. 2007, 84, 415–422. [Google Scholar] [CrossRef]
- Rojas-Molina, I.; Gutiérrez, E.; Rojas, A.; Cortés-Álvarez, M.; Campos-Solís, L.; Hernández-Urbiola, M.; Arjona, J.L.; Cornejo, A.; Rodríguez-García, M.E. Effect of temperature and steeping time on calcium and phosphorus content in nixtamalized corn flours obtained by traditional nixtamalization process. Cereal Chem. 2009, 86, 516–521. [Google Scholar] [CrossRef]
- INCSMNSZ. Tables of Composition of Foods and Food Products (Condensed Version 2015). Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. INCMNSZ, México, D.F. Available online: https://alimentacionysalud.unam.mx/tablas-de-composicion-de-alimentos-y-productos-alimenticios/ (accessed on 8 March 2024).
- Deshpande, S.S.; Damodaran, S. Conformational characteristics of legume 7S globulins as revealed by circular dichroic., derivative UV absorption and fluorescence techniques. Int. J. Pept. Protein Res. 1990, 35, 25–34. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Camelo-Mendez, G.A.; Agama-Acevedo, E.; Utrilla-Coello, R.G. Aspecto nutracéuticos de los maíces pigmentados: Digestibilidad de los carbohidratos y antocianinas. Agrociencia 2016, 50, 1041–1063. Available online: https://www.scielo.org.mx/scielo.php?pid=S1405-31952016000801041&script=sci_abstract (accessed on 14 May 2024).
- Ramírez-Jiménez, A.K.; Cota-López, R.; Morales-Sánchez, E.; Gaytán-Martínez, M.; Martinez-Flores, H.E.; Reyes-Vega, M.D.L.; Figueroa-Cárdenas, J.D.D. Sustainable process for tortilla production using ohmic heating with minimal impact on the nutritional value, protein, and calcium performance. Foods 2023, 12, 3327. [Google Scholar] [CrossRef] [PubMed]
- Gasca-Mancera, J.C.; Casas-Alencáster, N.B. Adición de harina de maíz nixtamalizado a masa fresca de maíz nixtamalizado. Efecto en las propiedades texturales de masa y tortilla. Rev. Mex. Ing. Quím. 2007, 6, 317–328. Available online: https://www.redalyc.org/pdf/620/62060311.pdf (accessed on 18 May 2024).
- Grupo Consultor de Mercados Agrícolas (GCMA). Excelsior (2022). Más del 70% de Tortillas son Con Nixtamalización o Masa de Maíz. Available online: https://www.excelsior.com.mx/nacional/mas-del-70-de-tortillas-son-con-nixtamalizacion-o-masa-de-maiz/1544629 (accessed on 17 September 2024).
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium intake in bone health: A focus on calcium-rich mineral waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef] [PubMed]
- Reza-Albarrán, A.A. Osteoporosis. Gac. Med. Mex. 2016, 152, 84–89. Available online: https://www.anmm.org.mx/GMM/2016/s1/GMM_152_2016_S1_084-089.pdf (accessed on 14 June 2024).
- Gallegos-Daniel, C.; Taddei-Bringas, C.; González-Córdova, A.F. Panorama de la industria láctea en México. Rev. Alim. Cont. Des. Reg. 2023, 33, e231251. [Google Scholar] [CrossRef]
- Loughrill, E.; Wray, D.; Christides, T.; Zand, N. Calcium to phosphorus ratio, essential elements and vitamin D content of infant foods in the UK: Possible implications for bone health. Matern. Child. Nutr. 2017, 13, e12368. [Google Scholar] [CrossRef]
- Barrios-Moyano, A.; Peña-García, C.D.I. Prevalencia de osteoporosis y osteopenia en pacientes laboralmente activos. Acta Ortop. Mex. 2018, 32, 131–133. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2306-41022018000300131 (accessed on 15 June 2024).
- Morales-Ruán, M.D.C.; Villalpando, S.; García-Guerra, A.; Shamah-Levy, T.; Robledo-Pérez, R.; Ávila-Arcos, M.A.; Rivera, J.A. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years. Salud Publ. Mex. 2012, 54, 125–134. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342012000200008 (accessed on 15 June 2024). [CrossRef]
- De Benoist, B.; Cogswell, M.; Egli, I.; McLean, E. Worldwide Prevalence of Anaemia 1993–2005; World Health Organization (WHO) Global Database of Anaemia: Geneva, Switzerland, 2008; Available online: https://www.who.int/publications/i/item/9789241596657 (accessed on 18 June 2024).
- Shamah-Levy, T.; Villalpando, S.; Mundo-Rosas, V.; Cruz-Góngora, V.D.L.; Mejía-Rodríguez, F.; Gómez-Humarán, I. Prevalencia de anemia en mujeres mexicanas en edad reproductiva, 1999–2012. Salud Publ. Mex. 2013, 55, S190–S198. Available online: https://www.scielo.org.mx/pdf/spm/v55s2/v55s2a16.pdf (accessed on 18 June 2024). [CrossRef]
- Cruz-Góngora, V.D.L.; Villalpando, S.; Mundo-Rosas, V.; Shamah-Levy, T. Prevalencia de anemia en niños y adolescentes mexicanos: Comparativo de tres encuestas nacionales. Salud Publ. Mex. 2013, 55, S180–S189. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342013000800015 (accessed on 19 June 2024).
- Cruz-Góngora, V.; Villalpando, S.; Shamah-Levy, T. Prevalencia de anemia y consumo de grupos de alimentos en niños y adolescentes mexicanos: ENSANUT MC 2016. Salud Publ. Mex. 2018, 60, 291–300. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Mejía-Rodríguez, F.; Gómez-Humarán, I.M.; Cruz-Góngora, V.D.L.; Mundo-Rosas, V.; Villalpando-Hernández, S. Tendencia en la prevalencia de anemia entre mujeres mexicanas en edad reproductiva 2006–2016. ENSANUT MC 2016. Salud Publ. Mex. 2018, 60, 301–308. Available online: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342018000300011 (accessed on 18 June 2024). [CrossRef] [PubMed]
- Ismail, S.; Eljazzar, S.; Ganji, V. Intended and unintended benefits of folic acid fortification—A narrative review. Foods 2023, 12, 1612. [Google Scholar] [CrossRef]
- Peña-Rosas, J.P.; Garcia-Casal, M.N.; Pachón, H.; Mclean, M.S.; Arabi, M. Technical considerations for maize flour and corn meal fortification in public health: Consultation rationale and summary. Ann. N. Y. Acad. Sci. 2014, 1312, 1–7. [Google Scholar] [CrossRef]
- Hamner, H.C.; Tinker, S.C. Fortification of corn masa flour with folic acid in the United States: An overview of the evidence. Ann. N. Y. Acad. Sci. 2014, 1312, 8–14. [Google Scholar] [CrossRef] [PubMed]
- SINAVE. Sistema Nacional de Vigilancia Epidemiológica. Dirección General de Epidemiología. Secretaria de Salud. Sistema de vigilancia epidemiológica de defectos del tubo neural y craneofaciales SINAVE/DGE/Salud/. Available online: https://www.gob.mx/cms/uploads/attachment/file/728465/Informeanual2021DTNyDCF.pdf (accessed on 20 April 2024).
- Waller, A.W.; Dominguez-Uscanga, A.; Lopez-Barrera, E.; Andrade, J.E.; Andrade, J.M. Stakeholder’s perceptions of Mexico’s Federal corn flour fortification program: A qualitative study. Nutrients 2020, 12, 433. [Google Scholar] [CrossRef]
Time (Months) | Location | Sampled Establishments | |
---|---|---|---|
NC-T | NCCF-T | ||
1 | Querétaro City | 3 | 3 |
2 | Querétaro City | 3 | 3 |
1 | Cuautitlán Itzcalli | 3 | 3 |
2 | Cuautitlán Itzcalli | 3 | 3 |
1 | City of Victoria | 3 | 3 |
2 | City of Victoria | 3 | 3 |
Nutritional Information | Content (per 100 g) | |
Energy content | 1457 kJ (344 kcal) | |
Protein | 8 g | |
Fat | 4 g | |
Saturated | 0 g | |
Monounsaturated | 1 g | |
Polyunsaturated | 2 g | |
Trans fatty acids | 0 g | |
Cholesterol | 0 mg | |
Carbohydrates | 75 g | |
Sugars | 1 g | |
Dietary fiber | 6 g | |
Sodium | 0 mg | |
Micronutrients | Content (mg/100 g) | % VNR * |
Calcium | 49.3 | 5.4 |
Iron | 4 | 23.5 |
Zinc | 4 | 40 |
Vitamin B1 (Thiamin) | 0.5 | 62.5 |
Vitamin B2 (Riboflavin) | 0.3 | 35.7 |
Vitamin B3 (Niacin) | 3.5 | 31.8 |
Folic acid (Folacin) | 0.2 | 52.6 |
Tortilla | NC-T | NCCF-T |
---|---|---|
Tortilla moisture (%) | 43.40 ± 3.03 a | 45.63 ± 3.90 a |
Moisture (dry sample) (%) | 5.79 ± 1.56 a | 5.40 ± 1.54 a |
Total protein (%) | 8.58 ± 0.46 a | 8.49 ± 0.20 a |
Ash (%) | 2.17 ± 0.57 a | 1.79 ± 0.33 b |
Total dietary fiber (%) | 12.67 ± 3.47 a | 12.44 ± 3.26 a |
Fat (%) | 1.73 ± 0.49 a | 1.73 ± 0.42 a |
Sample | NC-T (mg/100 g) | NCCF-T (mg/100 g) |
---|---|---|
Ca | 343.39 ± 76.52 a | 82.00 ± 28.71 b |
P | 230.98 ± 43.68 a | 215.88 ± 54.23 a |
K | 221.46 ± 40.40 b | 319.40 ± 24.88 a |
Mg | 131.83 ± 31.80 a | 143.52 ± 55.35 a |
S | 15.64 ± 8.71 a | 5.64 ± 3.20 b |
Na | 9.72 ± 3.06 b | 19.68 ± 5.32 a |
Zn | 1.95 ± 0.30 b | 7.21 ± 1.02 a |
Si | 3.09 ± 1.84 a | 2.02 ± 0.85 a |
Ni | 0.03 ± 0.02 a | 0.02 ± 0.00 a |
Fe | 2.50 ± 0.59 b | 8.95 ± 1.86 a |
B | 0.12 ± 0.01 b | 0.16 ± 0.02 a |
Mn | 0.39 ± 0.04 b | 0.46 ± 0.04 a |
Cr | 0.02 ± 0.01 a | 0.01 ± 0.00 a |
Mo | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
V | 0.25 ± 0.09 a | 0.21 ± 0.02 a |
Cu | 0.15 ± 0.03 a | 0.15 ± 0.01 a |
Al | 0.69 ± 0.43 a | 0.23 ± 0.08 b |
Sr | 0.26 ± 0.15 a | 0.10 ± 0.01 b |
Mineral | Macromineral Content (mg/100 g Tortilla) Samples | |
---|---|---|
NC-T | NCCF-T | |
K | 279.52 ± 60.37 b | 299.64 ± 35.23 a,b |
P | 226.99 ± 48.34 a | 195.89 ± 58.76 a |
Ca | 352.90 ± 31.28 a | 177.88 ± 44.99 a |
Mg | 126.55 ± 53.33 a | 116.66 ± 57.73 a |
Na | 17.72 ± 5.69 a | 20.22 ± 7.40 a |
S | 16.34 ± 6.10 a | 9.94 ± 3.73 b |
Ca/P | 1.55 | 0.90 |
Sample | NC-T | NCCF-T |
---|---|---|
Vitamin B1 (Thiamine) (mg/kg) | 1.17 ± 0.41 a | 2.27 ± 0.30 b |
Vitamin B2 (Riboflavin) (mg/kg) | 0.18 ± 0.07 a | 0.34 ± 0.13 b |
Niacin (Nicotinic acid) (mg/kg) | 7.24 ± 1.90 a | 2.28 ± 2.12 b |
Folic acid (Folacin) (mg/kg) | 0.34 ± 0.33 a | 4.54 ± 0.22 b |
Sample | NC-T | NCCF-T |
---|---|---|
In vitro protein digestibility (%) | 65.9 ± 3.1 b | 75.6 ± 1.8 a |
Total starch (%) | 46.5 ± 11.2 a | 60.2 ± 13.2 a |
Resistant starch (%) | 2.7 ± 1.0 a | 3.4 ± 0.9 a |
Micro-Nutrient | Contribution (mg/129.84 g Tortilla on Dry Basis Ϯ) Mix 75:25 * | Contribution (mg/129.84 g Tortilla on Dry Basis Ϯ) Mix 50:50 ** | RDI (Age Group) (mg) | Contribution of the Tortilla 50:50 to the RDI (%) |
---|---|---|---|---|
Calcium | 401.38 | 344.56 | CH 800 | CH 43.07 |
TA 1000 | TA 34.46 | |||
A 800 | A 43.07 | |||
PW 1200 | PW 28.71 | |||
BW 1200 | BW 28.71 | |||
Phosphorus | 284.62 | 274.52 | CH 500 | CH 54.90 |
TA 1250 | TA 21.96 | |||
A 700 | A 39.21 | |||
PW 700 | PW 39.21 | |||
BW 700 | BW 39.21 | |||
Magnesium | 161.10 | 157.89 | CH 100 | CH >100 |
TA 400 | TA 40.00 | |||
A 350 | A 45.00 | |||
PW 320 | PW 49.30 | |||
BW 355 | BW 44.47 | |||
Iron | 5.34 | 7.44 | CH 15 | CH 50.00 |
TA 15 | TA 50.00 | |||
A 15 | A 50.00 | |||
PW 30 | PW 25.00 | |||
BW 15 | BW 50.00 | |||
Zinc | 12.02 | 11.13 | CH 15 | CH 74.20 |
TA 15 | TA 74.20 | |||
A 15 | A 74.20 | |||
PW 15 | PW 74.20 | |||
BW 19 | BW 58.60 | |||
Vitamin B1 | 0.21 | 0.21 | CH 0.8 | CH 26.25 |
TA 1.2 | TA 17.50 | |||
A 1.5 | A 14.00 | |||
PW 1.5 | PW 14.00 | |||
BW 1.6 | BW 13.13 | |||
Vitamin B2 | 0.01 | 0.01 | CH 1.0 | CH <1.0 |
TA 1.5 | TA <1.0 | |||
A 1.7 | A <1.0 | |||
PW 1.7 | PW <1.0 | |||
BW 1.8 | BW <1.0 | |||
Vitamin B3 | 0.90 | 0.01 | CH 6 | CH <1.0 |
TA 20 | TA <1.0 | |||
A 15 | A <1.0 | |||
PW 13 | PW <1.0 | |||
BW 15 | BW <1.0 | |||
Folic acid | 0.19 | 0.335 | CH 0.15 | CH >100 |
TA 0.18 | TA 100 | |||
A 0.20 | A >100 | |||
PW 0.60 | PW 56 | |||
BW 0.28 | BW >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieves-Hernandez, M.G.; Correa-Piña, B.L.; Garcia-Chavero, O.; Lopez-Ramirez, S.; Florez-Mejia, R.; Barrón-García, O.Y.; Gutierrez-Cortez, E.; Gaytán-Martínez, M.; Rojas-Molina, J.I.; Rodriguez-Garcia, M.E. Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours. Foods 2024, 13, 4082. https://doi.org/10.3390/foods13244082
Nieves-Hernandez MG, Correa-Piña BL, Garcia-Chavero O, Lopez-Ramirez S, Florez-Mejia R, Barrón-García OY, Gutierrez-Cortez E, Gaytán-Martínez M, Rojas-Molina JI, Rodriguez-Garcia ME. Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours. Foods. 2024; 13(24):4082. https://doi.org/10.3390/foods13244082
Chicago/Turabian StyleNieves-Hernandez, María Guadalupe, Brenda Lizbeth Correa-Piña, Oscar Garcia-Chavero, Salomon Lopez-Ramirez, Rosendo Florez-Mejia, Oscar Yael Barrón-García, Elsa Gutierrez-Cortez, Marcela Gaytán-Martínez, Juana Isela Rojas-Molina, and Mario E. Rodriguez-Garcia. 2024. "Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours" Foods 13, no. 24: 4082. https://doi.org/10.3390/foods13244082
APA StyleNieves-Hernandez, M. G., Correa-Piña, B. L., Garcia-Chavero, O., Lopez-Ramirez, S., Florez-Mejia, R., Barrón-García, O. Y., Gutierrez-Cortez, E., Gaytán-Martínez, M., Rojas-Molina, J. I., & Rodriguez-Garcia, M. E. (2024). Indirect Fortification of Traditional Nixtamalized Tortillas with Nixtamalized Corn Flours. Foods, 13(24), 4082. https://doi.org/10.3390/foods13244082