Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Diet
2.2. Insect Farming
2.3. Growth Performance Measurement
2.4. Macronutrient Composition Analysis
2.5. Fatty Acid Profile
2.6. Statistical Analysis
3. Results and Discussion
3.1. Diet Influence on Growing Parameters of T. molitor Larvae
3.2. Diet Influence on T. molitor Larvae’s Nutritional Value
3.3. Impact of Diet on Feed Conversion Efficiency and Environmental Resource Utilization
3.3.1. Feed Conversion Efficiency
3.3.2. Reduction in Agricultural Wastes and Water Use by Supplementing Insect Diets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- United Nations; Department of Economic and Social Affairs. World Population Prospects 2019. Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of Insect Use for Feed and Food: Life Cycle Assessment Perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D.G.A.B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food Waste Valorisation and Circular Economy Concepts in Insect Production and Processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef]
- Kee, P.E.; Cheng, Y.-S.; Chang, J.-S.; Yim, H.S.; Tan, J.C.Y.; Lam, S.S.; Lan, J.C.-W.; Ng, H.S.; Khoo, K.S. Insect Biorefinery: A Circular Economy Concept for Biowaste Conversion to Value-Added Products. Environ. Res. 2023, 221, 115284. [Google Scholar] [CrossRef]
- López-Gámez, G.; del Pino-García, R.; López-Bascón, M.A.; Verardo, V. From Feed to Functionality: Unravelling the Nutritional Composition and Techno-Functional Properties of Insect-Based Ingredients. Food Res. Int. 2024, 178, 113985. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for Food: A Water Footprint Perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Cortes Ortiz, J.A.; Ruiz, A.T.; Morales-Ramos, J.A.; Thomas, M.; Rojas, M.G.; Tomberlin, J.K.; Yi, L.; Han, R.; Giroud, L.; Jullien, R.L. Insect Mass Production Technologies. In Insects as Sustainable Food Ingredients: Production, Processing and Food Applications; Aaron, T., Dossey, A.T., Morales-Ramos, J.A., Rojas, M.G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 153–201. [Google Scholar]
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food by-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth Performance and Feed Conversion Efficiency of Three Edible Mealworm Species (Coleoptera: Tenebrionidae) on Diets Composed of Organic by-Products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Rojas, M.G.; Dossey, A.T.; Berhow, M. Self-Selection of Food Ingredients and Agricultural by-Products by the House Cricket, Acheta Domesticus (Orthoptera: Gryllidae): A Holistic Approach to Develop Optimized Diets. PLoS ONE 2020, 15, e0227400. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Rojas, M.G.; Shapiro-Iian, D.I.; Louis Tedders, W. Use of Nutrient Self-Selection as a Diet Refining Tool in Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 2013, 48, 206–221. [Google Scholar] [CrossRef]
- Felton, G.W.; Summers, C.B. Antioxidant Systems in Insects. Arch. Insect Biochem. Physiol. 1995, 29, 187–197. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of Different Diets on Growth and Nutritional Composition of Yellow Mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Method of Analysis AOAC International; AOAC International: New York, NY, USA, 1996; Volume 2, p. 5. [Google Scholar]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A.; et al. Addition of Olive Pomace to Feeding Substrate Affects Growth Performance and Nutritional Value of Mealworm (Tenebrio molitor L.) Larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Rovai, D.; Ortgies, M.; Amin, S.; Kuwahara, S.; Schwartz, G.; Lesniauskas, R.; Garza, J.; Lammert, A. Utilization of Carrot Pomace to Grow Mealworm Larvae (Tenebrio molitor). Sustainability 2021, 13, 9341. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth Performance and Nutrient Composition of Mealworms (Tenebrio molitor) Fed on Fresh Plant Materials-Supplemented Diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Wittke, S.; Steinmann, N.; Benning, R. Analysis of the Composition of Different Instars of Tenebrio Molitor Larvae Using Near-Infrared Reflectance Spectroscopy for Prediction of Amino and Fatty Acid Content. Insects 2023, 14, 310. [Google Scholar] [CrossRef]
- Urs, K.C.D.; Hopkins, T.L. Effect of Moisture on Growth Rate and Development of Two Strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. Res 1973, 8, 291–297. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio molitor. Foods 2023, 12, 783. [Google Scholar] [CrossRef]
- Urs, K.C.D.; Hopkins, T.L. Effect of Moisture on the Lipid Content and Composition of Two Strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J. Stored Prod. I&s 1973, 8, 299–305. [Google Scholar]
- Kröncke, N.; Benning, R. Influence of Dietary Protein Content on the Nutritional Composition of Mealworm Larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Jajić, I.; Krstović, S.; Petrović, M.; Urošević, M.; Glamočić, D.; Samardžić, M.; Popović, A.; Guljaš, D. Changes in the Chemical Composition of the Yellow Mealworm (Tenebrio molitor L.) Reared on Different Feedstuffs. J. Anim. Feed Sci. 2022, 31, 191–200. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of Various Commodities for the Development of the Yellow Mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, H.; Chen, G.; Qiao, L.; Li, J.; Liu, B.; Liu, Z.; Li, M.; Liu, X. Growth Performance and Nutritional Profile of Mealworms Reared on Corn Stover, Soybean Meal, and Distillers’ Grains. Eur. Food Res. Technol. 2019, 245, 2631–2640. [Google Scholar] [CrossRef]
- Remiro, A.; Fondevila, G.; Fondevila, M. Effect of the Starch to Fibre Ratio in the Substrate on Growth Performance and Chemical Composition of Tenebrio molitor Larvae. Anim.—Sci. Proc. 2022, 13, 347–348. [Google Scholar] [CrossRef]
- Fasel, N.J.; Mene-Saffrane, L.; Ruczynski, I.; Komar, E.; Christe, P. Diet Induced Modifications of Fatty-Acid Composition in Mealworm Larvae (Tenebrio molitor). J. Food Res. 2017, 6, 22–31. [Google Scholar] [CrossRef]
- Lawal, K.G.; Kavle, R.R.; Akanbi, T.O.; Mirosa, M.; Agyei, D. Enrichment in Specific Fatty Acids Profile of Tenebrio molitor and Hermetia Illucens Larvae through Feeding. Future Foods 2021, 3, 100016. [Google Scholar] [CrossRef]
- Kröncke, N.; Neumeister, M.; Benning, R. Near-Infrared Reflectance Spectroscopy for Quantitative Analysis of Fat and Fatty Acid Content in Living Tenebrio molitor Larvae to Detect the Influence of Substrate on Larval Composition. Insects 2023, 14, 114. [Google Scholar] [CrossRef]
- Komprda, T.; Zorníková, G.; Rozíková, V.; Borkovcová, M.; Przywarová, A. The Effect of Dietary Salvia Hispanica Seed on the Content of n-3 Long-Chain Polyunsaturated Fatty Acids in Tissues of Selected Animal Species, Including Edible Insects. J. Food Compos. Anal. 2013, 32, 36–43. [Google Scholar] [CrossRef]
- Gkinali, A.A.; Matsakidou, A.; Paraskevopoulou, A. Characterization of Tenebrio molitor Larvae Protein Preparations Obtained by Different Extraction Approaches. Foods 2022, 11, 3852. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.R.; Horne, I.; Damcevski, K.; Haritos, V.; Green, A.; Singh, S. Isolation and Functional Characterization of Two Independently-Evolved Fatty Acid Δ12-Desaturase Genes from Insects. Insect Mol. Biol. 2008, 17, 667–676. [Google Scholar] [CrossRef]
- Perez-Santaescolastica, C.; de Pril, I.; van de Voorde, I.; Fraeye, I. Fatty Acid and Amino Acid Profiles of Seven Edible Insects: Focus on Lipid Class Composition and Protein Conversion Factors. Foods 2023, 12, 4090. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs. II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, Y.; Kong, B.; Chen, Q.; Sun, F.; Zhang, H.; Liu, Q. Comparative Study of Two Types of Pre-Extraction Treatment (Drying or Non-Drying) on Physicochemical, Structural and Functional Properties of Extracted Insect Proteins from Tenebrio molitor Larvae. Curr. Res. Food Sci. 2022, 5, 1570–1580. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef] [PubMed]
- Nosratpour, M.; Farhoosh, R.; Sharif, A. Quantitative Indices of the Oxidizability of Fatty Acid Compositions. Eur. J. Lipid Sci. Technol. 2017, 119, 1700203. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J.; Peni, D. Growth Potential of Yellow Mealworm Reared on Industrial Residues. Agriculture 2020, 10, 599. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Stolarski, M.J. Bioconversion Potential of Agro-Industrial Byproducts by Tenebrio molitor—Long-Term Results. Insects 2022, 13, 810. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Z.; Liu, H. Feasibility of Feeding Yellow Mealworm (Tenebrio molitor L.) in Bioregenerative Life Support Systems as a Source of Animal Protein for Humans. Acta Astronaut. 2013, 92, 103–109. [Google Scholar] [CrossRef]
- Rho, M.S.; Lee, K.P. Balanced Intake of Protein and Carbohydrate Maximizes Lifetime Reproductive Success in the Mealworm Beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). J. Insect Physiol. 2016, 91–92, 93–99. [Google Scholar] [CrossRef]
Commodities | Moisture % (w/w FW) | Total Protein Content % (w/w FW) | Total Carbohydrates Content % (w/w FW) | Total Fat Content % (w/w FW) | Ash % (w/w FW) |
---|---|---|---|---|---|
Conventional cucumber | 94.76 ± 0.19 a | 0.71 ± 0.05 a | 4.07 ± 0.23 a | 0.18 ± 0.03 a | 0.28 ± 0.02 a |
Ecological cucumber | 95.56 ± 0.11 b | 0.72 ± 0.03 a | 3.22 ± 0.12 b | 0.18 ± 0.02 a | 0.32 ± 0.02 ab |
Conventional tomato | 92.02 ± 0.25 c | 1.05 ± 0.03 b | 6.26 ± 0.29 c | 0.23 ± 0.02 a | 0.45 ± 0.04 b |
Ecological tomato | 90.54 ± 0.60 d | 0.95 ± 0.06 ab | 7.81 ± 0.64 d | 0.24 ± 0.02 a | 0.46 ± 0.02 b |
Wheat bran | 8.41 ± 0.20 e | 15.07 ± 0.29 c | 66.90 ± 0.37 e | 5.20 ± 0.18 b | 4.42 ± 0.20 c |
Commodities | Water-Soluble Vitamins (mg/100 g FW) | Fat-Soluble Vitamins (mg/100 g FW) | Bioactive Compounds | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | B1 | B2 | B3 | B5 | B6 | E | K | Total Phenolic Compounds (mg Eq GA/100 g FW) | Total Carotenoids (mg/100 g FW) | |
Conventional cucumber | <0.1 a | 0.056 ± 0.047 a | 0.066 ± 0.007 a | 0.116 ± 0.006 a | 0.253 ± 0.127 a | 0.214 ± 0.056 a | 0.070 ± 0.043 a | 0.0040 ± 0.0026 a | 20.67 ± 0.34 a | 3.456 ± 0.267 a |
Ecological cucumber | <0.1 a | 0.027 ± 0.017 a | 0.038 ± 0.007 a | 0.119 ± 0.022 a | 0.238 ± 0.197 a | 0.227 ± 0.035 a | 0.060 ± 0.035 a | 0.0052 ± 0.0037 a | 16.03 ± 3.59 b | 1.907 ± 0.181 a |
Conventional tomato | 16.33 ± 7.64 b | 0.053 ± 0.012 a | 0.052 ± 0.032 a | 0.119 ± 0.057 a | 0.097 ± 0.064 a | 0.073 ± 0.033 ab | 0.236 ± 0.024 b | 0.0037 ± 0.0011 a | 79.38 ± 0.81 c | 289.07 ± 49.90 b |
Ecological tomato | 21.00 ± 8.00 b | 0.050 ± 0.035 a | 0.142 ± 0.044 b | 0.114 ± 0.061 a | 0.074 ± 0.055 a | 0.049 ± 0.039 b | 0.311 ± 0.010 b | 0.0056 ± 0.0020 a | 83.87 ± 0.21 d | 256.75 ± 21.53 b |
Wheat bran | <0.1 a | 0.533 ± 0.051 b | 0.252 ± 0.026 c | 0.587 ± 0.042 b | 2.523 ± 0.402 b | 0.217 ± 0.173 a | 1.005 ± 0.098 c | 0.0049 ± 0.0038 a | 128.01 ± 1.95 e | 0.081 ± 0.009 a |
Diet | Total Water (kg) | Total Protein Content (kg) | Total Carbohydrate Content (kg) | Total Fat Content (kg) | Ash (kg) |
---|---|---|---|---|---|
(C + W) C | 1.444 ± 0.003 a | 0.220 ± 0.004 a | 0.993 ± 0.006 a | 0.075 ± 0.002 a | 0.066 ± 0.003 ab |
(C + W) E | 1.455 ± 0.008 b | 0.221 ± 0.004 a | 0.981 ± 0.011 a | 0.075 ± 0.002 a | 0.066 ± 0.003 ab |
(T + W) C | 1.405 ± 0.008 c | 0.225 ± 0.004 a | 1.024 ± 0.010 b | 0.076 ± 0.002 a | 0.068 ± 0.003 b |
(T + W) E | 1.385 ± 0.001 d | 0.224 ± 0.004 a | 1.045 ± 0.004 c | 0.076 ± 0.002 a | 0.068 ± 0.003 b |
W | 1.517 ± 0.024 e | 0.210 ± 0.005 b | 0.936 ± 0.017 d | 0.073 ± 0.002 a | 0.062 ± 0.003 c |
Diet | Moisture % (w/w FW) | Total Protein Content % (w/w FW) | Total Carbohydrate Content % (w/w FW) | Total Fat Content % (w/w FW) | Ash % (w/w FW) |
---|---|---|---|---|---|
(C + W) C | 65.34 ± 0.81 a | 49.73 ± 0.19 a | 17.98 ± 0.31 a | 24.44 ± 0.37 a | 4.15 ± 0.06 a |
(C + W) E | 65.63 ± 0.40 a | 49.25 ± 0.31 b | 17.33 ± 0.06 ab | 24.76 ± 0.07 a | 3.96 ± 0.04 b |
(T + W) C | 67.08 ± 0.29 b | 49.1 ± 0.18 b | 15.93 ± 1.36 b | 27.17 ± 1.82 ab | 3.94 ± 0.07 b |
(T + W) E | 66.16 ± 0.52 a | 50.19 ± 0.33 a | 14.31 ± 0.16 c | 27.07 ± 0.47 ab | 3.97 ± 0.03 b |
W | 56.85 ± 0.05 c | 45.58 ± 0.22 c | 18.17 ± 1.19 a | 28.20 ± 2.06 b | 4.25 ± 0.04 c |
Fatty Acids (g/100 g FW) | Diet | |||||
---|---|---|---|---|---|---|
(C + W) C | (C + W) E | (T + W) C | (T + W) E | W | ||
Lauric acid | C12:0 | 0.414 ± 0.059 a | 0.706 ± 0.17 ab | 0.694 ± 0.196 ab | 0.442 ± 0.06 a | 0.968 ± 0.247 b |
Tridecanoic acid | C13:0 | 0.010 ± 0.001 a | 0.015 ± 0.002 a | 0.015 ± 0.003 ab | 0.009 ± 0.001 a | 0.021 ± 0.007 b |
Myristic acid | C14:0 | 3.20 ± 0.24 a | 3.62 ± 0.04 ab | 4.02 ± 0.38 b | 3.24 ± 0.24 a | 5.98 ± 0.59 c |
Myristoleic acid | C14:1 | 0.479 ± 0.03 a | 0.534 ± 0.01 a | 0.623 ± 0.108 a | 0.450 ± 0.024 a | 0.934 ± 0.183 b |
Pentadecylic acid | C15:0 | 0.042 ± 0.002 a | 0.031 ± 0.009 b | 0.047 ± 0.005 a | 0.037 ± 0.005 ab | 0.033 ± 0.002 b |
Palmitic acid | C16:0 | 3.24 ± 0.03 a | 3.64 ± 0.07 b | 3.72 ± 0.11 b | 3.34 ± 0.02 a | 3.56 ± 0.22 b |
Palmitoleic acid | C16:1 | 0.204 ± 0.01 a | 0.218 ± 0.004 ab | 0.234 ± 0.016 b | 0.214 ± 0.005 ab | 0.313 ± 0.017 c |
Stearic acid | C18:0 | 1.27 ± 0.14 a | 1.16 ± 0.07 a | 1.22 ± 0.11 a | 1.51 ± 0.15 b | 1.19 ± 0.12 a |
Elaidic acid | C18:1n9t | 5.43 ± 0.15 a | 5.47 ± 0.01 a | 5.82 ± 0.43 ab | 6.27 ± 0.16 bc | 6.58 ± 0.58 c |
Linoleic acid | C18:2n6c | 9.71 ± 0.04 a | 8.95 ± 0.19 b | 10.35 ± 0.08 c | 11.10 ± 0.06 d | 8.41 ± 0.11 e |
Linoleic acid | C18:3n3 | 0.138 ± 0.001 a | 0.127 ± 0.001 b | 0.135 ± 0.003 ab | 0.137 ± 0.012 a | 0.094 ± 0.002 c |
Araquidonic acid | C20:4n6 | 0.345 ± 0.03 a | 0.336 ± 0.023 a | 0.340 ± 0.029 a | 0.337 ± 0.071 a | 0.280 ± 0.01 a |
Saturated fatty acids | 8.50 ± 0.46 a | 9.71 ± 0.16 bc | 10.34 ± 0.47 c | 9.04 ± 0.15 ab | 12.68 ± 0.69 d | |
Monounsaturated fatty acids | 5.78 ± 0.39 a | 5.69 ± 0.01 a | 6.05 ± 0.41 ab | 6.49 ± 0.16 bc | 6.89 ± 0.57 c | |
Polyunsaturated fatty acids | 10.19 ± 0.07 a | 9.41 ± 0.17 b | 10.82 ± 0.05 c | 11.57 ± 0.01 d | 8.78 ± 0.1 e | |
Total fatty acids (% w/w FW) | 24.44 ± 0.37 a | 24.76 ± 0.07 a | 27.17 ± 1.82 ab | 27.07 ± 0.47 ab | 28.20 ± 2.06 b |
Diet | PUFA/SFA | IA | IT | HH | HPI | COX |
---|---|---|---|---|---|---|
(C + W) C | 1.25 ± 0.04 a | 1.01 ± 0.09 ab | 0.91 ± 0.03 a | 2.29 ± 0.16 a | 1.00 ± 0.09 a | 4.43 ± 0.03 a |
(C + W) E | 1.03 ± 0.04 b | 1.21 ± 0.02 c | 1.03 ± 0.01 b | 1.87 ± 0.05 b | 0.83 ± 0.01 b | 4.05 ± 0.010 b |
(T + W) C | 1.11 ± 0.05 c | 1.17 ± 0.13 bc | 0.99 ± 0.04 b | 1.98 ± 0.19 b | 0.86 ± 0.10 b | 4.24 ± 0.05 c |
(T + W) E | 1.35 ± 0.02 d | 0.91 ± 0.07 d | 0.84 ± 0.01 a | 2.54 ± 0.14 c | 1.11 ± 0.09 a | 4.56 ± 0.04 d |
W | 0.75 ± 0.05 e | 1.72 ± 0.022 e | 1.26 ± 0.08 c | 1.47 ± 0.18 d | 0.59 ± 0.08 c | 3.38 ± 0.07 e |
Diet | Added Water (L/kg Larvae) | Wheat Bran (kg/kg Larvae) | Vegetable Waste (kg/kg Larvae) | Total Water Provided in Diet (L/kg Larvae) | Total Dry Matter Provided in Diet (kg/kg Larvae) | Total Larvae Generated (kg) |
---|---|---|---|---|---|---|
(C + W) C | - | 1.91 ± 0.07 a | 1.91 ± 0.07 a | 2.04 ± 0.07 a | 1.79 ± 0.06 a | 3.66 ± 0.02 a |
(C + W) E | - | 1.92 ± 0.04 a | 1.92 ± 0.04 a | 2.06 ± 0.04 a | 1.79 ± 0.04 a | 3.64 ± 0.02 a |
(T + W) C | - | 2.03 ± 0.06 a | 2.03 ± 0.06 b | 2.12 ± 0.06 a | 1.95 ± 0.06 a | 3.46 ± 0.02 a |
(T + W) E | - | 1.93 ± 0.07 a | 1.93 ± 0.07 a | 2.00 ± 0.07 a | 1.86 ± 0.07 a | 3.63 ± 0.02 a |
W | 3.82 ± 0.58 | 3.82 ± 0.58 b | 0.00 ± 0.00 c | 4.24 ± 0.64 b | 3.40 ± 0.52 b | 1.87 ± 0.06 b |
Diet | Added Water (L/kg Frass) | Wheat Bran (kg/kg Frass) | Vegetable Waste (kg/kg Frass) | Total Water Provided in Diet (L/kg Frass) | Total Dry Matter Provided in Diet (kg/kg Frass) | Total Frass Generated (kg) |
---|---|---|---|---|---|---|
(C + W) C | - | 1.28 ± 0.06 a | 1.28 ± 0.06 a | 1.36 ± 0.06 a | 1.20 ± 0.05 a | 5.48 ± 0.25 a |
(C + W) E | - | 1.23 ± 0.02 abc | 1.23 ± 0.02 ab | 1.32 ± 0.02 a | 1.14 ± 0.02 a | 5.70 ± 0.09 a |
(T + W) C | - | 1.20 ± 0.05 bc | 1.20 ± 0.05 b | 1.25 ± 0.05 a | 1.15 ± 0.05 a | 5.84 ± 0.24 a |
(T + W) E | - | 1.18 ± 0.06 c | 1.18 ± 0.06 b | 1.22 ± 0.06 a | 1.14 ± 0.05 a | 5.94 ± 0.28 a |
W | 1.26 ± 0.04 | 1.26 ± 0.04 ab | 0.00 ± 0.00 c | 1.4 ± 0.05 a | 1.12 ± 0.04 a | 5.56 ± 0.18 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Gámez, G.; del Pino-García, R.; López-Bascón, M.A.; Verardo, V. Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation. Foods 2024, 13, 594. https://doi.org/10.3390/foods13040594
López-Gámez G, del Pino-García R, López-Bascón MA, Verardo V. Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation. Foods. 2024; 13(4):594. https://doi.org/10.3390/foods13040594
Chicago/Turabian StyleLópez-Gámez, Gloria, Raquel del Pino-García, María Asunción López-Bascón, and Vito Verardo. 2024. "Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation" Foods 13, no. 4: 594. https://doi.org/10.3390/foods13040594
APA StyleLópez-Gámez, G., del Pino-García, R., López-Bascón, M. A., & Verardo, V. (2024). Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation. Foods, 13(4), 594. https://doi.org/10.3390/foods13040594