Pulse Spray Drying for Bovine Skimmed Milk Powder Production
Abstract
:1. Introduction
- (a)
- (b)
- (c)
- It is appropriate for heat-sensitive and viscous compounds and reduced space required for the equipment [15].
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Milk Sample Preparation
2.3. Proximate Composition Parameters
2.4. Drying Process
- Spray Drying (SD) pilot model (evaporation capacity of 2.2 kg/h; Minor Mobile, GEA Niro, Denmark). Four air temperature conditions were studied (70, 80, 90 and 100 °C outlet temperatures with the respective inlet temperatures of 160, 180, 190 and 210 °C). The feed (flow rate: 48.3 g/min) was atomized by using compressed air at 3 bar filtered at 5 µm (AC20-F02G SMC, Amidata, Madrid, Spain).
- Pulse Spray Drying (PSD) pilot model (evaporation capacity of 70 kg/h; PSD-70; Ekonek, Spain). The different outlet temperatures (70, 80, 90 and 100 °C) were adjusted by applying variable flow rates of feed (72, 62, 52 and 42 L/h, respectively). The feed was dispersed by the internal pressure wave generated in the combustion motor at 148 Hz and a constant inlet flow of propane (4.7 kg/h) was applied. The product was collected in polypropylene boxes located under the rotary valves under the main chamber and the end of the cyclone separator, and mixed at 50/50 (w/w) in a fluidized bed (Strea 1-Pro, Gea Niro, Montigny le Bretonneux, Denmark) for 10 min (constant air flowrate of 70 ± 2 kg·h−1).
2.5. RP-HPLC Quantification of Soluble Native Whey Proteins
2.6. Powder Physical Properties
2.7. Particle Size and Distribution
2.8. Colour Measurements
2.9. Scanning Electron Microscopy (SEM)
2.10. Statistics
3. Results and Discussion
3.1. Protein and Moisture Content
3.2. Color
3.3. Particle Size and Distribution
3.4. Solubility, Flowability, Wettability and Compressibility
3.5. Scanning Electron Microscopy (SEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, A.L.; Fox, P.F. Manufacture and Properties of Dairy Powders. In Advanced Dairy Chemistry; McSweeney, P., O’Mahony, J., Eds.; Springer: New York, NY, USA, 2016; pp. 1–33. [Google Scholar] [CrossRef]
- Schuck, P. Spray drying of dairy products: State of the art. Lait 2002, 82, 375–382. [Google Scholar] [CrossRef]
- Filková, I.; Huang, L.; Mujumdar, A. Chapter 10: Industrial Spray Drying Systems. In Handbook of Industrial Drying, 3rd ed.; Mujumdar, A.S., Ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Samborska, K.; Poozesh, S.; Barańska, A.; Sobulska, M.; Jedlińska, A.; Arpagaus, C.; Malekjani, N.; Jafari, S.M. Innovations in spray drying process for food and pharma industries. J. Food Eng. 2022, 321, 110960. [Google Scholar] [CrossRef]
- Baker, C.G.J.; McKenzie, K.A. Energy consumption of industrial spray dryers. Dry. Technol. 2005, 23, 365–386. [Google Scholar] [CrossRef]
- Cheng, F.; Zhou, X.; Liu, Y.; Weerasinghe, R. Methods for improvement of the thermal efficiency during spray drying. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 53, p. 01031. [Google Scholar] [CrossRef]
- Bellinghausen, R. Spray drying from yesterday to tomorrow: An industrial perspective. Dry. Technol. 2019, 37, 612–622. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Zbicinski, I. Equipment, technology, perspectives and modeling of pulse combustion drying. Chem. Eng. J. 2002, 86, 33–46. [Google Scholar] [CrossRef]
- Higgins, B. On the sound produced by a current of hydrogen gas passing through a tube. J. Nat. Philos. Chem. Arts 1802, 1, 129. [Google Scholar]
- Kudra, T.; Benali, M.; Zbicinski, I. Pulse Combustion Drying: Aerodynamics, Heat Transfer, and Drying Kinetics. Dry. Technol. 2003, 21, 629–655. [Google Scholar] [CrossRef]
- Kudra, T. Pulse-Combustion Drying: Status and Potentials. Dry. Technol. 2008, 26, 1409–1420. [Google Scholar] [CrossRef]
- Pramudita, D.; Tsotsas, E. A model of pulse combustion drying and breakup of colloidal suspension droplets. Powder Technol. 2019, 355, 755–769. [Google Scholar] [CrossRef]
- Zinn, B.T. Pulse Combustion: Recent applications and research issues (Inviter topical review). In Twenty-Fourth Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, PA, USA, 1992; pp. 1297–1305. [Google Scholar]
- Meng, X.; de Jong, W.; Kudra, T. A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues. Renew. Sustain. Energy Rev. 2016, 55, 73–114. [Google Scholar] [CrossRef]
- Gieras, M.; Trzeciak, A. A new approach to the phenomenon of pulsed combustion. Exp. Therm. Fluid. Sci. 2023, 144, 110845. [Google Scholar] [CrossRef]
- Kudra, T.; Mujumdar, A.S. Advanced Drying Technologies, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Li, P.; Mi, J.; Dally, B.B.; Wang, F.; Liu, Z.; Chen, S.; Zheng, C. Progress and recent trend in MILD combustion. Sci. China Technol. Sci. 2011, 54, 255–269. [Google Scholar] [CrossRef]
- Severyanin, V.S. Application of Pulsating Combustion in Industrial Installations. In Proceedings of the Symposium on Pulse Combustion Applications, Atlanta, GA, USA, 2–3 March 1982. [Google Scholar]
- Keller, J.O.; Hongo, I. Pulse combustion: The mechanism of NOx production. Combust. Flame. 1990, 80, 219–237. [Google Scholar] [CrossRef]
- Xu, L.; Li, S.M.; Sunada, H. Preparation and Evaluation of Ibuprofen Solid Dispersion Systems with Kollidon Particles Using a Pulse Combustion Dryer System. Chem. Pharm. Bull. 2007, 55, 1545–1550. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, F.D.; Sunada, H. Improvement of the Dissolution Rate of Nitrendipine Using a New Pulse Combustion Drying Method. Chem. Pharm. Bull. 2007, 55, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Joni, I.M.; Purwanto, A.; Iskandar, F.; Hazata, M.; Okuyama, K. Intense UV-light absorption of ZnO nanoparticles prepared using a pulse combustion-spray pyrolysis method. Chem. Eng. J. 2009, 155, 433–441. [Google Scholar] [CrossRef]
- Widiyastuti, W.; Wang, W.N.; Purwanto, A.; Lenggoro, I.W.; Okuyama, K. A pulse combustion-spray pyrolysis process for the preparation of nano- and submicrometer-sized oxide particles. J. Am. Ceram. Soc. 2007, 90, 3779–3785. [Google Scholar] [CrossRef]
- Buchkowski, A.G. Pulse Combustion Dryer Development for Drying Wood Waste; EXFOR: Montreal, QC, Canada, 1999; pp. 1–4. [Google Scholar]
- Putnam, A.A.; Belles, F.E.; Kentfield, J.A.C. Pulse combustion. Prog. Energy Combust. Sci. 1986, 12, 43–79. [Google Scholar] [CrossRef]
- San Martin, D.; Ramos, S.; Zufía, J. Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 2016, 198, 68–74. [Google Scholar] [CrossRef]
- Wu, Z.; Yue, L.; Li, Z.; Li, J.; Mujumdar, A.S.; Rehkopf, J.A. Pulse combustion spray drying of egg white: Energy efficiency and product quality. Food Bioprocess Technol. 2014, 8, 148–157. [Google Scholar] [CrossRef]
- Xiao, Z.; Xie, X.; Yuan, Y.; Liu, X. Influence of atomizing parameters on droplet properties in a pulse combustion spray dryer. Dry. Technol. 2008, 26, 427–432. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.H. Heat induced changes of milk. In Dairy Chemistry and Biochemistry; Blackie Academic and Professional: London, UK, 1998; pp. 347–378. [Google Scholar]
- Zbicinski, I.; Kudra, T.; Liu, X. Chapter 2: Pulse combustion drying. In Modern Drying Technology; Tsotsas, E., Mujumdar, A.S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, Germany, 2014; Volume 5, pp. 27–56. [Google Scholar] [CrossRef]
- Pramudita, D.; Teiwes, A.; Jacob, M.; Tsotsas, E. Crust breakage in production of fine particles using pulse combustion drying: Experimental and numerical investigations. Powder Technol. 2021, 393, 77–98. [Google Scholar] [CrossRef]
- Pisecky, J. Handbook of Milk Powder Manufacture, 2nd ed.; Westergaard, V., Refstrup, E., Eds.; GEA Process Engineering A/S: Copenhagen, Denmark, 2012. [Google Scholar]
- ISO 1211:2010|IDF 1:2010; Milk—Determination of Fat Content—Gravimetric Method (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 8968-3:2004|IDF 20-3:2004; Milk—Determination of Nitrogen Content—Part 3: Block-Digestion Method (Semi-Micro Rapid Routine Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 2920:2004|IDF 58:2004; Whey Cheese—Determination of Dry Matter (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- BOE-A-1977-16116; Orden de 31 de Enero de 1977 por la que se Establecen los Métodos Oficiales de Análisis de Aceites y Grasas, Cereales y Derivados, Productos Lácteos y Productos Derivados de la Uva. Available online: https://www.boe.es/eli/es/o/1977/01/31/(1) (accessed on 20 December 2022).
- ISO 8156:2005|IDF 129:2005; Dried Milk and Dried Milk Products—Determination of Insolubility Index. International Organization for Standardization: Geneva, Switzerland, 2005.
- GEA-Niro. Analytical Methods for Dry Milk Products. Available online: https://www.gea.com/en/products/analytical-methods-dry-milk-products.jsp (accessed on 1 August 2022).
- Carr, R.L. Evaluating flow properties of solids. Chem. Eng. 1965, 72, 163–168. [Google Scholar]
- Hausner, H.H. Friction conditions in a mass of metal powder. Int. J. Powder Metall. 1967, 3, 7–13. [Google Scholar]
- Lebrun, P.; Krier, F.; Mantanus, J.; Grohganz, H.; Yang, M.; Rozet, E.; Boulanger, B.; Evrard, B.; Rantanen, J.; Hubert, P. Design space approach in the optimization of the spray-drying process. Eur. J. Pharm. Biopharm. 2012, 80, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, R.W.N.; Outinen, M.; Toikkanen, O.; Rojas, O.J. Particle size and fat encapsulation define the colloidal dispersibility and reconstitution of growing-up milk powder. Powder Technol. 2021, 391, 133–141. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Ali, H.I.; Al-IEssa, S.A.; Gavahian, M.; Mousavi-Khaneghah, A. Assessing Compositional and Quality Parameters of Unconcentrated and Refractive Window Concentrated Milk Based on Color Components. Dairy 2022, 3, 400–412. [Google Scholar] [CrossRef]
- Tamime, A.Y. Dried Milk Products. In Dairy Powders and Concentrated Milk Products; Blackwell Pub. Ltd.: Oxford, UK, 2009; pp. 231–245. [Google Scholar]
- FAO; OMS. Codex Alimentarius: Leche y Productos Lácteos, 2nd ed.; FAO: Rome, Italy, 2011; ISBN 978-92-5-305837-2. Available online: https://www.fao.org/3/i2085s/i2085s.pdf (accessed on 20 February 2024).
- Fang, Y.; Rogers, S.; Selomulya, C.; Chen, X.D. Functionality of milk protein concentrate: Effect of spray drying temperature. Biochem. Eng. J. 2012, 62, 101–105. [Google Scholar] [CrossRef]
- de Oliveira, A.H.; Mata, M.E.R.M.C.; Fortes, M.; Duarte, M.E.M.; Pasquali, M.; Lisboa, H.M. Influence of spray drying conditions on the properties of whole goat milk. Dry. Technol. 2021, 39, 726–737. [Google Scholar] [CrossRef]
- Enomoto, H.; Hayashi, Y.; Li, C.P.; Ohki, S.; Ohtomo, H.; Shiokawa, M.; Aoki, T. Glycation and phosphorylation of alpha-lactalbumin by dry heating: Effect on protein structure and physiological functions. J. Dairy Sci. 2009, 92, 3057–3068. [Google Scholar] [CrossRef] [PubMed]
- Norwood, E.A.; Croguennec, T.; Le Floch-Fouéré, C.; Schuck, P.; Jeantet, R. Chapter 4—Changes in Whey Protein Powders During Storage. In Whey Proteins; Hilton, C.D., Bansal, N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 123–154. [Google Scholar] [CrossRef]
- Singh, H. Interactions of milk proteins during the manufacture of milk powders. Lait 2007, 87, 413–423. [Google Scholar] [CrossRef]
- Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Cuq, B.; Desobry, S.; Scher, J. Comparative study of particle structure evolution during water sorption: Skim and whole milk powders. Colloids Surf. B Biointerfaces 2011, 87, 1–10. [Google Scholar] [CrossRef]
- Oldfield, D.J.; Taylor, M.W.; Singh, H. Effect of preheating and other process parameters on whey protein reactions during skim milk powder manufacture. Int. Dairy J. 2005, 15, 501–511. [Google Scholar] [CrossRef]
- Bista, A.; Murphy, E.G.; O’Donnell, C.P.; O’Shea, N. The effect of heat treatment on physicochemical properties of skim milk concentrate and spray-dried skim milk powder. Int. J. Dairy Technol. 2022, 75, 690–700. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, X.; Feng, R.; Wang, C.; Wang, X.; Wang, Y. Comparison of the Effects of High Hydrostatic Pressure and Pasteurization on Quality of Milk during Storage. Foods 2022, 11, 2837. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Alvarenga, M.S.; Martinez-Rodriguez, E.Y.; Garcia-Amezquita, L.E.; Olivas, G.I.; Zamudio-Flores, P.B.; Acosta-Muniz, C.H.; Sepulveda, D.R. Effect of Maillard reaction conditions on the degree of glycation and functional properties of whey protein isolate Maltodextrin conjugates. Food Hydrocoll. 2014, 38, 110118. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Cao, X.; Chen, F.; Hu, X.; Liao, X. Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innov. Food Sci. Emerg. Technol. 2012, 16, 326–334. [Google Scholar] [CrossRef]
- Sert, D.; Mercan, E.; Kılınç, M. Powder flow behaviour, functional characteristics and microstructure of whole milk powder produced from cow and buffalo milk mixtures. Int. Dairy J. 2022, 135, 105474. [Google Scholar] [CrossRef]
- Lin, Y.; Kelly, A.L.; O’mahony, J.A.; Guinee, T.P. Effects of milk heat treatment and solvent composition on physicochemical and selected functional characteristics of milk protein concentrate. J. Dairy Sci. 2018, 101, 6799–6813. [Google Scholar] [CrossRef]
- Zouari, A.; Mtibaa, I.; Triki, M.; Jridi, M.; Zidi, D.; Attia, H.; Ayadi, M.A. Effect of spray-drying parameters on the solubility and the bulk density of camel milk powder: A response surface methodology approach. Int. J. Dairy Technol. 2020, 73, 616–624. [Google Scholar] [CrossRef]
- Juliano, P.; Barbosa-Cánovas, G.V. Food Powders Flowability Characterization: Theory, Methods, and Applications. Annu. Rev. Food Sci. Technol. 2010, 1, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.G.; Regost, N.E.; Roos, Y.H.; Fenelon, M.A. Powder and Reconstituted Properties of Commercial Infant and Follow-On Formulas. Foods 2020, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Thomson, F.M. Storage and flow of particulate solids. In Handbook of Powder Science and Technology; Fayed, M.E., Otten, L., Eds.; Chapman & Hall: New York, NY, USA, 1997; pp. 389–486. [Google Scholar]
- Fitzpatrick, J.J.; Barringer, S.A.; Iqbal, T. Flow property measurement of food powders and sensitivity of Jenike’s hopper design methodology to the measured values. J. Food Eng. 2004, 61, 399–405. [Google Scholar] [CrossRef]
- Geldart, D.; Harnby, N.; Wong, A.C. Fluidization of cohesive powders. Powder Technol. 1984, 37, 25–27. [Google Scholar] [CrossRef]
- Ilari, J.L.; Mekkaoui, L. Physical properties of constitutive size classes of spray-dried skim milk powder and their mixtures. Lait 2005, 85, 279–294. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; van Lauwe, A.; Coursol, M.; O’Brien, A.; Fitzpatrick, K.L.; Ji, J.; Miao, S. Investigation of the rehydration behavior of food powders by comparing the behavior of twelve powders with different properties. Powder Technol. 2016, 297, 340–348. [Google Scholar] [CrossRef]
- Wu, S.; Fitzpatrick, J.; Cronin, K.; Maidannyk, V.; Miao, S. Effects of spraying surfactants in a fluidised bed on the rehydration behaviour of milk protein isolate powder. J. Food Eng. 2020, 266, 109694. [Google Scholar] [CrossRef]
- Burnett, D.; Thielmann, F.; Booth, J. Determining the critical relative humidity for moisture-induced phase transitions. Int. J. Pharm. 2004, 287, 123–133. [Google Scholar] [CrossRef]
- Tuohy, J.J. Some Physical Properties of Milk Powders. Ir. J. Food Sci. Technol. 1987, 13, 141–152. [Google Scholar]
- Alamilla-Beltrán, L.; Porras-Saavedra, J.; Villalobos-Castillejos, F.; Leyva-Daniel, D.E.; Pereyra-Castro, S.C. Chapter 6—Microscopy and spectroscopy techniques applied to analyze the microstructure of food powders. In Food Structure and Functionality; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 115–132. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. Surface characterization of four industrial spray-dried dairy powders in relation to chemical composition, structure and wetting property. Colloids Surf. B Biointerfaces 2002, 26, 197–212. [Google Scholar] [CrossRef]
Moisture Content (%) | b* | BI | Flowability (g/min) | SI (%) | |
---|---|---|---|---|---|
PSD | 2.37 ± 1.19 b | 10.00 ± 0.37 a | 15.09 ± 0.77 a | 19.55 ± 9.82 a | 98.40 ± 0.21 b |
SD | 2.95 ± 0.89 a | 9.02 ± 0.91 b | 12.82 ± 5.03 b | 10.68 ± 1.57 b | 99.51 ± 0.18 a |
Temperature (°C) | Moisture Content (%) | Bulk Density (g/mL) |
---|---|---|
70 | 3.21 ± 0.68 ab | 0.49 ± 0.04 a |
80 | 3.42 ± 1.09 a | 0.51 ± 0.03 a |
90 | 2.34 ± 0.58 bc | 0.46 ± 0.03 ab |
100 | 1.68 ± 0.94 c | 0.42 ± 0.04 b |
Temperature | DT | D10 (μm) | D50 (μm) | D90 (μm) | Span | D[3,2] (μm) | D[4,3] (μm) |
---|---|---|---|---|---|---|---|
70 °C | PSD | 12.67 ± 1.31 f | 42.50 ± 5.95 f | 118.43 ± 30.57 d | 2.43 ± 0.35 d | 27.57 ± 3.21 d | 56.92 ± 12.82 d |
SD | 19.60 ± 0.44 b | 55.77 ± 0.35 b | 272.33 ± 0.58 a | 4.52 ± 0.02 a | 41.93 ± 0.15 a | 103.67 ± 0.58 a | |
80 °C | PSD | 15.47 ± 0.25 c | 49.17 ± 0.15 c | 110.33 ± 3.21 c | 1.93 ± 0.07 e | 32.00 ± 0.26 b | 57.63 ± 0.95 c |
SD | 9.02 ± 0.10 g | 32.63 ± 0.15 g | 86.40 ± 0.30 d | 2.37 ± 0.01 c | 19.47 ± 0.15 f | 50.87 ± 0.25 d | |
90 °C | PSD | 13.93 ± 0.25 d | 42.00 ± 0.15 d | 89.57 ± 3.21 d | 1.80 ± 0.07 ef | 29.20 ± 0.40 c | 49.17 ± 0.95 e |
SD | 9.69 ± 0.21 g | 37.70 ± 0.30 e | 105.33 ± 3.51c | 2.54 ± 0.07 b | 21.20 ± 0.30 e | 57.00 ± 2.50 c | |
100 °C | PSD | 12.70 ± 0.10 e | 37.27 ± 0.06 ef | 75.77 ± 0.06 e | 1.69 ± 0.01 f | 24.47 ± 0.25 d | 41.33 ± 0.06 e |
SD | 25.97 ± 0.15 a | 57.90 ± 0.10 a | 145.00 ± 1.00 b | 2.06 ± 0.01 d | 43.53 ± 0.15 a | 79.03 ± 0.25 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romo, M.; Chutani, D.; Fartdinov, D.; Panthi, R.R.; Vahedikia, N.; Castellari, M.; Felipe, X.; Murphy, E.G. Pulse Spray Drying for Bovine Skimmed Milk Powder Production. Foods 2024, 13, 869. https://doi.org/10.3390/foods13060869
Romo M, Chutani D, Fartdinov D, Panthi RR, Vahedikia N, Castellari M, Felipe X, Murphy EG. Pulse Spray Drying for Bovine Skimmed Milk Powder Production. Foods. 2024; 13(6):869. https://doi.org/10.3390/foods13060869
Chicago/Turabian StyleRomo, María, Doll Chutani, Dinar Fartdinov, Ram Raj Panthi, Nooshin Vahedikia, Massimo Castellari, Xavier Felipe, and Eoin G. Murphy. 2024. "Pulse Spray Drying for Bovine Skimmed Milk Powder Production" Foods 13, no. 6: 869. https://doi.org/10.3390/foods13060869
APA StyleRomo, M., Chutani, D., Fartdinov, D., Panthi, R. R., Vahedikia, N., Castellari, M., Felipe, X., & Murphy, E. G. (2024). Pulse Spray Drying for Bovine Skimmed Milk Powder Production. Foods, 13(6), 869. https://doi.org/10.3390/foods13060869