Effects of Simulated Airplane Cabin Noise on In-Flight Meal Perception in the Brain Using Electroencephalography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Stimuli
2.3. Experimental Task
2.4. EEG Recordings
2.5. Resting-State EEG Data Analysis
2.6. Event-Related Potential Data Analysis
3. Results
3.1. Participant Survey for Background Noise
3.2. Resting-State EEG Power
3.3. Event-Related Potential Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spence, C. Multisensory flavor perception. Cell 2015, 161, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Piqueras-Fiszman, B.; Spence, C. Sensory expectations based on product-extrinsic food cues: An interdisciplinary review of the empirical evidence and theoretical accounts. Food Qual. Prefer. 2015, 40, 165–179. [Google Scholar] [CrossRef]
- Spence, C. Auditory contributions to flavour perception and feeding behaviour. Physiol. Behav. 2012, 107, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Stafford, L.D.; Fernandes, M.; Agobiani, E. Effects of noise and distraction on alcohol perception. Food Qual. Prefer. 2012, 24, 218–224. [Google Scholar] [CrossRef]
- Woods, A.T.; Poliakoff, E.; Lloyd, D.M.; Kuenzel, J.; Hodson, R.; Gonda, H.; Batchelor, J.; Dijksterhuis, G.B.; Thomas, A. Effect of background noise on food perception. Food Qual. Prefer. 2011, 22, 42–47. [Google Scholar] [CrossRef]
- Novak, C.C.; La Lopa, J.; Novak, R.E. Effects of sound pressure levels and sensitivity to noise on mood and behavioral intent in a controlled fine dining restaurant environment. J. Culin. Sci. Technol. 2010, 8, 191–218. [Google Scholar] [CrossRef]
- Spence, C.; Michel, C.; Smith, B. Airplane noise and the taste of umami. Flavour 2014, 3, 2. [Google Scholar] [CrossRef]
- Yan, K.S.; Dando, R. A crossmodal role for audition in taste perception. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.S.; Gudziol, V.; Hahner, A.; Hummel, T. Background sound modulates the performance of odor discrimination task. Exp. Brain Res. 2011, 212, 305–314. [Google Scholar] [CrossRef]
- Velasco, C.; Balboa, D.; Marmolejo-Ramos, F.; Spence, C. Crossmodal effect of music and odor pleasantness on olfactory quality perception. Front. Psychol. 2014, 5, 1352. [Google Scholar] [CrossRef]
- Motoki, K.; Takahashi, N.; Velasco, C.; Spence, C. Is classical music sweeter than jazz? Crossmodal influences of background music and taste/flavour on healthy and indulgent food preferences. Food Qual. Prefer. 2022, 96, 104380. [Google Scholar] [CrossRef]
- Green, D.; Butts, J. Factors affecting acceptability of meals served in the air. J. Am. Diet. Assoc. 1945, 21, 415–419. [Google Scholar] [CrossRef]
- Maga, J.; Lorenz, K. Effect of altitude on taste thresholds. Percept. Mot. Skills 1972, 34, 667–670. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.J.; Boakes, R.A. Sweet and Sour Smells: Learned Synesthesia Between the Senses of Taste and Smell. In The Handbook of Multisensory Processes; American Psychological Association: Washington, DC, USA, 2004. [Google Scholar]
- Burdack-Freitag, A.; Bullinger, D.; Mayer, F.; Breuer, K. Odor and taste perception at normal and low atmospheric pressure in a simulated aircraft cabin. J. Verbrauch. Lebensm. 2011, 6, 95–109. [Google Scholar] [CrossRef]
- Holthuysen, N.T.; Vrijhof, M.N.; de Wijk, R.A.; Kremer, S. “Welcome on board”: Overall liking and just-about-right ratings of airplane meals in three different consumption contexts—Laboratory, re-created airplane, and actual airplane. J. Sens. Stud. 2017, 32, e12254. [Google Scholar] [CrossRef]
- van der Laan, L.N.; de Ridder, D.T.; Viergever, M.A.; Smeets, P.A. The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. Neuroimage 2011, 55, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K. Application of selected neuroscientific methods in consumer sensory analysis: A review. J. Food Sci. 2023, 88, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Songsamoe, S.; Saengwong-ngam, R.; Koomhin, P.; Matan, N. Understanding consumer physiological and emotional responses to food products using electroencephalography (EEG). Trends Food Sci. Tech. 2019, 93, 167–173. [Google Scholar] [CrossRef]
- Toepel, U.; Knebel, J.F.; Hudry, J.; le Coutre, J.; Murray, M.M. The brain tracks the energetic value in food images. Neuroimage 2009, 44, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.; Park, S.; Lee, Y.; Kwak, H.S. Brain responses and connectivity to visual meal compositions: An EEG investigation into food liking. Food Qual. Prefer. 2023, 112, 105029. [Google Scholar] [CrossRef]
- Ohla, K.; Toepel, U.; le Coutre, J.; Hudry, J. Visual-gustatory interaction: Orbitofrontal and insular cortices mediate the effect of high-calorie visual food cues on taste pleasantness. PLoS ONE 2012, 7, e32434. [Google Scholar] [CrossRef]
- Toepel, U.; Bielser, M.L.; Forde, C.; Martin, N.; Voirin, A.; le Coutre, J.; Murray, M.M.; Hudry, J. Brain dynamics of meal size selection in humans. Neuroimage 2015, 113, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Miao, M.; Gan, Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci. Biobehav. Rev. 2022, 138, 104721. [Google Scholar] [CrossRef]
- Spence, C. Noise and its impact on the perception of food and drink. Flavour 2014, 3, 9. [Google Scholar] [CrossRef]
- Ozcan, H.K.; Nemlioglu, S. In-cabin noise levels during commercial aircraft flights. Can. Acoust. 2006, 34, 31–35. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Jacinto, L.R.; Reis, J.S.; Dias, N.S.; Cerqueira, J.J.; Correia, J.H.; Sousa, N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front. Behav. Neurosci. 2013, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Donner, T.H.; Oostenveld, R.; Fries, P.; Engel, A.K. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 2008, 60, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.L.; Richter, C.G. Interareal oscillatory synchronization in top-down neocortical processing. Curr. Opin. Neurobiol. 2015, 31, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Koelewijn, T.; Bronkhorst, A.; Theeuwes, J. Attention and the multiple stages of multisensory integration: A review of audiovisual studies. Acta Psychol. 2010, 134, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Regev, T.I.; Winawer, J.; Gerber, E.M.; Knight, R.T.; Deouell, L.Y. Human posterior parietal cortex responds to visual stimuli as early as peristriate occipital cortex. Eur. J. Neurosci. 2018, 48, 3567–3582. [Google Scholar] [CrossRef] [PubMed]
- Prescott, J. Multisensory processes in flavour perception and their influence on food choice. Curr. Opin. Food Sci. 2015, 3, 47–52. [Google Scholar] [CrossRef]
- Yao, F.; Zhuang, Y.; Shen, X.; Wang, X. Attentional bias towards appealing and disgusting food cues varies with the menstrual cycle. Appetite 2022, 175, 106063. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.M.; Loughead, J.; Bakizada, Z.M.; Hopkins, C.M.; Geliebter, A.; Gur, R.C.; Wadden, T.A. Sex/gender differences in neural correlates of food stimuli: A systematic review of functional neuroimaging studies. Obes. Rev. 2017, 18, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K. Sex differences in brain responses to food stimuli: A meta-analysis on neuroimaging studies. Obes. Rev. 2018, 19, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
Theta (4.0–8.0 Hz) | Alpha (8.0–12.0 Hz) | Beta (12.0–25.0 Hz) | |||||||
---|---|---|---|---|---|---|---|---|---|
Quiet | Noise | p-Value | Quiet | Noise | p-Value | Quiet | Noise | p-Value | |
Intrahemispheric: left | |||||||||
FP1 | 9.4 ± 4.0 | 12.1 ± 8.9 | 0.148 | 7.0 ± 4.6 | 7.8 ± 5.4 | 0.085 | 9.6 ± 6.5 | 11.8 ± 12.5 | 0.187 |
F3 | 6.5 ± 2.1 | 8.0 ± 4.7 | 0.036 | 6.3 ± 4.6 | 6.9 ± 5.3 | 0.049 | 7.2 ± 3.4 | 8.2 ± 4.6 | 0.012 * |
C3 | 4.1 ± 1.2 | 5.2 ± 3.6 | 0.030 | 5.1 ± 3.9 | 5.6 ± 4.4 | 0.120 | 6.1 ± 3.4 | 6.6 ± 3.4 | 0.143 |
P3 | 2.4 ± 1.1 | 3.6 ± 3.5 | 0.015 * | 4.5 ± 4.8 | 5.5 ± 7.5 | 0.038 | 4.3 ± 2.6 | 4.9 ± 3.0 | 0.088 |
O1 | 1.6 ± 0.8 | 2.2 ± 2.4 | 0.072 | 2.9 ± 2.5 | 3.6 ± 5.4 | 0.264 | 3.8 ± 2.5 | 4.2 ± 3.3 | 0.243 |
F7 | 6.2 ± 1.9 | 7.5 ± 4.1 | 0.057 | 5.8 ± 4.4 | 6.2 ± 4.7 | 0.143 | 8.4 ± 5.6 | 8.9 ± 5.6 | 0.295 |
T3 | 3.1 ± 1.1 | 3.6 ± 2.8 | 0.155 | 4.2 ± 4.6 | 4.1 ± 3.7 | 0.189 | 9.4 ± 6.9 | 9.1 ± 7.2 | 0.867 |
T5 | 1.4 ± 0.6 | 2.1 ± 2.2 | 0.019 | 2.5 ± 2.4 | 2.9 ± 3.6 | 0.041 | 2.5 ± 1.0 | 3.0 ± 1.8 | 0.033 |
Intrahemispheric: right | |||||||||
FP2 | 8.9 ± 2.8 | 12.3 ± 10.9 | 0.150 | 7.2 ± 4.6 | 7.8 ± 5.5 | 0.208 | 10.8 ± 5.2 | 11.6 ± 6.0 | 0.497 |
F4 | 6.6 ± 2.2 | 7.9 ± 4.7 | 0.124 | 6.4 ± 4.4 | 6.9 ± 5.1 | 0.139 | 7.3 ± 2.9 | 8.1 ± 4.4 | 0.072 |
C4 | 4.4 ± 1.4 | 5.2 ± 3.4 | 0.088 | 5.8 ± 4.4 | 6.3 ± 5.4 | 0.357 | 6.2 ± 2.5 | 7.3 ± 3.8 | 0.006 * |
P4 | 2.6 ± 1.1 | 3.4 ± 3.1 | 0.093 | 4.7 ± 4.4 | 5.6 ± 7.3 | 0.318 | 4.3 ± 2.1 | 4.8 ± 3.2 | 0.183 |
O2 | 1.6 ± 0.7 | 2.0 ± 2.1 | 0.172 | 2.6 ± 2.0 | 3.1 ± 3.5 | 0.307 | 3.3 ± 2.2 | 4.0 ± 3.3 | 0.161 |
F8 | 6.1 ± 1.8 | 7.5 ± 4.8 | 0.141 | 5.9 ± 4.2 | 6.3 ± 4.6 | 0.132 | 8.2 ± 3.7 | 8.8 ± 4.8 | 0.309 |
T4 | 3.3 ± 0.9 | 3.9 ± 2.5 | 0.091 | 3.9 ± 2.5 | 4.0 ± 2.7 | 0.643 | 9.9 ± 7.3 | 9.8 ± 6.0 | 0.852 |
T6 | 1.7 ± 0.7 | 2.2 ± 2.1 | 0.054 | 3.1 ± 2.7 | 3.4 ± 4.0 | 0.495 | 3.3 ± 1.9 | 3.5 ± 2.5 | 0.510 |
Intrahemispheric: center | |||||||||
Fz | 8.0 ± 3.1 | 9.7 ± 5.7 | 0.067 | 7.1 ± 5.1 | 7.7 ± 5.7 | 0.127 | 7.2 ± 2.8 | 8.0 ± 3.9 | 0.036 |
Cz | 6.8 ± 2.2 | 8.1 ± 4.7 | 0.095 | 7.4 ± 5.2 | 8.2 ± 6.5 | 0.289 | 6.9 ± 2.9 | 7.6 ± 3.7 | 0.043 |
Pz | 3.4 ± 3.4 | 3.7 ± 3.0 | 0.387 | 3.4 ± 2.6 | 4.4 ± 5.8 | 0.099 | 3.6 ± 2.0 | 4.2 ± 3.0 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, M.; Kim, S.S.; Lee, C.-L.; Lee, Y.; Kwak, H.S. Effects of Simulated Airplane Cabin Noise on In-Flight Meal Perception in the Brain Using Electroencephalography. Foods 2024, 13, 1012. https://doi.org/10.3390/foods13071012
Lim M, Kim SS, Lee C-L, Lee Y, Kwak HS. Effects of Simulated Airplane Cabin Noise on In-Flight Meal Perception in the Brain Using Electroencephalography. Foods. 2024; 13(7):1012. https://doi.org/10.3390/foods13071012
Chicago/Turabian StyleLim, Manyoel, Sang Sook Kim, Cho-Long Lee, Youngseung Lee, and Han Sub Kwak. 2024. "Effects of Simulated Airplane Cabin Noise on In-Flight Meal Perception in the Brain Using Electroencephalography" Foods 13, no. 7: 1012. https://doi.org/10.3390/foods13071012
APA StyleLim, M., Kim, S. S., Lee, C. -L., Lee, Y., & Kwak, H. S. (2024). Effects of Simulated Airplane Cabin Noise on In-Flight Meal Perception in the Brain Using Electroencephalography. Foods, 13(7), 1012. https://doi.org/10.3390/foods13071012