Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Detection and Analysis of Volatile Compounds
2.3. Bioinformatics Methods and Microbial Diversity Analysis
2.4. Analysis of Network Construction
2.5. Analysis of Microbial Function
2.6. Data Analysis
3. Results and Discussion
3.1. Changes in Bacterial Community Structure in Pickled Cucumber Samples
Bacterial Composition of Pickled Cucumber
3.2. Network Characteristics of Pickled Cucumber
3.3. Discovery of Biomarkers in Pickled Cucumber
3.4. Analysis of the Metabolic Pathway of Pickled Cucumber
3.5. Study on the GC–IMS Fingerprint of Pickled Cucumber
3.6. Correlation Analysis of Bacterial Communities and Flavor-Volatile Components in Pickled Cucumber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lafountain, L.J.; Johanningsmeier, S.D.; Breidt, F.; Stoforos, G.N.; Price, R.E. Effects of a brief blanching process on quality, safety, and shelf life of refrigerated cucumber pickles. J. Food Sci. 2022, 87, 1475–1488. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yang, Z.; Zhang, H.; Jin, W.; Xu, C.; Gao, L.; Rao, S.; Jiao, X. Isolation of virulent phages infecting dominant mesophilic aerobic bacteria in cucumber pickle fermentation. Food Microbiol. 2020, 86, 103330. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Wu, Y.; Wu, X.; Lin, Y.; Xu, W.; Ruan, H.; He, G. Effects of lactic acid bacteria inoculated fermentation on pickled cucumbers. Adv. J. Food Sci. Technol. 2013, 5, 1610–1617. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, X.; Yan, W.; Luo, L.; Xu, X.; Chen, X. Characterization of differences in the composition and content of volatile compounds in cucumber fruit. Foods 2022, 11, 1101. [Google Scholar] [CrossRef] [PubMed]
- Johanningsmeier, S.D.; Mcfeeters, R.F. Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (gc×gc-tofms). J. Food Sci. 2011, 76, C168–C177. [Google Scholar] [CrossRef] [PubMed]
- Marsili, R.T.; Miller, N. Determination of major aroma impact compounds in fermented cucumbers by solid-phase microextraction—Gas chromatography—Mass spectrometry—Olfactometry detection. J. Chromatogr. Sci. 2000, 38, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Palma-Harris, C.; Mcfeeters, R.F.; Fleming, H.P. Solid-phase microextraction (spme) technique for measurement of generation of fresh cucumber flavor compounds. J. Agric. Food Chem. 2001, 49, 4203–4207. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Huang, X.; Zhang, T.; Wu, K.; Duan, X.; Yu, H.; Li, X. Comparative study of E-Nose, GC-MS, and GC-IMS to distinguish star anise essential oil extracted using different extraction methods. Separations 2023, 10, 256. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, T.; Yang, D.; Xie, J. Application of gas chromatography-ion mobility spectrometry in the analysis of food volatile components. Acta Chromatogr. 2023, 35, 35–45. [Google Scholar] [CrossRef]
- Haynesa, E.; Jimenezb, E.; Pardob, M.A.; Helyarc, S.J. The future of ngs (next generation sequencing) analysis in testing food authenticity. Food Control 2019, 101, 134–143. [Google Scholar] [CrossRef]
- Pérez-Díaz, I.M.; Hayes, J.; Medina, E.; Anekella, K.; Daughtry, K.; Dieck, S.; Levi, M.; Price, R.; Butz, N.; Lu, Z.; et al. Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiol. 2017, 63, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Díaz, I.M.; Hayes, J.S.; Medina, E.; Webber, A.M.; Butz, N.; Dickey, A.N.; Lu, Z.; Azcarate-Peril, M.A. Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiol. 2019, 77, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Bai, L.; Feng, X.; Chen, Y.; Zhang, D.; Yao, W.; Zhang, H.; Chen, G.; Liu, Y. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS). Meat Sci. 2020, 168, 108178. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kikuchi, M.; Li, X.; Gao, Q.; Xiong, Z.; Ren, Y.; Zhao, R.; Mao, B.; Kodon, M.; Irie, N.; et al. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber apostichopus japonicus. Biochem. Biophys. Res. Commun. 2017, 495, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, X.; Wang, G.; Zhang, H.; Xiong, Z.; Sun, Y.; Ai, L. Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control 2017, 78, 126–131. [Google Scholar] [CrossRef]
- Moya, J.; Flores, M.; Aristoy, C. Pork meat quality affects peptide and amino acid profiles during the ageing process. Meat Sci. 2001, 58, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; An, F.; Zhao, Y.; Wu, R.; Wu, J. Metagenomic analysis of bacterial community structure and functions during the fermentation of da-jiang, a chinese traditional fermented food. LWT-Food Sci. Technol. 2020, 129, 109450. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Q.; Chen, Z.; Mao, D.; Liang, Z. Correlation analysis between amino acids and bacterial communities of wuliangye -flavour liquor fermentation in aged fermentation pit. Int. Food Res. J. 2022, 29, 892–899. [Google Scholar] [CrossRef]
- Martorana, A.; Alfonao, A.; Settanni, L. An innovative method to produce green table olives based on “pied de cuve” technology. Food Microbiol. 2015, 50, 126–140. [Google Scholar] [CrossRef]
- Ling, H.; Shi, H.; Chen, X.; Cheng, K. Detection of the microbial diversity and flavour components of northeastern Chinese soybean paste during storage. Food Chem. 2022, 374, 131686. [Google Scholar] [CrossRef]
- André, S.; Vallaeys, T.; Planchon, S. Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 2017, 168, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Ping, W.; Song, G.; Du, C.; Gao, Y. Paracin 1.7, a bacteriocin produced by lactobacillus paracasei hd1.7 isolated from chinese cabbage sauerkraut, a traditional chinese fermented vegetable food. Wei Sheng Wu Xue Bao 2009, 49, 609–616. [Google Scholar] [PubMed]
- Ye, Z.; Jiang, B.; Gao, D.; Ping, W.; Ge, J. Bacillus spp. increase the paracin 1.7 titer of l. paracasei hd1.7 in sauerkraut juice: Emphasis on the influence of inoculation conditions on the symbiotic relationship. LWT-Food Sci. Technol. 2021, 146, 111443. [Google Scholar] [CrossRef]
- Chang, F.; He, S.; Dang, C. Assisted selection of biomarkers by linear discriminant analysis effect size (LEfSe) in microbiome data. J. Vis. Exp. JoVE 2022, 183, e61715. [Google Scholar]
- Liang, H.; Zhang, A.; Wu, Z.; Liu, C.; Zhang, W. Characterization of microbial community during the fermentation of microbial community during the fermentation of Chinese homemade paocai, a traditional fermented vegetable food. Food Sci. Technol. Res. 2016, 22, 467–475. [Google Scholar] [CrossRef]
- Stoll, D.A.; Alexandra, M.; Meinhardt, A.K.; Dötsch, A.; Greiner, R.; Kulling, S.E.; Huch, M. Influence of salt concentration and iodized table salt on the microbiota of fermented cucumbers. Food Microbiol. 2020, 92, 103552. [Google Scholar] [CrossRef]
- Tan, X.; Lu, Y.; Xin, L.; Ni, N.; He, Q.; Chi, Y. An insight into volatile and non-volatile compounds of Chinese horsebean-chili-paste meju produced by natural brewing and temperature-controlled brewing methods through GC×GC-TOFMS and amino acid composition analysis. J. Sci. Food Agric. 2021, 101, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, H.; Wu, Y.; Zhao, D. Uncover the flavor code of strong-aroma baijiu: Research progress on the revelation of aroma compounds in strong-aroma baijiu by means of modern separation technology and molecular sensory evaluation. J. Food Compos. Anal. 2022, 109, 104499. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Liao, L.; Qin, Y.; Jiang, L.; Liu, Y. Characteristic fingerprints and volatile flavor compound variations in Liuyang Douchi during fermentation via HS-GC-IMS and HS-SPME-GC-MS. Food Chem. 2021, 361, 130055. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, W.; Guo, Q.; Xiong, Z.; Wang, G.; Xia, Y.; Lai, P.; Yin, B.; Ai, L. Characterization of a yogurt-quality improving exopolysaccharide from Streptococcus thermophilus AR333. Food Hydrocoll. 2018, 81, 220–228. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, R.; Zhang, Y.; Yang, Y.; Sun, X.; Zhang, Q.; Yang, N. Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. J. Sci. Food Agric. 2020, 100, 3283–3290. [Google Scholar] [CrossRef] [PubMed]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.; Gellynck, X.; Winne, A.; Matemu, A.; Raes, K. Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds. Food Chem. 2021, 358, 129809. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, H.C.; Melo, D.S.; Ramos, C.L.; Menezes, A.G.T.; Dias, D.R.; Schwan, R.F. Sensory and flavor-aroma profiles of passion fruit juice fermented by potentially probiotic Lactiplantibacillus plantarum CCMA 0743 strain. Food Res. Int. 2022, 152, 110710. [Google Scholar] [CrossRef] [PubMed]
- Raffaella, D.; Rossana, C.; Maria, D.; Marco, G. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar]
- Wang, Y.; Li, C.; Zhao, Y.; Li, L.; Yang, X.; Wu, Y.; Chen, S.; Cen, J.; Yang, S.; Yang, D. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem. 2020, 323, 126839. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.; Singh, D.; Ji, Y.; Eun, J.; Hyung, S.; Lee, D.; Beom, K.; Lee, C. Comparative evaluation of microbial diversity and metabolite profiles in doenjang, a fermented soybean paste, during the two different industrial manufacturing processes. Food Chem. 2017, 221, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, B.; Zhao, W.; Pang, X.; Liao, F.; Liao, X.; Wu, J. Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper (Capsicum annuum L.). Food Microbiol. 2020, 91, 103510. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Tao, Y.; Chen, X.; She, X.; Qian, Y.; Li, Y.; Du, Y.; Xiang, W.; Li, H.; Liu, L. The characteristics and correlation of the microbial communities and flavors in traditionally pickled radishes. LWT-Food Sci. Technol. 2020, 118, 108804. [Google Scholar] [CrossRef]
- Liang, H.; He, Z.; Wang, X.; Song, G.; Chen, H.; Lin, X.; Ji, C.; Zhang, S. Bacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China. Food Res. Int. 2020, 137, 109384. [Google Scholar] [CrossRef]
- Chan, M.; Liu, D.; Wu, Y.L.; Yang, F.; Howell, K. Microorganisms in whole botanical fermented foods survive processing and simulated digestion to affect gut microbiota composition. Front. Microbiol. 2021, 12, 759708. [Google Scholar] [CrossRef]
- Thriene, K.; Hansen, S.; Binder, N.; Michels, K. Effects of Fermented Vegetable Consumption on Human Gut Microbiome Diversity—A Pilot Study. Fermentation 2022, 8, 118. [Google Scholar] [CrossRef]
- Zhao, D.; Du, R.P.; Ping, W.X.; Ge, J.P. Lactobacillus paracasei hd1.7 used as a starter modulates the bacterial community and metabolome profile during fermentation of chinese cabbage. Lett. Appl. Microbiol. 2018, 67, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Lee, S.; Lee, H.; Seo, H.; Park, W.; Jeon, C. Effects of leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Cho, M.; Ahn, T.; Lee, E.; Park, D. The influence of red pepper powder on the density of Weissella koreensis during kimchi fermentation. Sci. Rep. 2015, 5, 15445. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Z.; Jing, X.; Yu, P.; Zhang, Y.; Yi, H.; Zhang, L. Improvement of the texture of yogurt by use of exopolysaccharide producing lactic acid bacteria. BioMed Res. Int. 2016, 2016, 7945675. [Google Scholar]
- Luo, Y.; Liu, Y.; Ren, T.; Wang, B.; Peng, Y.; Zeng, S.; Su, Y. Sichuan paocai fermented by mixed-starter culture of lactic acid bacteria. Food Sci. Nutr. 2020, 8, 5402–5409. [Google Scholar] [CrossRef]
- Wolfgang, V.; Rafael, S.; Chandrasekhara, H. Detection of metabolites of trapped humans using ion mobility spectrometry coupled with gas chromatography. Anal. Chem. 2013, 85, 2135–2142. [Google Scholar]
Count | Compound | CAS# | Formula | MW | RI | Rt (s) | Dt (RIPrel) |
---|---|---|---|---|---|---|---|
1 | 2-Propanol | C67630 | C3H8O | 60.1 | 487.5 | 145.56 | 1.18 |
2 | Propanal | C123386 | C3H6O | 58.1 | 473.9 | 140.03 | 1.15 |
3 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 616.5 | 198.16 | 1.34 |
4 | Iso-propyl acetate | C108214 | C5H10O2 | 102.1 | 651.3 | 214.12 | 1.47 |
5 | Isobutyl acetate | C110190 | C6H12O2 | 116.2 | 755.2 | 291.58 | 1.62 |
6 | 2-Methyl-1-propanol | C78831 | C4H10O | 74.1 | 657.6 | 217.35 | 1.17 |
7 | 2,3-Butanediol | C513859 | C4H10O2 | 90.1 | 780.3 | 316.76 | 1.37 |
8 | 3-Methylbutan-1-ol | C123513 | C5H12O | 88.1 | 756.4 | 292.77 | 1.24 |
9 | Pentanol | C71410 | C5H12O | 88.1 | 781 | 317.55 | 1.25 |
10 | Ethyl lactate | C97643 | C5H10O3 | 118.1 | 801.9 | 339.23 | 1.54 |
11 | 1-Pentanol, 2-methyl- | C105306 | C6H14O | 102.2 | 828.2 | 368.20 | 1.30 |
12 | Isoamyl acetate | C123922 | C7H14O2 | 130.2 | 871.7 | 422.91 | 1.31 |
13 | Isoamyl acetate | C123922 | C7H14O2 | 130.2 | 868.8 | 418.89 | 1.75 |
14 | Cyclohexanone | C108941 | C6H10O | 98.1 | 893.7 | 455.48 | 1.15 |
15 | 3-Furanmethanol | C4412913 | C5H6O2 | 98.1 | 979.5 | 609.64 | 1.11 |
16 | 1-Heptanol | C111706 | C7H16O | 116.2 | 975 | 601.47 | 1.39 |
17 | 2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 985.9 | 621.30 | 1.61 |
18 | α-pinene | C80568 | C10H16 | 136.2 | 986.6 | 622.68 | 1.21 |
19 | Octan-1-ol | C111875 | C8H18O | 130.2 | 1071.7 | 753.76 | 1.46 |
20 | Phenol | C108952 | C6H6O | 94.1 | 987 | 623.27 | 1.08 |
21 | Ethyl maltol | C4940118 | C7H8O3 | 140.1 | 1187.5 | 909.37 | 1.20 |
22 | 2-Octanone | C111137 | C8H16O | 128.2 | 986.1 | 621.77 | 1.33 |
23 | Dimethyldioxolane | C37830903 | C5H6O3 | 114.1 | 948.2 | 551.47 | 1.17 |
24 | 2-Cyclohexen-1-one | C930687 | C6H8O | 96.1 | 914 | 489.20 | 1.11 |
25 | Methyl isovalerate | C556241 | C6H12O2 | 116.2 | 795.4 | 332.36 | 1.20 |
26 | 2-Octenal (E) | C2548870 | C8H14O | 126.2 | 1054.5 | 729.88 | 1.33 |
27 | 2-Methyl-3-(Methylthio)furan | C63012975 | C6H8OS | 128.2 | 957.5 | 568.78 | 1.11 |
28 | 2-Methylpyrazine | C109080 | C5H6N2 | 94.1 | 845.5 | 388.65 | 1.40 |
29 | Propyl butyrate | C105668 | C7H14O2 | 130.2 | 922.2 | 503.68 | 1.69 |
30 | 2-Heptanol | C543497 | C7H16O | 116.2 | 921.7 | 502.79 | 1.72 |
31 | Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 920.2 | 500.11 | 1.51 |
32 | Hexanenitrile | C628739 | C6H11N | 97.2 | 879.7 | 434.35 | 1.26 |
33 | 2-Methylbutanoic acid | C116530 | C5H10O2 | 102.1 | 883.3 | 439.57 | 1.20 |
34 | Octanal | C124130 | C8H16O | 128.2 | 997.6 | 641.85 | 1.39 |
35 | Methylbutanoate | C623427 | C5H10O2 | 102.1 | 721.4 | 260.66 | 1.44 |
36 | Ethanol | C64175 | C2H6O | 46.1 | 455.1 | 132.40 | 1.14 |
37 | 3-Hydroxy-2-butanone | C513860 | C4H8O2 | 88.1 | 721.6 | 260.84 | 1.33 |
38 | 2-Butoxyethanol | C111762 | C6H14O2 | 118.2 | 904.3 | 475.68 | 1.24 |
39 | 5-Methylfurfural | C620020 | C6H6O2 | 110.1 | 959.1 | 571.87 | 1.13 |
40 | Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 916.6 | 493.82 | 1.13 |
41 | 2-Methylbutanal | C96173 | C5H10O | 86.1 | 680.7 | 230.54 | 1.40 |
42 | (Z)-3-hexenyl acetate | C3681718 | C8H14O2 | 142.2 | 997.7 | 643.07 | 1.31 |
43 | Trimethylpyrazine | C14667551 | C7H10N2 | 122.2 | 998.2 | 642.99 | 1.17 |
44 | Isopentyl isovalerate | C659701 | C10H20O2 | 172.3 | 1071.3 | 753.26 | 2.02 |
45 | Decanal | C112312 | C10H20O | 156.3 | 1199.6 | 925.59 | 1.53 |
46 | Benzothiazole | C95169 | C7H5NS | 135.2 | 1247.1 | 989.45 | 1.16 |
47 | Ethyl 2-methylpropanoate | C97621 | C6H12O2 | 116.2 | 751.8 | 288.35 | 1.20 |
48 | Hexyl hexanoate | C6378650 | C12H24O2 | 200.3 | 1378.3 | 1165.62 | 1.60 |
49 | Amyl acetate | C628637 | C7H14O2 | 130.2 | 912.9 | 487.34 | 1.33 |
50 | 2-Butoxyethanol | C111762 | C6H14O2 | 118.2 | 904.3 | 472.70 | 1.65 |
51 | 2-Hexanol | C626937 | C6H14O | 102.2 | 795 | 331.96 | 1.29 |
52 | Hexyl acetate | C142927 | C8H16O2 | 144.2 | 997.6 | 641.97 | 1.42 |
53 | Ethyl 2-methylbutanoate | C7452791 | C7H14O2 | 130.2 | 856.9 | 403.05 | 1.66 |
54 | 4-Methyl-1-pentanol | C626891 | C6H14O | 102.2 | 849.6 | 393.81 | 1.62 |
55 | 1-Octanol | C111875 | C8H18O | 130.2 | 1073.3 | 755.97 | 1.89 |
56 | (E)-3-hexen-1-ol | C928972 | C6H12O | 100.2 | 852.2 | 397.09 | 1.53 |
57 | Isohexanol | C626891 | C6H14O | 102.2 | 850.6 | 395.03 | 1.31 |
58 | Pentanoic acid | C109524 | C5H10O2 | 102.1 | 893.4 | 454.96 | 1.50 |
59 | 3-Methylbutyric acid | C503742 | C5H10O2 | 102.1 | 878.5 | 432.55 | 1.48 |
60 | 5-Methyl-3-heptanone | C541855 | C8H16O | 128.2 | 952.3 | 559.15 | 1.70 |
61 | Heptanal | C111717 | C7H14O | 114.2 | 940.7 | 537.44 | 1.33 |
62 | 1-Octen-3-ol | C3391864 | C8H16O | 128.2 | 949.7 | 554.24 | 1.60 |
63 | 2-Methylbutan-1-ol | C137326 | C5H12O | 88.1 | 763.7 | 299.98 | 1.47 |
64 | 2,3-Pentadione | C600146 | C5H8O2 | 100.1 | 662 | 219.70 | 1.30 |
65 | Pentyl butanoate | C540181 | C9H18O2 | 158.2 | 1056.2 | 732.36 | 1.41 |
66 | Linalool oxide | C60047178 | C10H18O2 | 170.3 | 1087 | 774.53 | 1.25 |
67 | Butanoic acid | C107926 | C4H8O2 | 88.1 | 853.9 | 399.26 | 1.38 |
68 | 2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 976.5 | 604.15 | 1.19 |
69 | Triethylamine | C121448 | C6H15N | 101.2 | 659.9 | 218.54 | 1.22 |
70 | Hexanoic acid | C142621 | C6H12O2 | 116.2 | 1016.4 | 673.06 | 1.64 |
71 | 3-Methylbutanoic acid | C503742 | C5H10O2 | 102.1 | 854.5 | 400.02 | 1.22 |
72 | 4-Methyl-2-pentanol | C108112 | C6H14O | 102.2 | 767.8 | 304.14 | 1.28 |
73 | Ethyl lactate | C97643 | C5H10O3 | 118.1 | 801 | 338.29 | 1.14 |
74 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 596.4 | 189.86 | 1.10 |
75 | 3-Hexen-1-ol, acetate, (Z) | C3681718 | C8H14O2 | 142.2 | 1017.5 | 674.80 | 1.81 |
Count | Compound | CAS# | Formula | MW | RI | Rt(s) | Dt (RIPrel) |
---|---|---|---|---|---|---|---|
1 | Propanal | C123386 | C3H6O | 58.1 | 473.9 | 140.03 | 1.15 |
2 | Iso-propyl acetate | C108214 | C5H10O2 | 102.1 | 651.3 | 214.12 | 1.47 |
3 | 2,3-Butanediol | C513859 | C4H10O2 | 90.1 | 780.3 | 316.76 | 1.37 |
4 | 2-Methyl-1-propanol | C78831 | C4H10O | 74.1 | 657.6 | 217.35 | 1.17 |
5 | 2-Pentanone | C107879 | C5H10O | 86.1 | 678.6 | 229.23 | 1.13 |
6 | 3-Butenenitrile | C109751 | C4H5N | 67.1 | 642.5 | 209.83 | 1.13 |
7 | Pentanol | C71410 | C5H12O | 88.1 | 781 | 317.55 | 1.25 |
8 | Isoamyl acetate | C123922 | C7H14O2 | 130.2 | 871.7 | 422.91 | 1.31 |
9 | Isoamyl acetate | C123922 | C7H14O2 | 130.2 | 868.8 | 418.89 | 1.75 |
10 | 2-Butoxyethanol | C111762 | C6H14O2 | 118.2 | 906.1 | 475.68 | 1.24 |
11 | 1-Heptanol | C111706 | C7H16O | 116.2 | 975 | 601.47 | 1.39 |
12 | 2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 985.9 | 621.30 | 1.61 |
13 | α-pinene | C80568 | C10H16 | 136.2 | 986.6 | 622.68 | 1.21 |
14 | Phenol | C108952 | C6H6O | 94.1 | 987 | 623.27 | 1.08 |
15 | Ethyl maltol | C4940118 | C7H8O3 | 140.1 | 1187.5 | 909.37 | 1.20 |
16 | Dimethyldioxolone | C37830903 | C5H6O3 | 114.1 | 948.2 | 551.47 | 1.17 |
17 | 2-Cyclohexen-1-one | C930687 | C6H8O | 96.1 | 914 | 489.20 | 1.11 |
18 | Methyl isovalerate | C556241 | C6H12O2 | 116.2 | 795.4 | 332.36 | 1.20 |
19 | Diallyl sulfide | C592881 | C6H10S | 114.2 | 840.5 | 382.60 | 1.11 |
20 | 2-Octenal (E) | C2548870 | C8H14O | 126.2 | 1054.5 | 729.88 | 1.33 |
21 | 2-Methyl-3-(Methylthio)furan | C63012975 | C6H8OS | 128.2 | 957.5 | 568.78 | 1.11 |
22 | 3-Furanmethanol | C4412913 | C5H6O2 | 98.1 | 979.5 | 609.64 | 1.11 |
23 | 2-Methylpyrazine | C109080 | C5H6N2 | 94.1 | 845.5 | 388.65 | 1.40 |
24 | Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 920.2 | 500.11 | 1.51 |
25 | Hexanenitrile | C628739 | C6H11N | 97.2 | 879.7 | 434.35 | 1.26 |
26 | 2-Methylbutanoic acid | C116530 | C5H10O2 | 102.1 | 883.3 | 439.57 | 1.20 |
27 | (E)-2-Heptenal | C18829555 | C7H12O | 112.2 | 949.7 | 554.27 | 1.25 |
28 | Octanal | C124130 | C8H16O | 128.2 | 997.6 | 641.85 | 1.39 |
29 | Ethanol | C64175 | C2H6O | 46.1 | 455.1 | 132.40 | 1.14 |
30 | 5-Methylfurfural | C620020 | C6H6O2 | 110.1 | 959.1 | 571.87 | 1.13 |
31 | Ethylpyrazine | C13925003 | C6H8N2 | 108.1 | 916.6 | 493.82 | 1.13 |
32 | 2-Butoxyethanol | C111762 | C6H14O2 | 118.2 | 906.4 | 476.30 | 1.59 |
33 | (Z)-3-hexenyl acetate | C3681718 | C8H14O2 | 142.2 | 997.7 | 643.07 | 1.31 |
34 | Trimethylpyrazine | C14667551 | C7H10N2 | 122.2 | 998.2 | 642.99 | 1.17 |
35 | (E, E)-2,4-octadienal | C30361285 | C8H12O | 124.2 | 1118.6 | 816.93 | 1.27 |
36 | Decanal | C112312 | C10H20O | 156.3 | 1199.6 | 925.59 | 1.53 |
37 | Benzothiazole | C95169 | C7H5NS | 135.2 | 1247.1 | 989.45 | 1.16 |
38 | Ethyl 2-methylpropanoate | C97621 | C6H12O2 | 116.2 | 751.8 | 288.35 | 1.20 |
39 | Hexyl hexanoate | C6378650 | C12H24O2 | 200.3 | 1378.3 | 1165.62 | 1.60 |
40 | Amyl acetate | C628637 | C7H14O2 | 130.2 | 912.9 | 487.34 | 1.33 |
41 | 2-Hexanol | C626937 | C6H14O | 102.2 | 795 | 331.96 | 1.29 |
42 | 4-Methyl-1-pentanol | C626891 | C6H14O | 102.2 | 849.6 | 393.81 | 1.62 |
43 | 2-butoxyethanol | C111762 | C6H14O2 | 118.2 | 904.3 | 472.70 | 1.65 |
44 | 5-methyl-3-heptanone | C541855 | C8H16O | 128.2 | 952.3 | 559.15 | 1.70 |
45 | Heptanal | C111717 | C7H14O | 114.2 | 940.7 | 537.44 | 1.33 |
46 | 1-Octen-3-ol | C3391864 | C8H16O | 128.2 | 949.7 | 554.24 | 1.60 |
47 | Styrene | C100425 | C8H8 | 104.2 | 881.1 | 436.21 | 1.44 |
48 | 2,3-Pentadione | C600146 | C5H8O2 | 100.1 | 662 | 219.70 | 1.30 |
49 | Phenylacetaldehyde | C122781 | C8H8O | 120.2 | 1018 | 675.58 | 1.25 |
50 | Pentyl butanoate | C540181 | C9H18O2 | 158.2 | 1056.2 | 732.36 | 1.41 |
51 | Linalool oxide | C60047178 | C10H18O2 | 170.3 | 1087 | 774.53 | 1.25 |
52 | Butanoic acid | C107926 | C4H8O2 | 88.1 | 853.9 | 399.26 | 1.38 |
53 | 2,4-Heptadienal | C4313035 | C7H10O | 110.2 | 976.5 | 604.15 | 1.19 |
54 | Triethylamine | C121448 | C6H15N | 101.2 | 659.9 | 218.54 | 1.22 |
55 | Hexanoic acid | C142621 | C6H12O2 | 116.2 | 1016.4 | 673.06 | 1.64 |
56 | 3-Methylbutanoic acid | C503742 | C5H10O2 | 102.1 | 854.5 | 400.02 | 1.22 |
57 | 4-Methyl-2-pentanol | C108112 | C6H14O | 102.2 | 767.8 | 304.14 | 1.28 |
58 | Ethyl lactate | C97643 | C5H10O3 | 118.1 | 801 | 338.29 | 1.14 |
59 | Ethyl acetate | C141786 | C4H8O2 | 88.1 | 596.4 | 189.86 | 1.10 |
60 | 3-Hexen-1-ol, acetate, (Z) | C3681718 | C8H14O2 | 142.2 | 1017.5 | 674.80 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Chen, X.; Li, F.; Huang, M.; Xie, L.; Ge, J.; Ling, H.; Cheng, K. Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection. Foods 2024, 13, 1275. https://doi.org/10.3390/foods13081275
Tang X, Chen X, Li F, Huang M, Xie L, Ge J, Ling H, Cheng K. Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection. Foods. 2024; 13(8):1275. https://doi.org/10.3390/foods13081275
Chicago/Turabian StyleTang, Xiaoyue, Xiangyu Chen, Fuxiang Li, Mengmeng Huang, Lele Xie, Jingping Ge, Hongzhi Ling, and Keke Cheng. 2024. "Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection" Foods 13, no. 8: 1275. https://doi.org/10.3390/foods13081275
APA StyleTang, X., Chen, X., Li, F., Huang, M., Xie, L., Ge, J., Ling, H., & Cheng, K. (2024). Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection. Foods, 13(8), 1275. https://doi.org/10.3390/foods13081275