The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. Proximate Composition
2.4. Ascorbic Acid Content
2.5. Mineral Content
2.6. Total Phenol and Total Flavonoid Contents and Antioxidant Activity
2.6.1. Total Phenol Content (TP)
2.6.2. Total Flavonoid Content
2.6.3. Antioxidant Activity
2.7. Fatty Acid Profile and α-Tocopherol Content
2.7.1. α-Tocopherol Content
2.7.2. Fatty Acid Profile
2.8. Statistics
3. Results and Discussion
3.1. Physical Characteristics of Hass Avocados
3.2. Proximate Composition
3.3. Vitamin C and α-Tocopherol Contents
3.4. Total Phenol and Total Flavonoid Contents and Antioxidant Activity
3.5. Mineral Content
3.6. Fatty Acid Profile
3.7. Pearson Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Carpena, J.-G.; Morcuende, D.; Andrade, M.-J.; Kylli, P.; Estevez, M. Avocado (Persea Americana Mill.) Phenolics, in Vitro Antioxidant and Antimicrobial Activities, and Inhibition of Lipid and Protein Oxidation in Porcine Patties. J. Agric. Food Chem. 2011, 59, 5625–5635. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.X.; Tan, S.S.; Tan, S.T. Influence of Geographical Origins on the Physicochemical Properties of Hass Avocado Oil. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1431–1437. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Radobank. World Avocado Map 2023. 2023. Available online: https://research.rabobank.com/far/en/sectors/fresh-produce/world-avocado-map-2023-global-growth-far-from-over.html (accessed on 12 September 2023).
- Méndez Hernández, C.; Ríos Mesa, D.; Rodríguez-Galdón, B.; Rodríguez-Rodríguez, E.M. Study of Environmental Factors on the Fat Profile of Hass Avocados. J. Food Compos. Anal. 2023, 123, 105544. [Google Scholar] [CrossRef]
- Pedreschi, R.; Hollak, S.; Harkema, H.; Otma, E.; Robledo, P.; Westra, E.; Somhorst, D.; Ferreyra, R.; Defilippi, B.G. Impact of Postharvest Ripening Strategies on “Hass” Avocado Fatty Acid Profiles. S. Afr. J. Bot. 2016, 103, 32–35. [Google Scholar] [CrossRef]
- Tesfay, S.Z.; Bertling, I.; Bower, J.P. Anti-Oxidant Levels in Various Tissues during the Maturation of “Hass” Avocado (Persea Americana Mill.). J. Hortic. Sci. Biotechnol. 2010, 85, 106–112. [Google Scholar] [CrossRef]
- Thorp, T.G.; Barnett, A.M.; Boldingh, H.; Elmsly, T.; Minchin, P.E.H. Is Boron Transport to Avocado Flowers Regulated by Carbohydrate Supply? In Proceedings of the VII World Avocado Congress, Cairns, Australia, 5–9 September 2011. [Google Scholar]
- Devalaraja, S.; Jain, S.; Yadav, H. Exotic Fruits as Therapeutic Complements for Diabetes, Obesity and Metabolic Syndrome. Food Res. Int. 2011, 44, 1856–1865. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Chin, Y.W.; Kinghorn, A.D.; D’Ambrosio, S.M. Chemopreventive Characteristics of Avocado Fruit. Semin. Cancer Biol. 2007, 17, 386–394. [Google Scholar] [CrossRef]
- Ramos-Aguilar, A.L.; Ornelas-Paz, J.; Tapia-Vargas, L.M.; Ruiz-Cruz, S.; Gardea-Béjar, A.A.; Yahia, E.M.; Ornelas-Paz, J.d.J.; Pérez-Martínez, J.D.; Rios-Velasco, C.; Ibarra-Junquera, V. The Importance of the Bioactive Compounds of Avocado Fruit (Persea Americana Mill) on Human Health. Biotecnia 2019, 21, 154–162. [Google Scholar] [CrossRef]
- ISTAC. Superficie Cultivada, Superficie de Producción y Árboles Diseminados Según Productos Agrícolas Permanentes y Sistemas de Cultivo. Available online: https://www3.gobiernodecanarias.org/istac/statistical-visualizer/visualizer/data.html?resourceType=dataset&agencyId=ISTAC&resourceId=E01135A_000004&version=~latest#visualization/line (accessed on 12 September 2023).
- Galán Sauco, V. Los Frutales Tropicales En Los Subtrópicos; Mundi-Prensa: Madrid, Spain, 1992. [Google Scholar]
- Rodríguez Sosa, L. Rentabilidad Del Cultivo de Aguacate En Canarias; Cabildo de Tenerife, Servicio Técnico de Agricultura y Desarrollo Rural: Santa Cruz de Tenerife, Spain, 2014. [Google Scholar]
- Papadakis, J. Climates of the World and Their Agricultural Potentialities; Eigenverl. d. Verf.: Buenos Aires, Argentina, 1966. [Google Scholar]
- Santana Pérez, L.M. Clasificación Agroclimatica Papadakis en Tenerife; Agrocabildo: Tenerife, Spain, 2012. [Google Scholar]
- White, A.; Woolf, A.; Hofman, P.; Arpaia, M.L. (Eds.) Te International Avocado Quality Manual; The New Zealand Institute form Plant and Food Research limited: Auckland, New Zealand, 2009. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Meyer, M.D.; Terry, L.A. Development of a Rapid Method for the Sequential Extraction and Subsequent Quantification of Fatty Acids and Sugars from Avocado Mesocarp Tissue. J. Agric. Food Chem. 2008, 56, 7439–7445. [Google Scholar] [CrossRef]
- Hernández Suárez, M.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Mineral and Trace Element Concentrations in Cultivars of Tomatoes. Food Chem. 2007, 104, 489–499. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminum Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Bondet, V.; Brand-Williams, W.; Berset, C. Kinetics and Mechanisms of Antioxidant Activity Using the DPPH• Free Radical Method. LWT Food Sci. Technol. 1997, 30, 609–615. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids, 3rd ed.; The Oily Press: Bridgwater, UK, 2003. [Google Scholar]
- Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra-Ruiz, C.; Reyes-Farias, M.; Garcia-Diaz, D.F.; Robert, P.; Encina, C.; Soto-Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37, 619–655. [Google Scholar] [CrossRef]
- Wang, W.; Bostic, T.R.; Gu, L. Antioxidant Capacities, Procyanidins and Pigments in Avocados of Different Strains and Cultivars. Food Chem. 2010, 122, 1193–1198. [Google Scholar] [CrossRef]
- Henao-Rojas, J.C.; Lopez, J.H.; Osorio, N.W.; Ramírez-Gil, J.G. Fruit Quality in Hass Avocado and Its Relationships with Different Growing Areas under Tropical Zones. Rev. Ceres 2019, 66, 341–350. [Google Scholar] [CrossRef]
- Rozan, M.A.A.G.; Boriy, E.G.; Bayomy, H.M. Chemical Composition, Bioactive Compounds and Antioxidant Activity of Six Avocado Cultivars Persea Americana Mill. (Lauraceae) Grown in Egypt. Emirates J. Food Agric. 2021, 33, 815–826. [Google Scholar] [CrossRef]
- Oster, J.D.; Stottlmyer, D.E.; Arpaia, M.L. Salinity and Water Effects on “Hass” Avocado Yields. J. Am. Soc. Hortic. Sci. 2007, 132, 253–261. [Google Scholar] [CrossRef]
- Huaman-Alvino, C.; Chirinos, R.; Gonzales-Pariona, F.; Pedreschi, R.; Campos, D. Physicochemical and Bioactive Compounds at Edible Ripeness of Eleven Varieties of Avocado (Persea Americana) Cultivated in the Andean Region of Peru. Int. J. Food Sci. Technol. 2021, 56, 5040–5049. [Google Scholar] [CrossRef]
- Lu, Q.Y.; Zhang, Y.; Wang, Y.; Wang, D.; Lee, R.P.; Gao, K.; Byrns, R.; Heber, D. California Hass Avocado: Profiling of Carotenoids, Tocopherol, Fatty Acid, and Fat Content during Maturation and from Different Growing Areas. J. Agric. Food Chem. 2009, 57, 10408–10413. [Google Scholar] [CrossRef] [PubMed]
- Villa-Rodríguez, J.A.; Molina-Corral, F.J.; Ayala-Zavala, J.F.; Olivas, G.I.; González-Aguilar, G.A. Effect of Maturity Stage on the Content of Fatty Acids and Antioxidant Activity of “Hass” Avocado. Food Res. Int. 2011, 44, 1231–1237. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Khuong, T.; Lovatt, C.J. Effect of Harvest Date on the Nutritional Quality and Antioxidant Capacity in “Hass” Avocado during Storage. Food Chem. 2012, 135, 694–698. [Google Scholar] [CrossRef]
- Daiuto, E.R.; Tremocoldi, M.A.; de Alencar, S.M.; Vieites, R.L.; Minarelli, P.H. Composição Química e Atividade Antioxidante da Polpa e Resíduos de Abacate ‘HASS’. Rev. Bras. Frutic. 2014, 36, 417–424. [Google Scholar] [CrossRef]
- Peraza-Magallanes, A.Y.; Pereyra-Camacho, M.A.; Sandoval-Castro, E.; Medina-Godoy, S.; Valdez-Morales, M.; Clegg, M.T.; Calderón-Vázquez, C.L. Exploring Genetic Variation, Oil and α-Tocopherol Content in Avocado (Persea Americana) from Northwestern Mexico. Genet. Resour. Crop Evol. 2017, 64, 443–449. [Google Scholar] [CrossRef]
- Hirasawa, M.; Shimura, K.; Shimizu, A.; Mura, K.; Tokue, C.; Arai, S. Quantification and Functional Analysis of Dietary Fiber and Polyphenols in Avocado. Nippon Shokuhin Kagaku Kogaku Kaishi 2008, 55, 95–101. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Crozier, A. Antioxidant Actions and Phenolic and Vitamin C Contents of Common Mauritian Exotic Fruits. J. Sci. Food Agric. 2003, 83, 496–502. [Google Scholar] [CrossRef]
- Fernandes, G.D.; Gómez-Coca, R.B.; Pérez-Camino, M.C.; Moreda, W.; Barrera-Arellano, D. Chemical Characterization of Commercial and Single-Variety Avocado Oils. Grasas Aceites 2018, 69, e256. [Google Scholar] [CrossRef]
- Calderón-Vázquez, C.; Durbin, M.L.; Ashworth, V.E.; Tommasini, L.; Meyer, K.K.T.; Clegg, M.T. Quantitative Genetic Analysis of Three Important Nutritive Traits in the Fruit of Avocado. J. Am. Soc. Hortic. Sci. 2013, 138, 283–289. [Google Scholar] [CrossRef]
- Cervantes-Paz, B.; Yahia, E.M.; Ornelas-Paz, J.d.J.; Victoria-Campos, C.I.; Pérez-Martínez, J.D.; Reyes-Hernández, J. Bioaccessibility of Fat-Soluble Bioactive Compounds (FSBC) from Avocado Fruit as Affected by Ripening and FSBC Composition in the Food Matrix. Food Res. Int. 2021, 139, 109960. [Google Scholar] [CrossRef]
- Reddy, M.; Moodley, R.; Jonnalagadda, S.B. Elemental Uptake and Distribution of Nutrients in Avocado Mesocarp and the Impact of Soil Quality. Environ. Monit. Assess. 2014, 186, 4519–4529. [Google Scholar] [CrossRef] [PubMed]
- Boyd, L.M.; Hancock, A.; Woolf, A.B.; De Silva, N.; Thorp, T.G.; Ferguson, I.B. Comparison of Sampling Strategies for Determining Fruit Mineral Concentrations in “Hass” Avocado (Persea Americana Mill). J. Hortic. Sci. Biotechnol. 2007, 82, 611–621. [Google Scholar] [CrossRef]
- Marques, J.R.; Hofman, P.J.; Wearing, A.H. Between-Tree Variation in Fruit Quality and Fruit Mineral Concentrations of Hass Avocados. Aust. J. Exp. Agric. 2006, 46, 1195–1201. [Google Scholar] [CrossRef]
- Donetti, M.; Terry, L.A. Biochemical Markers Defining Growing Area and Ripening Stage of Imported Avocado Fruit Cv. Hass. J. Food Compos. Anal. 2014, 34, 90–98. [Google Scholar] [CrossRef]
- Carvalho, C.P.; Velásquez, M.A. Fatty Acid Content of Avocados (Persea Americana Mill. Cv. Hass) in Relation to Orchard Altitude and Fruit Maturity Stage. Agron. Colomb. 2015, 33, 220–227. [Google Scholar] [CrossRef]
- Ferreyra, R.; Sellés, G.; Saavedra, J.; Ortiz, J.; Zúñiga, C.; Troncoso, C.; Rivera, S.A.; González-Agüero, M.; Defilippi, B.G. Identification of Pre-Harvest Factors That Affect Fatty Acid Profiles of Avocado Fruit (Persea Americana Mill) Cv. “Hass” at Harvest. S. Afr. J. Bot. 2016, 104, 15–20. [Google Scholar] [CrossRef]
- Zuazo, V.H.D.; Lipan, L.; Rodríguez, B.C.; Sendra, E.; Tarifa, D.F.; Nemś, A.; Ruiz, B.G.; Carbonell-Barrachina, Á.A.; García-Tejero, I.F. Impact of Deficit Irrigation on Fruit Yield and Lipid Profile of Terraced Avocado Orchards. Agron. Sustain. Dev. 2021, 41, 69. [Google Scholar] [CrossRef]
Agroclimatic Stations | Slope | Length–Latitude | Altitude (msnm) | TM (°C) | Tm (°C) | HRM (%) | HRm (%) | P (mm) | ETo (mm) | Hours Sunshine by Day (h) | N° of Samples | Classification Climatic Papadakis *,** |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BU | North | 28.38136–16.84592 | 66 | 26.4 | 15.1 | 93.4 | 43.8 | 183 | 1380 | 9.42 | 2 | Semicálido |
SI | North | 28.35145–16.80345 | 450 | 27.0 | 12.2 | 100 | 30.7 | 392 | 969 | 7.08 | 2 | Tierra templada |
OR | North | 28.40657–16.51432 | 214 | 25.9 | 13.5 | 99.9 | 44.4 | 2767 | 973 | 7.71 | 27 | Tierra templada |
GU | South | 28.32639–16.40564 | 280 | 29.7 | 13.6 | 97.9 | 26.8 | 102 | 1407 | 7.71 | 6 | Tierra templada |
RE | North | 28.36847–16.57725 | 595 | 25.4 | 9.73 | 100 | 31.7 | 442 | 821 | 6.38 | 8 | Tierra templada |
SA | South | 28.21102–16.82964 | 30 | 31.5 | 12.5 | 99.6 | 35.6 | 58.6 | 1225 | 8.87 | 3 | Tierra templada |
TA | North | 28.46950–16.40043 | 694 | 27.6 | 9.03 | 96.6 | 21.3 | 436 | 1119 | 7.68 | 2 | Tierra templada |
Location | OR | RE | TA | GU | BU | SI | SA |
---|---|---|---|---|---|---|---|
Proximate composition (%) | |||||||
Dry matter | 31.3 ± 2.25 a | 32.1 ± 3.09 a | 29.7 ± 2.71 a | 32.2 ± 0.97 a | 31.2 ± 4.08 a | 33.8 ± 1.35 a | 33.9 ± 0.23 a |
Fat | 17.9 ± 1.90 ab | 18.3 ± 3.03 bc | 16.3 ± 2.46 a | 18.7 ± 1.56 bcd | 19.0 ± 2.08 bcd | 20.2 ± 0.96 cd | 20.4 ± 0.56 d |
Fiber | 6.32 ± 0.67 bc | 6.44 ± 0.37 bc | 6.27 ± 0.19 bc | 6.03 ± 0.59 b | 5.43 ± 1.05 a | 6.82 ± 0.50 c | 6.39 ± 0.40 bc |
Ash | 1.45 ± 0.27 abc | 1.36 ± 0.25 ab | 1.77 ± 0.07 d | 1.65 ± 0.21 cd | 1.56 ± 0.11 bcd | 1.30 ± 0.05 a | 1.30 ± 0.12 a |
Bioactive compounds and antioxidant capacity | |||||||
Ascorbic acid (mg 100 g−1) | 2.77 ± 1.43 a | 2.75 ± 0.59 a | 3.26 ± 0.59 a | 3.11 ± 1.29 a | 2.41 ± 0.14 a | 2.81 ± 0.73 a | 1.89 ± 0.20 a |
α-Tocopherol (µg g−1) | 20.6 ± 3.59 ab | 21.0 ± 4.49 ab | 20.8 ± 3.82 ab | 52.2 ± 2.87 c | 20.7 ± 3.60 ab | 18.6 ± 1.29 a | 22.8 ± 2.14 bc |
Total phenols (mg GAE 100 g−1) | 52.1 ± 9.96 ab | 49.2 ± 5.13 ab | 47.7 ± 3.91 a | 56.0 ± 5.10 b | 48.3 ± 4.09 ab | 46.0 ± 2.68 a | 53.3 ± 2.68 ab |
Total flavonoids (mg QE 100 g−1) | 27.7 ± 7.42 a | 27.5 ± 5.24 a | 24.7 ± 3.86 a | 24.2 ± 2.74 a | 27.8 ± 1.68 a | 25.7 ± 3.03 a | 30.0 ± 3.31 a |
DPPH (µM TE g−1) | 1.14 ± 0.37 a | 1.23 ± 0.39 a | 0.92 ± 0.04 a | 1.19 ± 0.35 a | 1.10 ± 0.29 a | 0.87 ± 0.04 a | 1.35 ± 0.32 a |
ABTS (µM TE g−1) | 3.21 ± 0.42 a | 3.13 ± 0.34 a | 3.27 ± 0.18 a | 3.26 ± 0.22 a | 2.77 ± 0.53 a | 3.08 ± 0.11 a | 3.12 ± 0.34 a |
Minerals (mg kg−1) | |||||||
Phosphorus | 479 ± 10 a | 442 ± 72 a | 658 ± 84 b | 511 ± 80 a | 460 ± 58 a | 526 ± 104 a | 469 ± 67 a |
Potassium | 5631 ± 896 bc | 5261 ± 772 ab | 7170 ± 1042 e | 6421 ± 415 d | 6256 ± 412 cd | 5102 ± 799 ab | 4702 ± 283 a |
Calcium | 109 ± 36 b | 125 ± 36 b | 66.7 ± 20 a | 105 ± 19 b | 101 ± 22 b | 97.4 ± 21 b | 101 ± 5 b |
Magnesium | 352 ± 74 a | 350 ± 67 a | 312 ± 69 a | 352 ± 27 a | 298 ± 37 a | 340 ± 43 a | 350 ± 20 a |
Iron | 8.00 ± 2.62 b | 8.73 ± 1.83 b | 8.31 ± 1.48 b | 8.25 ± 3.24 b | 6.27 ± 1.15 ab | 8.50 ± 1.98 b | 4.78 ± 0.88 a |
Copper | 2.74 ± 1.24 a | 2.48 ± 0.95 a | 2.57 ± 0.48 a | 2.80 ± 1.44 a | 2.48 ± 0.48 a | 3.17 ± 0.48 a | 3.99 ± 1.77 a |
Zinc | 5.74 ± 1.56 b | 4.97 ± 0.88 ab | 6.28 ± 0.94 b | 5.96 ± 1.38 b | 5.13 ± 1.61 ab | 5.85 ± 1.17 b | 4.11 ± 0.26 a |
Manganese | 1.27 ± 0.37 a | 1.42 ± 0.25 a | 1.32 ± 0.24 a | 1.16 ± 0.13 | 1.24 ± 0.12 a | 1.24 ± 0.17 a | 1.20 ± 0.25 a |
Fatty acids (% of total fatty acids) | |||||||
C16:0 (Palmitic) | 20.2 ± 1.67 a | 19.6 ± 1.81 a | 20.0 ± 2.92 a | 19.8 ± 1.92 a | 19.5 ± 0.60 a | 20.8 ± 1.60 a | 23.0 ± 0.47 a |
C18:0 (Stearic) | 0.53 ± 0.03 a | 0.56 ± 0.05 a | 0.52 ± 0.04 a | 0.57 ± 0.04 a | 0.57 ± 0.01 a | 0.52 ± 0.03 a | 0.55 ± 0.01 a |
C16:1 (Palmitoleic) | 11.1 ± 1.50 ab | 10.1 ± 1.71 a | 12.6 ± 1.15 abc | 10.9 ± 1.06 a | 10.6 ± 0.21 a | 13.9 ± 1.27 c | 13.4 ± 0.10 bc |
C18:1 (Oleic) | 55.5 ± 3.47 bc | 57.4 ± 2.78 c | 53.1 ± 2.33 ab | 54.1 ± 2.31 bc | 56.9 ± 1.84 bc | 51.8 ± 1.49 ab | 48.7 ± 3.04 a |
C18:2 (Linoleic) | 11.9 ± 1.60 a | 11.7 ± 1.94 a | 13.1 ± 1.49 a | 13.9 ± 1.37 a | 11.7 ± 2.21 a | 12.5 ± 0.62 a | 13.8 ± 2.23 a |
C18:3 (Linolenic) | 0.68 ± 0.16 a | 0.68 ± 0.15 a | 0.80 ± 0.20 a | 0.72 ± 0.09 a | 0.60 ± 0.13 a | 0.56 ± 0.07 a | 0.60 ± 0.20 a |
SFAs | 20.7 ± 1.69 a | 20.2 ± 1.84 a | 20.5 ± 2.96 a | 20.3 ± 1.94 a | 20.1 ± 0.59 a | 21.3 ± 1.64 a | 23.5 ± 0.48 a |
MUFAs | 66.7 ± 2.40 a | 67.5 ± 1.88 a | 65.6 ± 1.22 a | 65.0 ± 1.50 a | 67.5 ± 1.63 a | 65.7 ± 0.97 a | 62.1 ± 2.95 a |
PUFAs | 12.6 ± 1.72 a | 12.4 ± 2.08 a | 13.9 ± 1.69 a | 14.6 ± 1.44 a | 12.3 ± 2.33 a | 13.1 ± 0.68 a | 14.4 ± 2.43 a |
%peel | %seed | DM | Fat | Fiber | Ash | AA | α-T | TP | TF | DPPH | ABTS | P | K | Ca | Fe | Cu | Zn | Mn | C16:0 | C18:0 | C16:1 | C18:1 | C18:2 | C18:3 | SFA | MUFA | PUFA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight | −0.497 ** | 0.325 * | −0.337 * | 0.455 ** | 0.398 ** | 0.287 * | −0.324 * | −0.282 * | ||||||||||||||||||||
%pulp | −0.625 ** | −0.849 ** | 0.284 * | 0.283 * | ||||||||||||||||||||||||
%peel | 0.316 * | −0.285 * | 0.357 * | 0.340 * | 0.338 * | −0.298 * | ||||||||||||||||||||||
%seed | 0.281 * | |||||||||||||||||||||||||||
DM | 0.892 ** | 0.485 ** | 0.405 ** | 0.292 * | 0.297 * | 0.323 * | −0.299 * | |||||||||||||||||||||
Fat | 0.497 ** | 0.295 * | 0.392 ** | 0.322 * | 0.372 ** | −0.472 ** | 0.374 ** | −0.290 * | ||||||||||||||||||||
Fiber | 0.381 ** | |||||||||||||||||||||||||||
Ash | 0.589 ** | 0.708 ** | −0.428 ** | 0.401 ** | −0.349 * | 0.419 ** | 0.311 * | 0.419 ** | ||||||||||||||||||||
AA | −0.344 * | 0.339 * | −0.342 * | |||||||||||||||||||||||||
α-T | 0.303 * | 0.366 ** | 0.311 * | −0.356 * | 0.369 ** | −0.342 * | ||||||||||||||||||||||
TP | 0.588 ** | 0.604 ** | −0.300 * | |||||||||||||||||||||||||
TF | 0.696 ** | 0.600 ** | −0.359 * | −0.350 * | 0.284 * | −0.333 * | −0.406 ** | −0.346 * | ||||||||||||||||||||
DPPH | 0.678 ** | −0.313 * | −0.398 ** | |||||||||||||||||||||||||
ABTS | ||||||||||||||||||||||||||||
P | 0.631 ** | −0.505 ** | 0.356 * | 0.530 ** | 0.668 ** | −0.342 * | 0.406 ** | −0.410 ** | 0.445 ** | 0.325 * | −0.327 * | 0.445 ** | ||||||||||||||||
K | −0.308 * | 0.302 * | 0.492 ** | −0.313 * | 0.346 * | 0.360 * | −0.298 * | 0.355 * | ||||||||||||||||||||
Ca | −0.394 ** | 0.340 * | 0.362 ** | −0.374 ** | −0.336 * | −0.379 ** | ||||||||||||||||||||||
Fe | 0.379 ** | 0.392 ** | 0.327 * | |||||||||||||||||||||||||
Cu | 0.370 ** | 0.331 * | 0.295 * | −0.361 ** | 0.328 * | −0.331 * | ||||||||||||||||||||||
Zn | 0.451 ** | 0.393 ** | 0.456 ** | |||||||||||||||||||||||||
Mn | ||||||||||||||||||||||||||||
C16:0 | 0.425 ** | 0.596 ** | −0.697 ** | −0.335 * | 1.000 ** | −0.622 ** | ||||||||||||||||||||||
C18:0 | 0.442 ** | |||||||||||||||||||||||||||
C16:1 | −0.824 ** | 0.587 ** | −0.525 ** | |||||||||||||||||||||||||
C18:1 | −0.518 ** | −0.693 ** | 0.915 ** | −0.498 ** | ||||||||||||||||||||||||
C18:2 | 0.705 ** | −0.676 ** | 0.998 ** | |||||||||||||||||||||||||
C18:3 | −0.352 * | 0.745 ** | ||||||||||||||||||||||||||
SFA | −0.622 ** | |||||||||||||||||||||||||||
MUFA | −0.664 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez Hernández, C.; Grycz, A.; Rios Mesa, D.; Rodríguez Galdón, B.; Rodríguez-Rodríguez, E.M. The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods 2024, 13, 1058. https://doi.org/10.3390/foods13071058
Méndez Hernández C, Grycz A, Rios Mesa D, Rodríguez Galdón B, Rodríguez-Rodríguez EM. The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods. 2024; 13(7):1058. https://doi.org/10.3390/foods13071058
Chicago/Turabian StyleMéndez Hernández, Clemente, Alicja Grycz, Domingo Rios Mesa, Beatriz Rodríguez Galdón, and Elena M. Rodríguez-Rodríguez. 2024. "The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain" Foods 13, no. 7: 1058. https://doi.org/10.3390/foods13071058
APA StyleMéndez Hernández, C., Grycz, A., Rios Mesa, D., Rodríguez Galdón, B., & Rodríguez-Rodríguez, E. M. (2024). The Quality Evaluation of Avocado Fruits (Persea americana Mill.) of Hass Produced in Different Localities on the Island of Tenerife, Spain. Foods, 13(7), 1058. https://doi.org/10.3390/foods13071058