Physical and Chemical Properties of Convective- and Microwave-Dried Blackberry Fruits Grown Using Organic Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Sampling
2.2. Drying Procedures
2.3. Extraction and Determination of Total Anthocyanins, Total Phenolics and Antioxidant Capacity
2.4. Determination of Total Soluble Solids Content, Dry Matter Content, pH and Ash Content
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Fresh and Dried Blackberry Fruits
3.2. Thin-Layer Convective and Microwave Drying of Blackberries
3.3. Determination of Effective Moisture Diffusivity and Energy of Activation
3.4. Determination of Energy Consumption
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health Benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. Blackberry fruit quality components, composition, and potential health benefits. In Blackberries and Their Hybrids; Crop Production Science in Horticulture Series No. 26; Hall, H.K., Funt, R.C., Eds.; CABI: Wallingford, UK, 2017; pp. 49–62. [Google Scholar]
- Shi, H.; Yu, L.L. Dried berries: Phytochemicals and health benefits of blackberries and black currants. In Dried Fruits: Phytochemicals and Health Effects; Alasalvar, C., Shahidi, F., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 55–74. [Google Scholar]
- Menon, A.; Stojceska, V.; Tassou, S.A. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci. Technol. 2020, 100, 67–76. [Google Scholar] [CrossRef]
- Orsat, V.; Changrue, V.; Raghavan, G.S.V. Microwave drying of fruits and vegetables. Stewart Postharvest Rev. 2006, 6, 4–9. [Google Scholar] [CrossRef]
- Radojčin, M.; Pavkov, I.; Bursać Kovaćević, D.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of selected drying methods and emerging drying intensification technologies on the quality of dried fruit: A review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á.A.; Figiel, A. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.Q.; Weber, C.; Lee, C.Y.; Brown, J.; Liu, R.H. Antioxidant and antiproliferative activities of raspberries. J. Agric. Food Chem. 2002, 50, 2926–2930. [Google Scholar] [CrossRef]
- Re, R.; Pellegrinni, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice–Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Pantelić, V.; Miletic, N.; Milovanović, V.; Đurović, I.; Petković, M. The antioxidant potential of convective and microwave-dried raspberries. In Proceedings of the 1st International Symposium on Biotechnology, Čačak, Serbia, 17–18 March 2023; pp. 445–450. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Onza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis, Nature Reviews Methods. Primers 2022, 2, 100. [Google Scholar]
- Kronthaler, F.; Zöllner, S. Data Analysis with RStudio; Springer: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Woods, F.M.; Dozier, W.A.D., Jr.; Ebel, R.C.; Thomas, R.H.; Nesbitt, M.; Wilkins, B.S.; Himelrick, D.G. Fruit quality and antioxidant properties in Alabama-grown blackberries during fruit maturation. Int. J. Fruit Sci. 2007, 6, 67–85. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef]
- Memete, A.R.; Sărac, I.; Teusdea, A.C.; Budău, R.; Bei, M.; Vicas, S.S. Bioactive compounds and antioxidant capacity of several blackberry (Rubus spp.) fruits cultivars grown in Romania. Horticulturae 2023, 9, 556. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, S.; Michalska, A.; Lech, K.; Majerska, J.; Oszmiański, J.; Figiel, A. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT Food Sci. Technol. 2019, 111, 727–736. [Google Scholar] [CrossRef]
- Stamenković, Z.; Radojčin, M.; Pavkov, I.; Bikić, S.; Ponjičan, O.; Bugarin, R.; Kovács, S.; Gere, A. Ranking and multicriteria decision making in optimization of raspberry convective drying processes. J. Chemom. 2019, 34, e3224. [Google Scholar] [CrossRef]
- Stamenković, Z.; Pavkov, I.; Radojčin, M.; Tepić Horecki, A.; Kešelj, K.; Bursać Kovačević, D.; Putnik, P. Convective Drying of Fresh and Frozen Raspberries and Change of Their Physical and Nutritive Properties. Foods 2019, 8, 251. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, Association of Official Analytical Chemists, 16th ed.; No 934.01; AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- Eminoğlu, M.B.; Yegül, U.; Sacilik, K. Drying characteristics of blackberry fruits in a convective hot-air dryer. HortScience 2019, 54, 1546–1550. [Google Scholar] [CrossRef]
- Pantelić, V.; Miletić, N.; Milovanović, V.; Đurović, I.; Petković, M.; Lukyanov, A.; Filipović, V. Energy usage and raspberry convective and microwave drying parameters. In Proceedings of the 1st International Symposium on Biotechnology, Čačak, Serbia, 17–18 March 2023; pp. 451–456. [Google Scholar] [CrossRef]
- Szadzińska, J.; Łechtańska, J.; Pashminehazar, R.; Kharaghani, A.; Tsotsas, E. Microwave- and ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Dry. Technol. 2019, 37, 1–12. [Google Scholar] [CrossRef]
- Seremet, C.L.; Botez, E.; Nistor, O.-V.; Andronoiu, D.G.; Mocanu, G.-D. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chem. 2016, 195, 104–109. [Google Scholar] [CrossRef]
- Demiray, E.; Seker, A.; Tulek, Y. Drying kinetics of onion (Allium cepa L.) slices with convective and microwave drying. Heat Mass Transf. 2016, 53, 1817–1827. [Google Scholar] [CrossRef]
- Doymaz, I. Drying kinetics of white mulberry. J. Food Eng. 2004, 61, 1546–1550. [Google Scholar] [CrossRef]
- Azimi-Nejadian, H.; Hoseini, S.S. Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat Mass Transf. 2019, 55, 2921–2930. [Google Scholar] [CrossRef]
- Petković, M.; Filipović, V.; Lončar, B.; Filipović, J.; Miletić, N.; Malešević, Z.; Jevremović, D. A Comparative analysis of thin–layer microwave and microwave/convective dehydration of chokeberry. Foods 2023, 12, 1651. [Google Scholar] [CrossRef] [PubMed]
- Cunha, N.; da Silva, L.H.M.; da Cruz Rodrigues, A.M. Drying of Curcuma longa L. slices by refractance window: Effect of temperature on thermodynamic properties and mass transfer parameters. Heat Mass Transf. 2024, 2024, 1–10. [Google Scholar] [CrossRef]
- Malekjani, N.; Emam-Djomeh, Z.; Hashemabadi, S.; Askari, G. Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts during Microwave-Convective Drying. Int. J. Food Eng. 2018, 14, 20170100. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M. Modeling and optimization of specific energy consumption and green house gas emissions during drying of organic blackberry with different pretreatments by response surface methodology. IJBSE 2020, 51, 351–369. [Google Scholar] [CrossRef]
- Tao, Y.; Li, D.; Siong Chai, W.; Show, P.L.; Yang, X.; Manickam, S.; Guangjie, X.; Han, Y. Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrason. Sonochem. 2021, 72, 105410. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Khalife, E.; Chen, G. Drying of organic blackberry in combined hot air-infrared dryer with ultrasound pretreatment. Dry. Technol. 2020, 39, 2075–2091. [Google Scholar] [CrossRef]
- Mierzwa, D.; Szadzińska, J.; Pawłowski, A.; Pashminehazar, R.; Kharaghani, A. Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound. Dry. Technol. 2018, 37, 988–1001. [Google Scholar] [CrossRef]
- Szadzińska, J.; Kowalski, S.J.; Stasiak, M. Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. Int. J. Heat Mass Transf. 2016, 103, 1065–1074. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Escher, G.B.; Ferreira, B.L.; Maggio, R.M. Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends Food Sci. Technol. 2018, 72, 83–90. [Google Scholar] [CrossRef]
- Cheng, W.; Sørensen, K.M.; Mongi, R.J.; Ndabikunze, B.K.; Chove, B.E.; Sun, D.-W.; Engelsen, S.B. A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA). LWT Food Sci. Technol. 2019, 112, 108214. [Google Scholar] [CrossRef]
- Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [PubMed]
- Baccichet, I.; Chiozzotto, R.; Bassi, D.; Gardana, C.; Cirilli, M.; Spinardi, A. Characterization of fruit quality traits for organic acids content and profile in a large peach germplasm collection. Sci. Hortic. 2021, 278, 109865. [Google Scholar] [CrossRef]
- Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized bed drying of blackberry wastes: Drying kinetics, particle characterization and nutritional value of the obtained granular solids. Powder Technol. 2021, 385, 37–49. [Google Scholar] [CrossRef]
Cultivar | Dry Matter Content (%) | Soluble Solid Content (%) | pH | Ash Content (%) |
---|---|---|---|---|
Loch Ness | 15.3 ± 0.1 | 9.7 ± 0.1 | 3.40 ± 0.15 | 0.34 ± 0.04 |
Triple Crown | 15.2 ± 0.1 | 9.8 ± 0.1 | 3.61 ± 0.10 | 0.30 ± 0.05 |
ANOVA | ns | ns | ns | ns |
Total Anthocyanins (mg 100 g−1 DM) | Total Phenolics (mg 100 g−1 DM) | Antioxidant Capacity (mmol TE 100 g−1 DM) | |||||
---|---|---|---|---|---|---|---|
Loch Ness | Triple Crown | Loch Ness | Triple Crown | Loch Ness | Triple Crown | ||
Fresh | 503.9 ±16.7 a | 331.0 ± 9.4 b | 1280.0 ± 150.5 a | 796.0 ± 151.7 b | 7.49 ± 0.94 a | 4.86 ± 0.84 b | |
CD * | 50 °C | 1.3 ±0.2 g | 0.9 ±0.1 g | 149.8 ± 18.0 h | 79.3 ±3.0 i | 0.64 ± 0.03 fg | 0.43 ± 0.08 g |
70 °C | 16.7 ± 1.7 ef | 5.8 ± 0.3 fg | 229.6 ± 0.6 f | 53.1 ± 6.2 i | 0.95 ± 0.00 ef | 0.82 ± 0.07 efg | |
MD * | 90 W | 46.3 ± 1.9 d | 52.5 ± 2.5 d | 296.3 ± 25.7 e | 255.8 ±0.1 f | 1.51 ± 0.13 d | 1.20 ± 0.09 de |
180 W | 51.8 ± 1.6 d | 83.5 ± 4.4 c | 418.4 ± 6.6 d | 502.2 ± 25.7 c | 1.45 ± 0.06 d | 2.35 ± 0.19 c | |
240 W | 17.2 ± 1.4 ef | 19.9 ± 1.5 e | 196.0 ± 19.4 g | 246.1 ± 2.4 f | 0.95 ± 0.01 ef | 1.48 ± 0.10 d | |
ANOVA | *** | *** | *** |
Drying Time (min) | Deff (m2 s−1) | Ea ** | E (kWh) | CO2 (kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Loch Ness | Triple Crown | Loch Ness | Triple Crown | Loch Ness | Triple Crown | Loch Ness | Triple Crown | Loch Ness | Triple Crown | ||
CD * | 50 °C | 9629 ± 41 b | 10,156 ± 94 a | 7.09 × 10−11 ± 6.02 × 10−12 e | 7.77 × 10−11 ± 5.83 × 10−12 e | 54.45 ± 2.54 a | 54.45 ± 1.94 a | 6.75 ± 0.21 b | 7.36± 0.26 a | 6.74 ± 0.30 b | 7.34 ± 0.26 a |
70 °C | 3086 ± 37 d | 3255 ± 47 c | 2.36 × 10−10 ± 2.32 × 10−11 e | 2.59 × 10−10 ± 2.16 × 10−11 e | 5.61 ± 0.28 d | 6.11 ± 0.18 c | 5.59 ± 0.28 d | 6.1 ±0.18 c | |||
MD * | 90 W | 252 ± 13 e | 197 ± 11 e | 3.98 × 10−9 ± 2.94 × 10−10 d | 5.94 × 10−9 ± 1.88 × 10−10 c | 16.66 ±1.63 a,* | 12.06 ± 0.71 a,* | 0.38 ± 0.02 e | 0.30 ±0.02 e | 0.38 ± 0.02 e | 0.29 ± 0.02 e |
180 W | 75 ± 8 f | 71 ± 7 f | 1.42 × 10−8 ± 6.86 × 10−10 b | 1.43 × 10−8 ± 4.05 × 10−10 b | 0.23 ± 0.01 e | 0.19 ±0.01 e | 0.23 ± 0.01 e | 0.19 ± 0.02 e | |||
240 W | 67 ± 7 f | 59 ± 5 f | 1.48 × 10−8 ± 1.10 × 10−9 b | 1.66 × 10−8 ± 9.48 × 10−10 a | 0.23 ± 0.02 e | 0.21 ± 0.01 e | 0.23 ± 0.02 e | 0.21 ± 0.01 e | |||
ANOVA | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petković, M.; Miletić, N.; Pantelić, V.; Filipović, V.; Lončar, B.; Mitrović, O. Physical and Chemical Properties of Convective- and Microwave-Dried Blackberry Fruits Grown Using Organic Procedures. Foods 2024, 13, 791. https://doi.org/10.3390/foods13050791
Petković M, Miletić N, Pantelić V, Filipović V, Lončar B, Mitrović O. Physical and Chemical Properties of Convective- and Microwave-Dried Blackberry Fruits Grown Using Organic Procedures. Foods. 2024; 13(5):791. https://doi.org/10.3390/foods13050791
Chicago/Turabian StylePetković, Marko, Nemanja Miletić, Valerija Pantelić, Vladimir Filipović, Biljana Lončar, and Olga Mitrović. 2024. "Physical and Chemical Properties of Convective- and Microwave-Dried Blackberry Fruits Grown Using Organic Procedures" Foods 13, no. 5: 791. https://doi.org/10.3390/foods13050791
APA StylePetković, M., Miletić, N., Pantelić, V., Filipović, V., Lončar, B., & Mitrović, O. (2024). Physical and Chemical Properties of Convective- and Microwave-Dried Blackberry Fruits Grown Using Organic Procedures. Foods, 13(5), 791. https://doi.org/10.3390/foods13050791