Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review
Abstract
:1. Introduction
2. Composition of Meat Analogues
3. Plant-Based Burgers: Ingredients and Functionality
3.1. Plant Proteins
3.2. Binding and Texturizing Agents
3.3. Fats and Oils
3.4. Flavoring Agents (Taste and Flavoring Enhancers)
3.5. Coloring Agents
3.6. Preservatives
3.7. Fortification
4. Clean Label
5. Perspectives and Future Trends of PBMA Burgers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Graça, J.; Calheiros, M.M.; Oliveira, A. Attached to Meat? (Un)Willingness and Intentions to Adopt a More Plant-Based Diet. Appetite 2015, 95, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H.; Boer, J.; Vereijken, J. (Eds.) Sustainable Protein Production and Consumption: Pigs or Peas? Environment & Policy; Springer: Dordrecht, The Netherlands, 2006; Volume 45, ISBN 978-1-4020-4062-7. [Google Scholar]
- Brown, L.R. Running on Empty. In Forum for Applied Research and Public Policy; Executive Sciences Institute Inc.: Fort Pierce, FL, USA, 2001; Volume 16, pp. 6–8. [Google Scholar]
- Liu, Z.; Liu, Y. Mitigation of Greenhouse Gas Emissions from Animal Production. Greenh. Gases 2018, 8, 627–638. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Slade, P. If You Build It, Will They Eat It? Consumer Preferences for Plant-Based and Cultured Meat Burgers. Appetite 2018, 125, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, M.; Kinchla, A.J.; Nolden, A.A. Role of Sensory Evaluation in Consumer Acceptance of Plant-Based Meat Analogs and Meat Extenders: A Scoping Review. Foods 2020, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Tuorila, H.; Hartmann, C. Consumer Responses to Novel and Unfamiliar Foods. Curr. Opin. Food Sci. 2020, 33, 1–8. [Google Scholar] [CrossRef]
- Sha, L.; Xiong, Y.L. Plant Protein-Based Alternatives of Reconstructed Meat: Science, Technology, and Challenges. Trends Food Sci. Technol. 2020, 102, 51–61. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- He, J.; Evans, N.M.; Liu, H.; Shao, S. A Review of Research on Plant-based Meat Alternatives: Driving Forces, History, Manufacturing, and Consumer Attitudes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2639–2656. [Google Scholar] [CrossRef] [PubMed]
- Wild, F.; Czerny, M.; Janssen, A.; Kole, A.; Zunabovic, M.; Domig, K. The Evolution of a Plant-Based Alternative to Meat: From Niche Markets to Widely Accepted Meat Alternatives. Agro Food Ind. Hi-Tech 2014, 25, 45–49. [Google Scholar]
- Aschemann-Witzel, J.; Peschel, A.O. Consumer Perception of Plant-Based Proteins: The Value of Source Transparency for Alternative Protein Ingredients. Food Hydrocoll. 2019, 96, 20–28. [Google Scholar] [CrossRef]
- Moussaoui, D.; Torres-Moreno, M.; Tárrega, A.; Martí, J.; López-Font, G.; Chaya, C. Evaluation of Consumers’ Response to Plant-Based Burgers According to Their Attitude towards Meat Reduction. Food Qual. Prefer. 2023, 110, 104955. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Orta-Ramirez, A.; Puyol Martin, Y.; Jakszyn, P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023, 15, 1325. [Google Scholar] [CrossRef] [PubMed]
- Costa-Catala, J.; Toro-Funes, N.; Comas-Basté, O.; Hernández-Macias, S.; Sánchez-Pérez, S.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Castell-Garralda, V.; Vidal-Carou, M.C. Comparative Assessment of the Nutritional Profile of Meat Products and Their Plant-Based Analogues. Nutrients 2023, 15, 2807. [Google Scholar] [CrossRef] [PubMed]
- Bryngelsson, S.; Moshtaghian, H.; Bianchi, M.; Hallström, E. Nutritional Assessment of Plant-Based Meat Analogues on the Swedish Market. Int. J. Food Sci. Nutr. 2022, 73, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Cutroneo, S.; Angelino, D.; Tedeschi, T.; Pellegrini, N.; Martini, D. Nutritional Quality of Meat Analogues: Results From the Food Labelling of Italian Products (FLIP) Project. Front. Nutr. 2022, 9, 852831. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Castellari, M. Veggie Burgers in the EU Market: A Nutritional Challenge? Eur. Food Res. Technol. 2021, 247, 2445–2453. [Google Scholar] [CrossRef] [PubMed]
- Bohrer, B.M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness 2019, 10, 320–329. [Google Scholar] [CrossRef]
- Dekkers, B.L.; Boom, R.M.; van der Goot, A.J. Structuring Processes for Meat Analogues. Trends Food Sci. Technol. 2018, 81, 25–36. [Google Scholar] [CrossRef]
- Plattner, B. Extrusion Techniques for Meat Analogues. CFW 2020, 65, 274–281. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–126. ISBN 978-0-12-814874-7. [Google Scholar]
- Fu, Y.; Chen, T.; Chen, S.H.Y.; Liu, B.; Sun, P.; Sun, H.; Chen, F. The Potentials and Challenges of Using Microalgae as an Ingredient to Produce Meat Analogues. Trends Food Sci. Technol. 2021, 112, 188–200. [Google Scholar] [CrossRef]
- Mosibo, O.K.; Ferrentino, G.; Alam, M.R.; Morozova, K.; Scampicchio, M. Extrusion Cooking of Protein-Based Products: Potentials and Challenges. Crit. Rev. Food Sci. Nutr. 2022, 62, 2526–2547. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejczak, K.; Onopiuk, A.; Szpicer, A.; Poltorak, A. Meat Analogues in the Perspective of Recent Scientific Research: A Review. Foods 2021, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, A.; Irfan, S.; Sameen, A.; Khalid, N. Plant-Based Meat Analogs: A Review with Reference to Formulation and Gastrointestinal Fate. Curr. Res. Food Sci. 2022, 5, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Qureshi, S.; Akbar, M.H.; Siddiqui, S.A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S.B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Appl. Food Res. 2022, 2, 100154. [Google Scholar] [CrossRef]
- Zahari, I.; Östbring, K.; Purhagen, J.K.; Rayner, M. Plant-Based Meat Analogues from Alternative Protein: A Systematic Literature Review. Foods 2022, 11, 2870. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Hwang, Y.-H.; Joo, S.-T. Traditional Plant-Based Meat Alternatives, Current, and Future Perspective: A Review. J. Agric. Life Sci. 2021, 55, 1–11. [Google Scholar] [CrossRef]
- Soria-Hernández, C.; Serna-Saldívar, S.; Chuck-Hernández, C. Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients. Food Technol. Biotechnol. 2015, 53, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Marchi, M.D.; Costa, A.; Pozza, M.; Goi, A.; Manuelian, C.L. Detailed Characterization of Plant-based Burgers. Sci. Rep. 2021, 11, 2049. [Google Scholar] [CrossRef] [PubMed]
- Penna Franca, P.A.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes—Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Future Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Xuejie, L.; Jian, L. The Flavor of Plant-Based Meat Analogues. Cereal Foods World 2020, 65, 40. [Google Scholar] [CrossRef]
- Panescu, P.; Carter, M.; Cohen, M.; Ignaszewski, E.; Murray, S.; O’Donnell, M.; Pierce, B.; Voss, S. State of the Industry Report. Plant-Based Meat, Seafood, Eggs, and Dairy; Good Food Institute: Washington, DC, USA, 2022. [Google Scholar]
- Kerler, J.; Winkel, C.; Davidek, T.; Blank, I. Basic Chemistry and Process Conditions for Reaction Flavours with Particular Focus on Maillard-Type Reactions. In Food Flavour Technology; Taylor, A.J., Linforth, R.S.T., Eds.; Wiley-Blackwell: Oxford, UK, 2010; pp. 51–88. ISBN 978-1-4443-1777-0. [Google Scholar]
- Kyed, M.-H.; Rusconi, P. Protein Composition for Meat Products or Meat Analog Products. U.S. Patent 20090208633A1, 19 February 2009. [Google Scholar]
- Singh, M.; Trivedi, N.; Enamala, M.K.; Kuppam, C.; Parikh, P.; Nikolova, M.P.; Chavali, M. Plant-Based Meat Analogue (PBMA) as a Sustainable Food: A Concise Review. Eur. Food Res. Technol. 2021, 247, 2499–2526. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of Plant Proteins for Improved Functionality: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.N. Texturized Soy Protein as an Ingredient. In Proteins in Food Processing; Woodhead Publishing: Cambridge, UK, 2004. [Google Scholar]
- Saerens, W.; Smetana, S.; Van Campenhout, L.; Lammers, V.; Heinz, V. Life Cycle Assessment of Burger Patties Produced with Extruded Meat Substitutes. J. Clean. Prod. 2021, 306, 127177. [Google Scholar] [CrossRef]
- Ryu, G.-H. Extrusion Cooking of High-Moisture Meat Analogues. In Extrusion Cooking; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–224. ISBN 978-0-12-815360-4. [Google Scholar]
- Malav, O.P.; Talukder, S.; Gokulakrishnan, P.; Chand, S. Meat Analog: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1241–1245. [Google Scholar] [CrossRef]
- Chiang, J.H.; Loveday, S.M.; Hardacre, A.K.; Parker, M.E. Effects of Soy Protein to Wheat Gluten Ratio on the Physicochemical Properties of Extruded Meat Analogues. Food Struct. 2019, 19, 100102. [Google Scholar] [CrossRef]
- Samard, S.; Gu, B.; Ryu, G. Effects of Extrusion Types, Screw Speed and Addition of Wheat Gluten on Physicochemical Characteristics and Cooking Stability of Meat Analogues. J. Sci. Food Agric. 2019, 99, 4922–4931. [Google Scholar] [CrossRef] [PubMed]
- Tóth, A.J.; Dunay, A.; Battay, M.; Illés, C.B.; Bittsánszky, A.; Süth, M. Microbial Spoilage of Plant-Based Meat Analogues. Appl. Sci. 2021, 11, 8309. [Google Scholar] [CrossRef]
- Mittermeier-Kleßinger, V.K.; Hofmann, T.; Dawid, C. Mitigating Off-Flavors of Plant-Based Proteins. J. Agric. Food Chem. 2021, 69, 9202–9207. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, M.-Y.; Lee, J.; Jo, Y.-J.; Choi, M.-J. Effects of Glucono-δ-Lactone and Transglutaminase on the Physicochemical and Textural Properties of Plant-Based Meat Patty. Foods 2022, 11, 3337. [Google Scholar] [CrossRef] [PubMed]
- European Chemical Agency. Regulation (EC) No 1332/2008 of the European Parliament and of the Council of 16 December 2008 on Food Enzymes and Amending; European Parliament: Strasbourg, France, 2008. [Google Scholar]
- Committee on Technological Options to Improve the Nutritional Attributes of Animal Products. Designing Foods: Animal Product Options in the Marketplace; National Academies Press: Washington, DC, USA, 1988; ISBN 978-0-309-03795-2. [Google Scholar]
- Rios, R.V.; Pessanha, M.D.F.; de Almeida, P.F.; Viana, C.L.; da Lannes, S.C.S. Application of Fats in Some Food Products. Food Sci. Technol. 2014, 34, 3–15. [Google Scholar] [CrossRef]
- Godschalk-Broers, L.; Sala, G.; Scholten, E. Meat Analogues: Relating Structure to Texture and Sensory Perception. Foods 2022, 31, 2227. [Google Scholar] [CrossRef] [PubMed]
- Zahari, I.; Ferawati, F.; Helstad, A.; Ahlström, C.; Östbring, K.; Rayner, M.; Purhagen, J.K. Development of High-Moisture Meat Analogues with Hemp and Soy Protein Using Extrusion Cooking. Foods 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, G.; Ames, J.; Betz, N.L. Soy Flavor and Its Improvement. Crit. Rev. Food Sci. Nutr. 1988, 27, 219–400. [Google Scholar] [CrossRef] [PubMed]
- Fraser, R.; Brown, P.O.; Karr, J.; Holz-Schietinger, C.; Cohn, E. Methods and Compositions for Affecting the Flavor and Aroma Profile of Consumables. U.S. Patent 9700067-B2, 11 July 2017. [Google Scholar]
- Kale, P.; Mishra, A.; Annapure, U.S. Development of Vegan Meat Flavour: A Review on Sources and Techniques. Future Foods 2022, 5, 100149. [Google Scholar] [CrossRef]
- Spence, C. On the Psychological Impact of Food Colour. Flavour 2015, 4, 21. [Google Scholar] [CrossRef]
- Gregson, C.M.; Lee, T.-C. Quality Modification of Food by Extrusion Processing. In Quality of Fresh and Processed Foods; Advances in Experimental Medicine and Biology; Shahidi, F., Spanier, A.M., Ho, C.-T., Braggins, T., Eds.; Springer: Boston, MA, USA, 2004; Volume 542, pp. 187–200. ISBN 978-1-4613-4790-3. [Google Scholar]
- Hamilton, M.N.; Ewing, C.E. Food Coloring Composition. CA2314727C, 15 February 2005. [Google Scholar]
- Rolan, T.; Mueller, I.; Mertle, T.J.; Swenson, K.J.; Conley, C.; Orcutt, M.W.; Mease, L.E. Ground Meat and Meat Analog Compositions Having Improved Nutritional Properties. U.S. Patent 20080268112A1, 30 October 2008. [Google Scholar]
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived from Pichia Pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat. Int. J. Toxicol. 2018, 37, 241–262. [Google Scholar] [CrossRef] [PubMed]
- Devaere, J.; De Winne, A.; Dewulf, L.; Fraeye, I.; Šoljić, I.; Lauwers, E.; De Jong, A.; Sanctorum, H. Improving the Aromatic Profile of Plant-Based Meat Alternatives: Effect of Myoglobin Addition on Volatiles. Foods 2022, 11, 1985. [Google Scholar] [CrossRef]
- Orcutt, M.W.; Sandoval, A.; Mertle, T.J.; Mueller, I.; Altemueller, P.A.; Downey, J. Meat Compositions Comprising Colored Structured Protein Products. U.S. Patent 20080260913A1, 23 October 2008. [Google Scholar]
- Veggie & Fresh/M Food Group. Available online: https://www.m-foodgroup.de/en/product-range/veggie-fresh/ (accessed on 2 April 2024).
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef]
- Maharjan, D.; Singh, A.; Lekhak, B.; Basnyat, S.; Gautam, L.S. Study on Antibacterial Activity of Common Spices. Nepal J. Sci. Technol. 2011, 6, 312–317. [Google Scholar] [CrossRef]
- Dwivedi, S.; Prajapati, P.; Vyas, N.; Malviya, S.; Kharia, A. A Review on Food Preservation: Methods, harmful effects and better alternatives. Asian J. Pharm. Pharmacol. 2017, 3, 193–199. [Google Scholar]
- Opara, U.L.; Caleb, O.J.; Belay, Z.A. Modified Atmosphere Packaging for Food Preservation. In Food Quality and Shelf Life; Elsevier: Amsterdam, The Netherlands, 2019; pp. 235–259. ISBN 978-0-12-817190-5. [Google Scholar]
- Tuan Pham, Q. Refrigeration in Food Preservation and Processing. In Conventional and Advanced Food Processing Technologies; Bhattacharya, S., Ed.; Wiley: New York, NY, USA, 2014; pp. 357–386. ISBN 978-1-118-40632-8. [Google Scholar]
- Boon, C.S.; Taylor, C.L.; Henney, J.E. (Eds.) Strategies to Reduce Sodium Intake in the United States; Institute of Medicine (US) Committee on Strategies to Reduce Sodium; National Academies Press: Washington, DC, USA, 2010; ISBN 978-0-309-14805-4. [Google Scholar]
- Holzapfel, W.H.; Schillinger, U.; Geisen, R.; Lücke, F.-K. Starter and Protective Cultures. In Food Preservatives; Russell, N.J., Gould, G.W., Eds.; Springer US: Boston, MA, USA, 2003; pp. 291–320. ISBN 978-0-387-30042-9. [Google Scholar]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient Composition of a Selection of Plant-Based Ground Beef Alternative Products Available in the United States. J. Acad. Nutr. Diet. 2021, 121, 2401–2408.e12. [Google Scholar] [CrossRef] [PubMed]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [PubMed]
- European Chemical Agency. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods; European Parliament: Strasbourg, France, 2006. [Google Scholar]
- Caporgno, M.P.; Böcker, L.; Müssner, C.; Stirnemann, E.; Haberkorn, I.; Adelmann, H.; Handschin, S.; Windhab, E.J.; Mathys, A. Extruded Meat Analogues Based on Yellow, Heterotrophically Cultivated Auxenochlorella Protothecoides Microalgae. Innov. Food Sci. Emerg. Technol. 2020, 59, 102275. [Google Scholar] [CrossRef]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, S.; Kronberg, S.L.; Provenza, F.D. Plant-Based Meats, Human Health, and Climate Change. Front. Sustain. Food Syst. 2020, 4, 128. [Google Scholar] [CrossRef]
- Uauy, R.; Hertrampf, E.; Reddy, M. Iron Fortification of Foods: Overcoming Technical and Practical Barriers. J. Nutr. 2002, 132, S849–S852. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Parrott, S.J.; Raj, S.; Cullum-Dugan, D.; Lucus, D. How Prevalent Is Vitamin B12 Deficiency among Vegetarians? Nutr. Rev. 2013, 71, 110–117. [Google Scholar] [CrossRef]
- Temova Rakuša, Ž.; Roškar, R.; Hickey, N.; Geremia, S. Vitamin B12 in Foods, Food Supplements, and Medicines—A Review of Its Role and Properties with a Focus on Its Stability. Molecules 2022, 28, 240. [Google Scholar] [CrossRef] [PubMed]
- European Chemical Agency. Commission Regulation (EC) No 1170/2009 of 30 November 2009 Amending Directive 2002/46/EC of the European Parliament and of Council and Regulation (EC) No 1925/2006 of the European Parliament and of the Council as Regards the Lists of Vitamin and Minerals and Their Forms that Can Be Added to Foods, Including Food Supplements; European Parliament: Strasbourg, France, 2009. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFS2 2015, 13, 4150. [Google Scholar] [CrossRef]
- Wegmüller, R.; Tay, F.; Zeder, C.; Brnić, M.; Hurrell, R.F. Zinc Absorption by Young Adults from Supplemental Zinc Citrate Is Comparable with That from Zinc Gluconate and Higher than from Zinc Oxide. J. Nutr. 2014, 144, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Cannon, G.; Lawrence, M.; Louzada, M.L.; Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Maruyama, S.; Streletskaya, N.A.; Lim, J. Clean Label: Why This Ingredient but Not That One? Food Qual. Prefer. 2021, 87, 104062. [Google Scholar] [CrossRef]
- da Lima, R.S.; Block, J.M. Coconut Oil: What Do We Really Know about It so Far? Food Qual. Saf. 2019, 3, 61–72. [Google Scholar] [CrossRef]
- Kappally, S.; Shirwaikar, A.; Shirwaikar, A. Coconut Oil—A Review of Potential Applications. Hygeia. J. D. Med. 2015, 7, 34–41. [Google Scholar] [CrossRef]
- Heiman, A.; Lowengart, O. Calorie Information Effects on Consumers’ Food Choices: Sources of Observed Gender Heterogeneity. J. Bus. Res. 2014, 67, 964–973. [Google Scholar] [CrossRef]
- Bakhsh, A.; Lee, S.-J.; Lee, E.-Y.; Sabikun, N.; Hwang, Y.-H.; Joo, S.-T. A Novel Approach for Tuning the Physicochemical, Textural, and Sensory Characteristics of Plant-Based Meat Analogs with Different Levels of Methylcellulose Concentration. Foods 2021, 10, 560. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Filipič, M.; Jose Frutos, M.; Galtier, P.; et al. Re-evaluation of Celluloses E 460(i), E 460(Ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as Food Additives. EFS2 2018, 16, 5047. [Google Scholar] [CrossRef]
- Krintiras, G.A.; Göbel, J.; Bouwman, W.G.; Jan Van Der Goot, A.; Stefanidis, G.D. On Characterization of Anisotropic Plant Protein Structures. Food Funct. 2014, 5, 3233–3240. [Google Scholar] [CrossRef] [PubMed]
- Mattice, K.D.; Marangoni, A.G. Comparing Methods to Produce Fibrous Material from Zein. Food Res. Int. 2020, 128, 108804. [Google Scholar] [CrossRef] [PubMed]
- Rampon, V.; Robert, P.; Nicolas, N.; Dufour, E. Protein Structure and Network Orientation in Edible Films Prepared by Spinning Process. J. Food Sci. 1999, 64, 313–316. [Google Scholar] [CrossRef]
- Boyer, R.A.; Coeur, C. Method of Producing a Meat Simulating Textured Food Product. U.S. Patent 3870808, 16 March 1971. [Google Scholar]
- Yuliarti, O.; Kiat Kovis, T.J.; Yi, N.J. Structuring the Meat Analogue by Using Plant-Based Derived Composites. J. Food Eng. 2021, 288, 110138. [Google Scholar] [CrossRef]
- Dankar, I.; Haddarah, A.; Omar, F.E.L.; Sepulcre, F.; Pujolà, M. 3D Printing Technology: The New Era for Food Customization and Elaboration. Trends Food Sci. Technol. 2018, 75, 231–242. [Google Scholar] [CrossRef]
- Grahl, S.; Palanisamy, M.; Strack, M.; Meier-Dinkel, L.; Toepfl, S.; Mörlein, D. Towards More Sustainable Meat Alternatives: How Technical Parameters Affect the Sensory Properties of Extrusion Products Derived from Soy and Algae. J. Clean. Prod. 2018, 198, 962–971. [Google Scholar] [CrossRef]
- Hamid, M.A.; Tsia, F.L.C.; Okit, A.A.B.; Xin, C.W.; Cien, H.H.; Harn, L.S.; Patrick, P.N.; Samirin, S.; Azizi, W.A.A.W.; Irfanian, A.; et al. The Application of Jackfruit By-Product on the Development of Healthy Meat Analogue. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012001. [Google Scholar] [CrossRef]
- Ching, X.L.; Zainal, N.A.A.B.; Luang-In, V.; Ma, N.L. Lab-Based Meat the Future Food. Environ. Adv. 2022, 10, 100315. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Denny, A.; Aisbitt, B.; Lunn, J. Mycoprotein and Health. Nutr. Bull. 2008, 33, 298–310. [Google Scholar] [CrossRef]
- Grasso, S.; Goksen, G. The Best of Both Worlds? Challenges and Opportunities in the Development of Hybrid Meat Products from the Last 3 Years. LWT 2023, 173, 114235. [Google Scholar] [CrossRef]
Study Type | PBMA Product Type | Described Ingredients | Reference |
---|---|---|---|
Review article | general | Fats, thickening agents, adhering agents, colorants, flavorings, minerals, vitamins, antioxidants, antimicrobials | [10] |
Review article | general | Nonanimal proteins, lipids, polysaccharides, flavoring ingredients, coloring agents, fortification ingredients | [11] |
Review article | general | Protein ingredients, lipid ingredients, carbohydrate ingredients, flavor enhancers, coloring agents | [21] |
Book section | general | Proteins, fat or oil, binding agents, flavorings and taste enhancers, coloring agents | [24] |
Review article | general, emulsion-type, burgers/patties/nuggets, chickens/steak | Plant proteins, binding and texturizing agents, fat, oil and oil substitutes, flavor and coloring agents, water | [29] |
Review article | general | Proteins, coloring ingredients, flavoring ingredients | [28] |
Review article | general | Proteins, oil and fats, binding agents, taste and flavor enhancers, coloring agents | [30] |
Systematic literature review article | general | Texturized vegetable proteins, binding agents, fat/oil, and other ingredients | [31] |
Review article | general | Plant proteins, coloring agents, flavors, and other ingredients | [32] |
Ingredient | Source | Main Functionality | Reference |
---|---|---|---|
Carbohydrates (polysaccharides) | Starches, flours, fibers, and purified polysaccharides | Thickening, emulsification, water and oil retention and gelation | [10,11,29] |
Sugars | Sucrose, dextrose, maltose, xylose etc. | Flavor and color “Maillard reaction”. | [38,39] |
Fats | Low saturated fatty acid oils: (e.g., sunflower oil, olive oil, corn oil, turnip oil, and canola oil) and high saturated fatty acid oils: (e.g., coconut oil, palm oil, and cocoa butter) | Texture contribution (tenderness, mouthfeel, juiciness) and flavor release. | [12,34,40] |
Proteins | Texturized, isolates and concentrates: (e.g., soy, wheat, pea, chickpea, faba bean, rice, and sunflower) | Texturization, mouthfeel and texture contribution, emulsification, oil and water retention, flavor binding, nutritional value | [29,30,41] |
Method | Source/Type | Specific Methodology | Reference |
---|---|---|---|
Addition of preservatives | Natural ingredients | Spices and aromatic vegetables | [66,67,68,69] |
Processed ingredients | Acids, sugar, salt | ||
Microorganism culture | L. carnosum, Lb. plantarum | ||
Processing treatment | High temperature | Pre-cooking, cooking, frying | [48] |
Low temperature | freezing | ||
Packaging | Air-removal | Vacuum sealing | [69,70] |
Air replacement | Modified atmosphere (nitrogen, carbon dioxide, etc.) | ||
Preservation/transport | Low temperature | Refrigeration, freezing | [48,71] |
Concern Problem | Proposed Solution | Reference |
---|---|---|
Lengthy ingredient list | NOVA system | [86] |
E-numbers | Substitution of the E-numbers for “natural ingredients” | [87] |
Genetically modified ingredients (GMO) | Use alternative ingredients produced by non-GMO practices | [11,28] |
Elevated saturated fat or omega 6 fatty acids | Reduce or substitute the fat with high quality oils rich in omega 3 (e.g., olive oil) | [88,89] |
High salt content | Lower the salt addition | [72] |
Elevated energy content | Reduce energetic content by fat reduction or addition of fiber | [90] |
Presence of allergens | Production free allergen products | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vila-Clarà, G.; Vila-Martí, A.; Vergés-Canet, L.; Torres-Moreno, M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods 2024, 13, 1258. https://doi.org/10.3390/foods13081258
Vila-Clarà G, Vila-Martí A, Vergés-Canet L, Torres-Moreno M. Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods. 2024; 13(8):1258. https://doi.org/10.3390/foods13081258
Chicago/Turabian StyleVila-Clarà, Gil, Anna Vila-Martí, Laia Vergés-Canet, and Miriam Torres-Moreno. 2024. "Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review" Foods 13, no. 8: 1258. https://doi.org/10.3390/foods13081258
APA StyleVila-Clarà, G., Vila-Martí, A., Vergés-Canet, L., & Torres-Moreno, M. (2024). Exploring the Role and Functionality of Ingredients in Plant-Based Meat Analogue Burgers: A Comprehensive Review. Foods, 13(8), 1258. https://doi.org/10.3390/foods13081258