Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Procurement and Preparation of Sample
2.2. Drying of Ginger
2.3. Color Analysis
2.4. Physicochemical Characteristics of Ginger Powder
2.4.1. Particle Size Distribution
2.4.2. Flowability and Compressibility
2.4.3. Solubility
2.4.4. Hygroscopicity
2.5. Extraction of Bioactive Compounds
2.5.1. Total Phenolic Contents
2.5.2. DPPH Antioxidant Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.1.1. Drying Rate
3.1.2. Moisture Ratio
3.2. Color Analysis
3.3. Physicochemical Characteristics of Ginger Powder
3.4. Effect of Drying Temperature and Solvents on the Extraction of Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, R.H.; Ni, Z.J.; Zhu, Y.Y.; Thakur, K.; Zhang, F.; Zhang, Y.Y.; Hu, F.; Zhang, J.G.; Wei, Z.J. A Recent Update on the Multifaceted Health Benefits Associated with Ginger and Its Bioactive Components. Food Funct. 2021, 12, 519–542. [Google Scholar] [CrossRef]
- Reyes-Fermín, L.M.; Aparicio-Trejo, O.E.; Avila-Rojas, S.H.; Gómez-Sierra, T.; Martínez-Klimova, E.; Pedraza-Chaverri, J. Natural Antioxidants’ Effects on Endoplasmic Reticulum Stress-Related Diseases. Food Chem. Toxicol. 2020, 138, 111229. [Google Scholar] [CrossRef]
- Srinivasan, K. Ginger Rhizomes (Zingiber officinale): A Spice with Multiple Health Beneficial Potentials. Pharma Nutr. 2017, 5, 18–28. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G.; Chu, Z.; Qin, L. Effect of Oven Drying, Microwave Drying, and Silica Gel Drying Methods on the Volatile Components of Ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Dry. Technol. 2012, 30, 248–255. [Google Scholar] [CrossRef]
- Jolad, S.D.; Lantz, R.C.; Guan, J.C.; Bates, R.B.; Timmermann, B.N. Commercially Processed Dry Ginger (Zingiber officinale): Composition and Effects on LPS-Stimulated PGE2 Production. Phytochemistry 2005, 66, 1614–1635. [Google Scholar] [CrossRef]
- Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H. Bin Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, M.N.; Nazir, A.; Fallico, B. Ginger Bioactives: A Comprehensive Review of Health Benefits and Potential Food Applications. Antioxidants 2023, 12, 2015. [Google Scholar] [CrossRef] [PubMed]
- Indiarto, R.; Subroto, E.; Angeline, S. Ginger Rhizomes (Zingiber officinale) Functionality in Food and Health Perspective: A Review. Food Res. 2021, 5, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, Z.; Tahir Nadeem, M.; Arshad, M.U.; Saeed, F.; Ahmed, M.H.; Bader Ul Ain, H.; Javed, A.; Anjum, F.M.; Hussain, S. Exploring the Biochemical and Antioxidant Potential of Ginger (Adric) and Turmeric (Haldi). Int. J. Food Prop. 2019, 22, 1666138. [Google Scholar] [CrossRef]
- Nazir, A.; Maan, A.A.; Shaukat, M.N. Potential Applications of Food Industrial By-Products in the Dairy Industry. In Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food—Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef]
- Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.; Castro-Muñoz, R. A Comprehensive Review on Ginger (Zingiber officinale) as a Potential Source of Nutraceuticals for Food Formulations: Towards the Polishing of Gingerol and Other Present Biomolecules. Food Chem. 2023, 413, 135629. [Google Scholar] [CrossRef]
- Osae, R.; Apaliya, M.T.; Kwaw, E.; Chisepo, M.T.R.; Yarley, O.P.N.; Antiri, E.A.; Alolga, R.N. Drying Techniques Affect the Quality and Essential Oil Composition of Ghanaian Ginger (Zingiber officinale Roscoe). Ind. Crops Prod. 2021, 172, 114048. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A. Total Phenolics, Total Carotenoids, Individual Phenolics and Antioxidant Activity of Ginger (Zingiber officinale) Rhizome as Affected by Drying Methods. LWT 2020, 126, 109354. [Google Scholar] [CrossRef]
- Zhao, P.; Ndayambaje, J.P.; Liu, X.; Xia, X. Microbial Spoilage of Fruits: A Review on Causes and Prevention Methods. Food Rev. Int. 2022, 38, 225–246. [Google Scholar] [CrossRef]
- Pandhi, S.; Kumar, A. Fundamentals of Advanced Drying Methods of Agricultural Products. In Advances in Food Process Engineering; Apple Academic Press: Palm Bay, FL, USA, 2023. [Google Scholar]
- Sangwan, A.; Kawatra, A.; Sehgal, S. Nutritional Composition of Ginger Powder Prepared Using Various Drying Methods. J Food Sci. Technol. 2014, 51, 2260–2262. [Google Scholar] [CrossRef] [PubMed]
- Amoah, R.E.; Wireko-Manu, F.D.; Oduro, I.; Saalia, F.K.; Ellis, W.O.; Owusu, E. Application of Spices in Foods: Consumer Preferences, Knowledge of Health Benefits, and Quality of Dried Ginger. Cogent Food Agric. 2022, 8, 2123766. [Google Scholar] [CrossRef]
- Kaushal, M.; Gupta, A.; Vaidya, D.; Gupta, M. Postharvest Management and Value Addition of Ginger (Zingiber officinale Roscoe): A Review. Int. J. Environ. Agric. Biotechnol. 2017, 2, 397–412. [Google Scholar] [CrossRef]
- Muthukumar, P.; Lakshmi, D.V.N.; Koch, P.; Gupta, M.; Srinivasan, G. Effect of Drying Air Temperature on the Drying Characteristics and Quality Aspects of Black Ginger. J. Stored Prod. Res. 2022, 97, 101966. [Google Scholar] [CrossRef]
- Guo, F.; Yang, C.; Zang, C.; Shang, Y.; Zhang, B.; Yu, H.; Li, C.; Duan, S. Comparison of the Quality of Chinese Ginger Juice Powders Prepared by Different Drying Methods. J. Food Process Eng. 2019, 42, e13252. [Google Scholar] [CrossRef]
- Kubra, I.R.; Rao, L.J.M. Effect of Microwave Drying on the Phytochemical Composition of Volatiles of Ginger. Int. J. Food Sci. Technol. 2012, 47, 53–60. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Méndez-Lagunas, L.; Rodríguez-Ramírez, J.; Cruz-Gracida, M.; Sandoval-Torres, S.; Barriada-Bernal, G. Convective Drying Kinetics of Strawberry (Fragaria ananassa): Effects on Antioxidant Activity, Anthocyanins and Total Phenolic Content. Food Chem. 2017, 230, 174–181. [Google Scholar] [CrossRef]
- Wang, J.; Bai, T.Y.; Wang, D.; Fang, X.M.; Xue, L.Y.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2019, 37, 301–311. [Google Scholar] [CrossRef]
- An, K.; Tang, D.; Wu, J.; Fu, M.; Wen, J.; Xiao, G.; Xu, Y. Comparison of Pulsed Vacuum and Ultrasound Osmotic Dehydration on Drying of Chinses Ginger (Zingiber officinale Roscoe): Drying characteristics, Antioxidant Capacity, and Volatile Profiles. Food Sci. Nutr. 2019, 7, 2537–2545. [Google Scholar] [CrossRef]
- Mustafa, I.; Chin, N.L.; Fakurazi, S.; Palanisamy, A. Comparison of Phytochemicals, Antioxidant and Anti-Inflammatory Properties of Sun-, Oven- And Freeze-Dried Ginger Extracts. Foods 2019, 8, 456. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef] [PubMed]
- Kajdžanoska, M.; Petreska, J.; Stefova, M. Comparison of Different Extraction Solvent Mixtures for Characterization of Phenolic Compounds in Strawberries. J. Agric. Food Chem. 2011, 59, 5272–5278. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, T.; Choi, Y.W.; Kim, Y.K. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus Densiflora Bark Extract. Biomed. Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed]
- Tanweer, S.; Mehmood, T.; Zainab, S.; Ahmad, Z.; Shehzad, A. Comparison and HPLC Quantification of Antioxidant Profiling of Ginger Rhizome, Leaves and Flower Extracts. Clin. Phytosci. 2020, 6, 12. [Google Scholar] [CrossRef]
- Ezez, D.; Tefera, M. Effects of Solvents on Total Phenolic Content and Antioxidant Activity of Ginger Extracts. J. Chem. 2021, 2021, 6635199. [Google Scholar] [CrossRef]
- Sharif, M.F.; Bennett, M.T. The Effect of Different Methods and Solvents on the Extraction of Polyphenols in Ginger (Zingiber officinale). J. Teknol. 2016, 78. [Google Scholar] [CrossRef]
- Khan, M.K.I.; Maan, A.A.; Aadil, R.M.; Nazir, A.; Butt, M.S.; Rashid, M.I.; Afzal, M.I. Modelling and Kinetic Study of Microwave Assisted Drying of Ginger and Onion with Simultaneous Extraction of Bioactive Compounds. Food Sci. Biotechnol. 2020, 29, 513–519. [Google Scholar] [CrossRef]
- Hossain, M.A.; Woods, J.L.; Bala, B.K. Single-Layer Drying Characteristics and Colour Kinetics of Red Chilli. Int. J. Food Sci. Technol. 2007, 42, 49–54. [Google Scholar] [CrossRef]
- Chahbani, A.; Fakhfakh, N.; Balti, M.A.; Mabrouk, M.; El-Hatmi, H.; Zouari, N.; Kechaou, N. Microwave Drying Effects on Drying Kinetics, Bioactive Compounds and Antioxidant Activity of Green Peas (Pisum sativum L.). Food Biosci. 2018, 25, 32–38. [Google Scholar] [CrossRef]
- Darvishi, H.; Azadbakht, M.; Rezaeiasl, A.; Farhang, A. Drying Characteristics of Sardine Fish Dried with Microwave Heating. J. Saudi Soc. Agric. Sci. 2013, 12, 121–127. [Google Scholar] [CrossRef]
- Lee, K.; Baek, S.; Kim, D.; Seo, J. A Freshness Indicator for Monitoring Chicken-Breast Spoilage Using a Tyvek® Sheet and RGB Color Analysis. Food Packag. Shelf Life 2019, 19, 40–46. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, B.; Zhao, D.; Lv, W. Microwave Infrared Vibrating Bed Drying of Ginger: Drying Qualities, Microstructure and Browning Mechanism. Food Chem. 2023, 424, 136340. [Google Scholar] [CrossRef] [PubMed]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the Carriers on the Microstructure of Mango Powder Obtained by Spray Drying and Its Functional Characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Hasan, F.; Nazir, A.; Sobti, B.; Tariq, H.; Karim, R.; Al-Marzouqi, A.H.; Kamal-Eldin, A. Dehydration of Date Fruit (Pheonix dactylifera L.) for the Production of Natural Sweet Powder. NFS J. 2022, 27, 13–20. [Google Scholar] [CrossRef]
- Monteleone, J.I.; Sperlinga, E.; Siracusa, L.; Spagna, G.; Parafati, L.; Todaro, A.; Palmeri, R. Water as a Solvent of Election for Obtaining Oleuropein-Rich Extracts from Olive (Olea europaea) Leaves. Agronomy 2021, 11, 465. [Google Scholar] [CrossRef]
- Parafati, L.; Pesce, F.; Siracusa, L.; Fallico, B.; Restuccia, C.; Palmeri, R. Pomegranate Byproduct Extracts as Ingredients for Producing Experimental Cheese with Enhanced Microbiological, Functional, and Physical Characteristics. Foods 2021, 10, 2669. [Google Scholar] [CrossRef]
- Shaukat, M.N.; Palmeri, R.; Restuccia, C.; Parafati, L.; Fallico, B. Glycerol Ginger Extract Addition to Edible Coating Formulation for Preventing Oxidation and Fungal Spoilage of Stored Walnuts. Food Biosci. 2023, 52, 102420. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Alvi, T.; Khan, M.K.I.; Maan, A.A.; Rizwan, M.; Aamir, M.; Saeed, F.; Ateeq, H.; Raza, M.Q.; Afzaal, M.; Shah, M.A. Microwave–Vacuum Extraction Cum Drying of Tomato Slices: Optimization and Functional Characterization. Food Sci. Nutr. 2023, 11, 4263–4274. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.I.; Ghauri, Y.M.; Alvi, T.; Amin, U.; Khan, M.I.; Nazir, A.; Saeed, F.; Aadil, R.M.; Nadeem, M.T.; Babu, I.; et al. Microwave Assisted Drying and Extraction Technique; Kinetic Modelling, Energy Consumption and Influence on Antioxidant Compounds of Fenugreek Leaves. Food Sci. Technol. 2022, 42, e56020. [Google Scholar] [CrossRef]
- Lamharrar, A.; Idlimam, A.; Alouani, A.; Kouhila, M. Modelling of Thin Layer Solar Drying Kinetics and Effective Diffusivity of Urtica Dioica Leaves. J. Eng. Sci. Technol. 2017, 12, 2141–2153. [Google Scholar]
- Demiray, E.; Yazar, J.G.; Aktok, Ö.; Çulluk, B.; Çalişkan Koç, G.; Pandiselvam, R. The Effect of Drying Temperature and Thickness on the Drying Kinetic, Antioxidant Activity, Phenolic Compounds, and Color Values of Apple Slices. J. Food Qual. 2023, 2023, 7426793. [Google Scholar] [CrossRef]
- Bai, R.; Sun, J.; Qiao, X.; Zheng, Z.; Li, M.; Zhang, B. Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis. Foods 2023, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Li, Z.; Song, C.; Li, J.; Song, F.; Zhu, G.; Liu, M. Effects of Combined Infrared and Hot-Air Drying on Ginsenosides and Sensory Properties of Ginseng Root Slices (Panax ginseng Meyer). J. Food Process Preserv. 2020, 44, e14312. [Google Scholar] [CrossRef]
- Juliano, P.; Barbosa-Cánovas, G.V. Food Powders Flowability Characterization: Theory, Methods, and Applications. Annu. Rev. Food Sci. Technol. 2010, 1, 124155. [Google Scholar] [CrossRef]
- Kefale, B.; Delele, M.A.; Fanta, S.W.; Mekonnen Abate, S. Nutritional, Physicochemical, Functional, and Textural Properties of Red Pepper (Capsicum annuum L.), Red Onion (Allium cepa), Ginger (Zingiber officinale), and Garlic (Allium sativum): Main Ingredients for the Preparation of Spicy Foods in Ethiopia. J. Food Qual. 2023, 2023, 3916692. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Thangavel, K.; Dev, S.R.S.; Delfiya, D.S.A.; Nambi, E.; Orsat, V.; Raghavan, G.S.V. Physicochemical Characteristics of Date Powder Produced in a Pilot-Scale Spray Dryer. Dry. Technol. 2015, 33, 1114–1123. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Germer, S.P.M.; de Aguirre, J.M. Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Dry. Technol. 2012, 30, 154–163. [Google Scholar] [CrossRef]
- Gümüşay, Ö.A.; Borazan, A.A.; Ercal, N.; Demirkol, O. Drying Effects on the Antioxidant Properties of Tomatoes and Ginger. Food Chem. 2015, 173, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical Characterization and Antioxidant Activities Comparison in Fresh, Dried, Stir-Frying and Carbonized Ginger. J. Chromatogr. B 2016, 1011, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, S.A.; Enujiugha, V.N. Modelling and Prediction of Selected Antioxidant Properties of Ethanolic Ginger Extract. J. Food Meas. Charact. 2018, 12, 1413–1419. [Google Scholar] [CrossRef]
Models | Drying Temp. | R2 | RMSE | χ2 |
---|---|---|---|---|
Lewis | 50 °C | 0.656 | 0.226 | 0.058 |
60 °C | 0.640 | 0.225 | 0.058 | |
70 °C | 0.679 | 0.211 | 0.050 | |
Handerson and Pabis | 50 °C | 0.694 | 0.213 | 0.061 |
60 °C | 0.765 | 0.182 | 0.044 | |
70 °C | 0.669 | 0.144 | 0.026 | |
Page | 50 °C | 0.993 | 0.033 | 0.001 |
60 °C | 0.991 | 0.035 | 0.002 | |
70 °C | 0.984 | 0.048 | 0.003 | |
Midilli | 50 °C | 0.995 | 0.027 | 0.001 |
60 °C | 0.993 | 0.032 | 0.002 | |
70 °C | 0.997 | 0.035 | 0.002 | |
Midilli + Arrhenius | - | 0.943 | 0.056 | 0.081 |
Drying Temperatures | Color Parameters | Drying Intervals | |||||
---|---|---|---|---|---|---|---|
0 h | 2 h | 4 h | 5 h | 6 h | Final | ||
50 °C | L* | 70.78 ± 1.27 a | 62.5 ± 0.87 e | 64.87 ± 1.03 d | 66.36 ± 0.09 cd | 68.63 ± 0.41 ab | 68.28 ± 1.24 bc |
a* | −3.67 ± 0.2 d | 0.28 ± 0.48 c | 1.37 ± 0.28 b | 2.85 ± 0.18 a | 1.18 ± 0.12 b | 1.41 ± 0.37 b | |
b* | 40.71 ± 0.54 a | 41.33 ± 0.83 a | 37.43 ± 0.9 b | 41.64 ± 1.93 a | 35.84 ± 0.29 b | 31.55 ± 2.13 c | |
60 °C | L* | 72.83 ± 0.43 a | 64.68 ± 0.24 bc | 59.79 ± 2.59 c | 48.05 ± 5.00 d | 68.77 ± 0.83 ab | 66.53 ± 1.76 b |
a* | −4.44 ± 0.01 d | −0.43 ± 0.16 c | 2.65 ± 0.47 b | 6.85 ± 1.11 a | 1.23 ± 0.23 bc | 1.83 ± 1.1 b | |
b* | 37.34 ± 0.52 a | 36.26 ± 1.63 ab | 31.28 ± 1.14 bc | 30.24 ± 0.14 c | 33.02 ± 4.31 abc | 32.26 ± 2.63 abc | |
70 °C | L* | 73.70 ± 2.38 a | 59.90 ± 1.73 b | 58.55 ± 1.28 b | 58.98 ± 2.22 b | 61.67 ± 1.00 b | ← |
a* | −5.37 ± 0.62 c | 1.21 ± 0.45 b | 2.69 ± 0.38 ab | 3.63 ± 0.94 a | 2.98 ± 1.01 a | ← | |
b* | 34.37 ± 1.34 a | 34.04 ± 2.82 a | 32.60 ± 4.96 a | 33.96 ± 0.35 a | 35.83 ± 2.60 a | ← |
Ginger Powder | Bulk Density (g/mL) | Tap Density (g/mL) | Flowability (Hausner Ratio) | Compressibility (Carr Index; %) | Solubility (%) | Hygroscopicity (%) | Particle Size (µm) | |
---|---|---|---|---|---|---|---|---|
Dx (50) | D[3,2] | |||||||
50 °C | 0.354 ± 0.004 a | 0.611 ± 0.006 a | 1.72 ± 0.04 a | 42.0 ± 1.30 a | 28.60 ± 0.21 a | 11.72 ± 0.42 a | 74.97 ± 3.00 b | 21.07 ± 3.29 b |
60 °C | 0.364 ± 0.009 a | 0.576 ± 0.006 b | 1.58 ± 0.02 b | 36.9 ± 0.92 b | 29.45 ± 0.13 a | 9.13 ± 0.39 b | 68.67 ± 2.23 c | 21.93 ± 0.91 ab |
70 °C | 0.366 ± 0.002 a | 0.566 ± 0.008 b | 1.55 ± 0.03 b | 35.4 ± 1.30 b | 30.40 ± 0.10 a | 8.85 ± 0.35 b | 93.53 ± 3.85 a | 24.77 ± 1.55 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaukat, M.N.; Fallico, B.; Nazir, A. Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger. Foods 2024, 13, 1096. https://doi.org/10.3390/foods13071096
Shaukat MN, Fallico B, Nazir A. Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger. Foods. 2024; 13(7):1096. https://doi.org/10.3390/foods13071096
Chicago/Turabian StyleShaukat, Muhammad Nouman, Biagio Fallico, and Akmal Nazir. 2024. "Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger" Foods 13, no. 7: 1096. https://doi.org/10.3390/foods13071096
APA StyleShaukat, M. N., Fallico, B., & Nazir, A. (2024). Impact of Air-Drying Temperatures on Drying Kinetics, Physicochemical Properties, and Bioactive Profile of Ginger. Foods, 13(7), 1096. https://doi.org/10.3390/foods13071096