The Impact of a Six-Hour Light–Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Harvest
2.3. Quality Analysis
3. Results
4. Discussion
4.1. Timing of Ear Emergence
4.2. Period of Ear Emergence to Harvest
4.3. Yield
4.4. Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asseng, S.; Guarin, J.R.; Raman, M.; Monje, O.; Kiss, G.; Despommier, D.D.; Meggers, F.M.; Gauthier, P.P.G. Wheat yield potential in controlled-environment vertical farms. Proc. Natl. Acad. Sci. USA 2020, 117, 19131–19135. [Google Scholar] [CrossRef]
- Dong, C.; Fu, Y.; Liu, G.; Liu, H. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Adv. Space Res. 2014, 53, 1557–1566. [Google Scholar] [CrossRef]
- Dong, C.; Shao, L.; Fu, Y.; Wang, M.; Xie, B.; Yu, J.; Liu, H. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems. Acta Astronaut. 2015, 111, 102–109. [Google Scholar] [CrossRef]
- Page, V.; Feller, U. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems. Adv. Space Res. 2013, 52, 536–546. [Google Scholar] [CrossRef]
- Monje, O.; Bugbee, B. Adaptation to high CO2 concentration in an optimal environment: Radiation capture, canopy quantum yield and carbon use efficiency. Plant Cell Environ. 1998, 21, 315–324. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Md Hatta, M.A.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Yunze, S.; Shuangsheng, G. Effects of photoperiod on wheat growth, development and yield in CELSS. Acta Astronaut. 2014, 105, 24–29. [Google Scholar] [CrossRef]
- Evtushenko, E.V.; Chekurov, V.M. Inheritance of the light intensity response in spring cultivars of common wheat: Inheritance of the light intensity response in wheat. Hereditas 2004, 141, 288–292. [Google Scholar] [CrossRef]
- Monostori, I.; Heilmann, M.; Kocsy, G.; Rakszegi, M.; Ahres, M.; Altenbach, S.B.; Szalai, G.; Pál, M.; Toldi, D.; Simon-Sarkadi, L.; et al. LED Lighting—Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Front. Plant Sci. 2018, 9, 605. [Google Scholar] [CrossRef]
- Goins, G.D.; Yorio, N.C.; Sanwo, M.M.; Brown, C.S. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 1997, 48, 1407–1413. [Google Scholar] [CrossRef]
- Kiszonas, A.M.; Engle, D.A.; Pierantoni, L.A.; Morris, C.F. Relationships between Falling Number, α-amylase activity, milling, cookie, and sponge cake quality of soft white wheat. Cereal Chem. 2018, 95, 373–385. [Google Scholar] [CrossRef]
- Newberry, M.; Zwart, A.B.; Whan, A.; Mieog, J.C.; Sun, M.; Leyne, E.; Pritchard, J.; Daneri-Castro, S.N.; Ibrahim, K.; Diepeveen, D.; et al. Does Late Maturity Alpha-Amylase Impact Wheat Baking Quality? Front. Plant Sci. 2018, 9, 1356. [Google Scholar] [CrossRef]
- Mares, D.J.; Mrva, K. Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 2014, 240, 1167–1178. [Google Scholar] [CrossRef]
- Ozturk, S.; Kahraman, K.; Tiftik, B.; Koksel, H. Predicting the cookie quality of flours by using Mixolab®. Eur. Food Res. Technol. 2008, 227, 1549–1554. [Google Scholar] [CrossRef]
- Miralles, D.J.; Richards, R.A. Responses of Leaf and Tiller Emergence and Primordium Initiation in Wheat and Barley to Interchanged Photoperiod. Ann. Bot. 2000, 85, 655–663. [Google Scholar] [CrossRef]
- González, F.G.; Slafer, G.A.; Miralles, D.J. Photoperiod during stem elongation in wheat: Is its impact on fertile floret and grain number determination similar to that of radiation? Funct. Plant Biol. 2005, 32, 181–188. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 23 January 2024).
- Posit Team. RStudio: Integrated Development Environment for R. Boston, MA: Posit Software, PBC. 2023. Available online: http://www.posit.co/ (accessed on 23 January 2024).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.8.9. 2023. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 8 December 2023).
- Hoseney, R.C. Principles of Cereal Science and Technology; American Association of Cereal Chemists (AACC): St. Paul, MN, USA, 1994. [Google Scholar]
- Burnett, C.J.; Lorenz, K.J.; Carver, B.F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica 1995, 86, 159–166. [Google Scholar] [CrossRef]
- Peña, R.J.; Posadas-Romano, G. Potential use of the Mixolab in wheat breeding. In Mixolab: A New Approach to Rheology; Dubat, A., Rosell, C.M., Gallagher, E., Eds.; AACC international Inc.: St. Paul, MN, USA, 2013; pp. 79–84. [Google Scholar]
- Dubcovsky, J.; Loukoianov, A.; Fu, D.; Valarik, M.; Sanchez, A.; Yan, L. Effect of Photoperiod on the Regulation of Wheat Vernalization Genes VRN1 and VRN2. Plant Mol. Biol. 2006, 60, 469–480. [Google Scholar] [CrossRef]
- Dequeker, S.; Verbeke, S.; Steppe, K. Calibration, validation and testing of a rotational displacement transducer for measuring wheat leaf elongation rates. Comput. Electron. Agric. 2023, 214, 108351. [Google Scholar] [CrossRef]
- Bugbee, B.; Spanarkel, B.; Johnson, S.; Monje, O.; Koerner, G. CO2 crop growth enhancement and toxicity in wheat and rice. Adv. Space Res. 1994, 14, 257–267. [Google Scholar] [CrossRef]
- Borrell, A.; Hammer, G.; Oosterom, E. Stay-green: A consequence of the balance between supply and demand for nitrogen during grain filling? Ann. Appl. Biol. 2001, 138, 91–95. [Google Scholar] [CrossRef]
- Sultana, N.; Islam, S.; Juhasz, A.; Ma, W. Wheat leaf senescence and its regulatory gene network. Crop J. 2021, 9, 703–717. [Google Scholar] [CrossRef]
- Zakari, S.A.; Zaidi, S.H.R.; Sunusi, M.; Dauda, K.D. Nitrogen deficiency regulates premature senescence by modulating flag leaf function, ROS homeostasis, and intercellular sugar concentration in rice during grain filling. J. Genet. Eng. Biotechnol. 2021, 19, 177. [Google Scholar] [CrossRef]
- Evers, J.B.; Vos, J.; Andrieu, B.; Struik, P.C. Cessation of Tillering in Spring Wheat in Relation to Light Interception and Red: Far-red Ratio. Ann. Bot. 2006, 97, 649–658. [Google Scholar] [CrossRef]
- Spiertz, J.H.J. The influence of temperature and light intensity on grain growth in relation to the carbohydrate and nitrogen economy of the wheat plant. Neth. J. Agric. Sci. 1977, 25, 182–197. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, D.; Schnurbusch, T. Plant and Floret Growth at Distinct Developmental Stages During the Stem Elongation Phase in Wheat. Front. Plant Sci. 2018, 9, 330. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, Y.; Liu, W. High nitrogen application rate and planting density reduce wheat grain yield by reducing filling rate of inferior grain in middle spikelets. Crop J. 2021, 9, 412–426. [Google Scholar] [CrossRef]
- Whaley, J.M.; Sparkes, D.L.; Foulkes, M.J.; Spink, J.H.; Semere, T.; Scott, R.K. The physiological response of winter wheat to reductions in plant density. Ann. Appl. Biol. 2000, 137, 165–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, X.; Jia, D.; Li, H.; Wang, Y.; Li, C.; Xu, H.; He, M. Effects of plant density on grain yield, protein size distribution, and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. Eur. J. Agron. 2016, 73, 1–10. [Google Scholar] [CrossRef]
- Valério, I.P.; de Carvalho, F.I.F.; Benin, G.; da Silveira, G.; da Silva, J.A.G.; Nornberg, R.; Hagemann, T.; de Sauza Luche, H.; de Oliveira, A.C. Seeding density in wheat: The more, the merrier? Sci. Agric. 2013, 70, 176–184. [Google Scholar] [CrossRef]
- Sanchez-Bragado, R.; Molero, G.; Reynolds, M.P.; Araus, J.L. Photosynthetic contribution of the ear to grain filling in wheat: A comparison of different methodologies for evaluation. J. Exp. Bot. 2016, 67, 2787–2798. [Google Scholar] [CrossRef]
- Blake, N.K.; Lanning, S.P.; Martin, J.M.; Sherman, J.D.; Talbert, L.E. Relationship of Flag Leaf Characteristics to Economically Important Traits in Two Spring Wheat Crosses. Crop Sci. 2007, 47, 491–494. [Google Scholar] [CrossRef]
- Joshi, S.; Choukimath, A.; Isenegger, D.; Panozzo, J.; Spangenberg, G.; Kant, S. Improved Wheat Growth and Yield by Delayed Leaf Senescence Using Developmentally Regulated Expression of a Cytokinin Biosynthesis Gene. Front. Plant Sci. 2019, 10, 1285. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, Q.; Zhang, X.; Li, F.; Ding, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; et al. Controlled-release nitrogen fertilizer management influences grain yield in winter wheat by regulating flag leaf senescence post-anthesis and grain filling. Food Energy Secur. 2022, 11, e361. [Google Scholar] [CrossRef]
- Fan, M.-S.; Zhao, F.-J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Ramos, C.G.; De Mello, A.G.; Kautzmann, R.M. A preliminary study of acid volcanic rocks for stonemeal application. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 30–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, X.; Xia, X.; He, Z. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor. Appl. Genet. 2014, 127, 855–866. [Google Scholar] [CrossRef]
- Rodríguez, M.V.; Barrero, J.M.; Corbineau, F.; Gubler, F.; Benech-Arnold, R.L. Dormancy in cereals (not too much, not so little): About the mechanisms behind this trait. Seed Sci. Res. 2015, 25, 99–119. [Google Scholar] [CrossRef]
- Williams, R.M.; Diepeveen, D.A.; Evans, F.H. Using big data to predict the likelihood of low falling numbers in wheat. Cereal Chem. 2019, 96, 411–420. [Google Scholar] [CrossRef]
- Lunn, G.D.; Major, B.J.; Kettlewell, P.S.; Scott, R.K. Mechanisms Leading to Excess Alpha-Amylase Activity in Wheat (Triticum aestivum, L) Grain in the U.K. J. Cereal Sci. 2001, 33, 313–329. [Google Scholar] [CrossRef]
- Cannon, A.E.; Marston, E.J.; Kiszonas, A.M.; Hauvermale, A.L.; See, D.R. Late-maturity α-amylase (LMA): Exploring the underlying mechanisms and end-use quality effects in wheat. Planta 2022, 255, 2. [Google Scholar] [CrossRef]
- Farrell, A.D.; Kettlewell, P.S. The Effect of Temperature Shock and Grain Morphology on Alpha-amylase in Developing Wheat Grain. Ann. Bot. 2008, 102, 287–293. [Google Scholar] [CrossRef]
- Neoh, G.K.S.; Dieters, M.J.; Tao, K.; Fox, G.P.; Nguyen, P.T.M.; Gilbert, R.G. Late-Maturity Alpha-Amylase in Wheat (Triticum aestivum) and Its Impact on Fresh White Sauce Qualities. Foods 2021, 10, 201. [Google Scholar] [CrossRef]
- Kettlewell, P.S. The response of alpha-amylase activity during wheat grain development to nitrogen fertiliser. Ann. Appl. Biol. 1999, 134, 241–249. [Google Scholar] [CrossRef]
- Kindred, D.R.; Gooding, M.J.; Ellis, R.H. Nitrogen fertilizer and seed rate effects on Hagberg falling number of hybrid wheats and their parents are associated with α-amylase activity, grain cavity size and dormancy. J. Sci. Food Agric. 2005, 85, 727–742. [Google Scholar] [CrossRef]
- Clarke, M.P.; Gooding, M.J.; Jones, S.A. The effects of irrigation, nitrogen fertilizer and grain size on Hagberg falling number, specific weight and blackpoint of winter wheat. J. Sci. Food Agric. 2004, 84, 227–236. [Google Scholar] [CrossRef]
EXP1 | EXP2 | EXP3 | ||||||
---|---|---|---|---|---|---|---|---|
6 h–6 h | 12 h–12 h | 6 h–6 h | 14 h–10 h | HL + HN | HL + LN | LL + HN | LL + LN | |
Light–dark cycle before start of stem elongation | 6 h–6 h | 12 h–12 h | 6 h–6 h | 6 h–6 h | 6 h–6 h | 6 h–6 h | 6 h–6 h | 6 h–6 h |
Light–dark cycle after start of stem elongation | 6 h–6 h | 12 h–12 h | 6 h–6 h | 14 h–10 h | 14 h–10 h | 14 h–10 h | 14 h–10 h | 14 h–10 h |
Light intensity (µmol m−2 s−1) | 93 ± 41 1 | 93 ± 41 1 | 440–720 2 | 440–720 2 | 524 ± 12 1 | 520 ± 20 1 | 318 ± 15 1 | 310 ± 14 1 |
EC (µS cm−1) | 2142 ± 87 | 2169 ± 232 | 2010 ± 178 | 2030 ± 195 | 1954 ± 28 | 1569 ± 34 | 1960 ± 47 | 1548 ± 29 |
pH | 7.2 ± 0.3 | 7.5 ± 0.3 | 6.6 ± 0.4 | 6.6 ± 0.3 | 6.5 ± 0.1 | 6.5 ± 0.1 | 6.4 ± 0.1 | 6.5 ± 0.1 |
DO (mg L−1) | NA | NA | 3.50 ± 1.78 | 3.41 ± 1.69 | 5.60 ± 0.16 | 5.41 ± 0.12 | 5.47 ± 0.11 | 5.31 ± 0.03 |
Daytime temperature (°C) | 20.0 ± 0.6 | 20.0 ± 0.7 | 20.6 ± 0.8 | 19.5 ± 1.9 | 20.5 ± 1.4 | |||
Nighttime temperature (°C) | 17.7 ± 0.7 | 17.8 ± 0.6 | 17.1 ± 0.8 | 18.0 ± 1.6 | 17.9 ± 1.1 | |||
Relative humidity (%) | 73.1 ± 10.0 | 73.1 ± 11.2 | 84.1 ± 7.9 | 81.2 ± 8.8 | 61.0 ± 6.2 | |||
CO2 concentration (ppm) | 485 ± 97 | 473 ± 75 | 699 ± 72 | 693 ± 74 | 745 ± 223 |
EXP1 | EXP2 | EXP3 | |||||
---|---|---|---|---|---|---|---|
6 h–6 h | 6 h–6 h | 14 h–10 h | HL + HN | HL + LN | LL + HN | LL + LN | |
Change to 14 h–10 h light regime | 38 | 37 | 37 | 37 | 37 | ||
Start of ear emergence | 66 | 60 | 56 | 51 | 51 | 54 | 54 |
Lowering of light intensity | 51 | 51 | |||||
Lowering of EC to 60% | 116 | 116 | |||||
Lowering of EC to 50% | 68 | 68 | 68 | 68 | |||
Lowering of EC to 25% | 98 | 98 | 98 | 98 | |||
Start of harvest | 131 | 122 | 127 | 111 | 111 | 111 | 111 |
End of harvest | 138 | 126 | 136 | 113 | 113 | 119 | 119 |
Kernel | Wholemeal Flour | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
MC | TW | TKW | DM | Ash | Protein | WG * | DG | GI | FN | |
g 100 g−1 | kg hL−1 | g | g 100 g−1 | g 100 g−1 | g 100 g−1 DM | g 100 g−1 Flour | g 100 g−1 Flour | % | s | |
EXP2 6 h–6 h | - | - | 51.1 ± 1.2 a | 87.5 ± 0.2 a | 1.9 ± 0.2 a | 14.1 | - | - | - | - |
EXP2 14 h–10 h | - | - | 48.6 ± 0.7 ab | 87.5 ± 0.2 a | 2.3 ± 0.2 a | 13.0 | - | - | - | - |
EXP3 HL + HN | 12.57 ± 0.01 b | 75.2 ± 0.1 b | 42.4 ± 1.7 b | 89.1 ± 0.2 b | 2.5 ± 0.2 a | 13.5 | 27.1 ± 0.2 b | 9.2 ± 0.1 b | 97.5 ± 0.7 a | 154 ± 4 b |
EXP3 LL + HN | 13.50 ± 0.01 a | 77.2 ± 0.1 a | 46.7 ± 2.0 ab | 88.3 ± 0.2 ab | 2.3 ± 0.2 a | 13.0 | 25.7 ± 0.5 a | 8.7 ± 0.0 a | 96.9 ± 0.8 a | 101 ± 1 a |
EXP3 HL + LN | 12.39 ± 0.04 b | 77.2 ± 0.3 a | 43.6 ± 1.2 b | 89.2 ± 0.2 b | 2.4 ± 0.2 a | 13.2 | 25.6 ± 0.3 a | 8.8 ± 0.2 ab | 98.3 ± 0.2 a | 147 ± 3 b |
EXP3 LL + LN | 13.56 ± 0.04 a | 77.7 ± 0.1 a | 47.1 ± 1.3 ab | 88.4 ± 0.2 ab | 2.3 ± 0.2 a | 13.1 | 26.2 ± 0.4 ab | 8.9 ± 0.0 ab | 98.1 ± 0.6 a | 176 ± 1 c |
B mg kg−1 | Ca mg kg−1 | Cu mg kg−1 | Fe mg kg−1 | K mg kg−1 | Mg mg kg−1 | Mn mg kg−1 | Na mg kg−1 | P mg kg−1 | Zn mg kg−1 | |
EXP2 6 h–6 h | 4.46 | 385 | 12.3 | 20.9 | 4650 | 1370 | 46.3 | 29.3 | 3820 | 191 |
EXP2 14 h–10 h | 4.59 | 362 | 10.3 | 25.2 | 5770 | 1460 | 49.0 | 35.7 | 4200 | 133 |
EXP3 HL + HN | 5.47 | 485 | 6.66 | 34.3 | 6280 | 1550 | 65.6 | 37.8 | 4540 | 49.7 |
EXP3 LL + HN | 4.46 | 459 | 5.84 | 35.9 | 5870 | 1510 | 68.5 | 33.8 | 4410 | 48.3 |
EXP3 HL + LN | 4.88 | 491 | 7.56 | 32.7 | 6130 | 1620 | 55.4 | 37.5 | 4540 | 49.5 |
EXP3 LL + LN | 4.33 | 445 | 7.79 | 32.9 | 5650 | 1520 | 55.0 | 32.6 | 4320 | 45.4 |
WA * | C1 | C2 | C3 | C4 | C5 | |||||
% | Time (min) | Torque (Nm) | Time (min) | Torque (Nm) | Time (min) | Torque (Nm) | Time (min) | Torque (Nm) | Torque (Nm) | |
EXP3 HL + HN | 65.0 | 5.2 | 1.141 | 17.5 | 0.342 | 22.3 | 1.196 | 32.2 | 0.431 | 0.764 |
EXP3 LL + HN | 62.0 | 4.8 | 1.137 | 17.7 | 0.334 | 21.8 | 1.055 | 33.2 | 0.248 | 0.447 |
EXP3 HL + LN | 62.0 | 4.8 | 1.149 | 17.8 | 0.339 | 22.4 | 1.245 | 33.7 | 0.436 | 0.780 |
EXP3 LL + LN | 62.9 | 5.1 | 1.090 | 17.3 | 0.343 | 21.9 | 1.220 | 33.4 | 0.414 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clauw, H.; Van de Put, H.; Sghaier, A.; Kerkaert, T.; Debonne, E.; Eeckhout, M.; Steppe, K. The Impact of a Six-Hour Light–Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems. Foods 2024, 13, 750. https://doi.org/10.3390/foods13050750
Clauw H, Van de Put H, Sghaier A, Kerkaert T, Debonne E, Eeckhout M, Steppe K. The Impact of a Six-Hour Light–Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems. Foods. 2024; 13(5):750. https://doi.org/10.3390/foods13050750
Chicago/Turabian StyleClauw, Helena, Hans Van de Put, Abderahman Sghaier, Trui Kerkaert, Els Debonne, Mia Eeckhout, and Kathy Steppe. 2024. "The Impact of a Six-Hour Light–Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems" Foods 13, no. 5: 750. https://doi.org/10.3390/foods13050750