Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management
Abstract
:1. Introduction
2. Nutritional Value of Mare Milk
2.1. Source of Lipids
2.2. Source of Proteins
2.3. The Source of Other Components
3. Socio-Ecological Benefits of Horse Production under Grazing Management
3.1. Equine Adaptation to Extensive Management in Less Favoured Areas
3.2. Health and Welfare of Grazing Mares
3.3. Environmental Impact of Grazing Equines
3.4. Rural Vitality
3.5. Cultural Heritage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Outram, A.K.; Stear, N.A.; Bendrey, R.; Olsen, S.; Kasparov, A.; Zaibert, V.; Thorpe, N.; Evershed, R.P. The earliest horse harnessing and milking. Science 2009, 323, 1332–1335. [Google Scholar] [CrossRef]
- Sheng, Q.; Fang, X. Bioactive components in mare milk. In Bioactive Components in Milk and Dairy Products; Park, Y.W., Ed.; Wiley-Blackwell: Sussex, UK, 2009; pp. 195–213. [Google Scholar]
- Pieszka, M.; Łuszczyński, J.; Zamachowska, M.; Augustyn, R.; Długosz, B.; Hędrzak, M. Is mare milk an appropriate food for people?–a review. Ann. Anim. Sci. 2016, 16, 33–51. [Google Scholar] [CrossRef]
- Gall, C.F. Production systems around the world. In Milk and Dairy Products in Human Nutrition—Production, Composition and Health; Park, Y.W., Haenlein, G.F.W., Eds.; John Wiley & Sons: Sussex, UK, 2013; pp. 1–30. [Google Scholar]
- Bat-Oyun, T.; Erdenetsetseg, B.; Shinoda, M.; Ozaki, T.; Morinaga, Y. Who is making airag (fermented mare’s milk)? A nationwide survey of traditional food in Mongolia. Nomadic Peoples 2015, 19, 7–29. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector—The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Uniacke-Lowe, T.; Fox, P.F. Equid milk: Chemistry, biochemistry and processing. In Food Biochemistry and Food Processing; Simpson, B.K., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2012; pp. 491–530. [Google Scholar]
- Minjigdorj, N.; Austbø, D. Production of Mare’s Milk in Mongolia. 2009. Available online: http://www.umb.no/statisk/husdyrforsoksmoter/2005/088.pdf (accessed on 1 July 2023).
- Doreau, M.; Martin-Rosset, W. Animals that produce dairy foods: Horse. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011; pp. 358–364. [Google Scholar]
- Salimei, E.; Park, Y.W. Mare milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2017; pp. 369–375. [Google Scholar]
- Doreau, M.; Boulot, S. Methods of measurement of milk yield and composition in nursing mares: A review. Le Lait 1989, 69, 159–171. [Google Scholar] [CrossRef]
- Salimei, E.; Fantuz, F. Equid milk for human consumption. Int. Dairy J. 2012, 24, 130–142. [Google Scholar] [CrossRef]
- Turabayev, A.; Nurmakhanbetov, D.; Rakhmanov, S.; Baktybayev, G.; Aldabergenov, M. Control model elements of production processes of mare’s milk. Eurasia J. Biosci. 2019, 13, 1169–1176. [Google Scholar]
- Minjigdorj, N.; Baldorj, O.; Austbø, D. Chemical composition of Mongolian mare milk. Acta Agric. Scand. A Anim. Sci. 2012, 62, 66–72. [Google Scholar] [CrossRef]
- Ishii, S.; Hosino, B.; Komiyama, H.; Uehara, A.; Nurtazin, S. Study on production and properties of kumiss of herders in Mongolian dry steppe. J. Arid Land 2014, 24, 195–197. [Google Scholar]
- Doreau, M.; Boulot, S.; Martin-Rosset, W.; Dubroeucq, H. Milking lactating mares using oxytocin: Milk volume and composition. Reprod. Nutr. Dev. 1986, 26, 1–11. [Google Scholar] [CrossRef]
- Caroprese, M.; Albenzio, M.; Marino, R.; Muscio, A.; Zezza, T.; Sevi, A. Behavior, milk yield, and milk composition of machine-and hand-milked Murgese mares. J. Dairy Sci. 2007, 90, 2773–2777. [Google Scholar] [CrossRef] [PubMed]
- Doreau, M.; Martuzzi, F. Milk yield of nursing and dairy mares. In Nutrition and Feeding of the Broodmare; Miraglia, N., Martin-Rosset, W., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; Volume 120, pp. 57–64. [Google Scholar]
- Auclair-Ronzaud, J.; Jaffrézic, F.; Wimel, L.; Dubois, C.; Laloë, D.; Chavatte-Palmer, P. Estimation of milk production in suckling mares and factors influencing their milk yield. Animal 2022, 16, 100498. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Zhang, H.; Zhang, B.; Zhang, L. Mare milk. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Wiley-Blackwell Publishing: Oxford, UK, 2006; pp. 275–296. [Google Scholar]
- European Commission. Commission Regulation No 1662/2006 of 6 November 2006 Amending Regulation No 853/2004 of the European Parliament and of the Council Laying Down Specific Hygiene Rules for Food of Animal Origin; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Collomb, M.; Bütikofer, U.; Sieber, R.; Jeangros, B.; Bosset, J.O. Composition of fatty acids in cow’s milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Int. Dairy J. 2002, 12, 649–659. [Google Scholar] [CrossRef]
- Bonfoh, B.; Zinsstag, J.; Farah, Z.; Simbé, C.F.; Alfaroukh, I.O.; Aebi, R.; Badertscher, R.; Collomb, M.; Meyer, J.; Rehberger, B. Raw milk composition of Malian Zebu cows (Bos indicus) raised under traditional system. J. Food Compos. Anal. 2005, 18, 29–38. [Google Scholar] [CrossRef]
- Capuano, E.; Gravink, R.; Boerrigter-Eenling, R.; van Ruth, S.M. Fatty acid and triglycerides profiling of retail organic, conventional and pasture milk: Implications for health and authenticity. Int. Dairy J. 2015, 42, 58–63. [Google Scholar] [CrossRef]
- Sharma, R.; Ahlawat, S.; Aggarwal, R.A.K.; Dua, A.; Sharma, V.; Tantia, M.S. Comparative milk metabolite profiling for exploring superiority of indigenous Indian cow milk over exotic and crossbred counterparts. J. Food Sci. Technol. 2018, 55, 4232–4243. [Google Scholar] [CrossRef] [PubMed]
- Alichanidis, E.; Moatsou, G.; Polychroniadou, A. Composition and properties of non-cow milk and products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitrioupp, K., Eds.; Academic Press Elsevier: London, UK, 2016; pp. 81–116. [Google Scholar]
- Álvarez, R.; Meléndez-Martínez, A.J.; Vicario, I.M.; Alcalde, M.J. Carotenoids and fat-soluble vitamins in horse tissues: A comparison with cattle. Animal 2015, 9, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.R. Comparison of minerals in milk of four species. Comp. Biochem. Physiol. A Physiol. 1991, 100, 1045–1048. [Google Scholar] [CrossRef]
- Mackle, T.R.; Bryant, A.M.; Petch, S.F.; Hooper, R.J.; Auldist, M.J. Variation in the composition of milk protein from pasture-fed dairy cows in late lactation and the effect of grain and silage supplementation. N. Z. J. Agric. Res. 1999, 42, 147–154. [Google Scholar] [CrossRef]
- Precht, D. Cholesterol content in European bovine milk fats. Nahrung 2001, 45, 2–8. [Google Scholar] [CrossRef] [PubMed]
- MacGibbon, A.K.H.; Taylor, M.W. Composition and structure of bovine milk lipids. In Advanced Dairy Chemistry, Lipids, 4th ed.; McSweeney, P.L.H., Fox, P.F., O’Mahony, J.A., Eds.; Springer Nature: Cham, Switzerland, 2006; Volume 2, pp. 1–42. [Google Scholar]
- Adesina, K. Effect of breed on the composition of cow milk under traditional management practices in Ado-Ekiti, Nigeria. J. Appl. Sci. Environ. Manag. 2012, 16, 55–59. [Google Scholar]
- Brodziak, A.; Barłowska, J.; Król, J.; Litwińczuk, Z. Effect of breed and feeding system on content of selected whey proteins in cow’s milk in spring-summer and autumn-winter seasons. Ann. Anim. Sci. 2012, 12, 261–269. [Google Scholar] [CrossRef]
- Fantuz, F.; Salimei, E.; Papademas, P. Macro-and micronutrients in non-cow milk and products and their impact on human health. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitrioupp, K., Eds.; Academic Press Elsevier: London, UK, 2016; pp. 209–261. [Google Scholar]
- Rutkowska, J.; Adamska, A.; Bialek, M. Comparison of fatty acid composition in mare and cow milk fat. Zywn-Nauka Technol. Jakosc 2011, 1, 28–38. [Google Scholar]
- Csapó, J.; Stefler, J.; Martin, T.G.; Makray, S.; Csapó-Kiss, Z. Composition of mares’ colostrum and milk. Fat content, fatty acid composition and vitamin content. Int. Dairy J. 1995, 5, 393–402. [Google Scholar] [CrossRef]
- Pikul, J.; Wójtowski, J. Fat and cholesterol content and fatty acid composition of mares’ colostrums and milk during five lactation months. Livest. Sci. 2008, 113, 285–290. [Google Scholar] [CrossRef]
- Pikul, J.; Wójtowski, J.; Danków, R.; Kuczynska, B.; Lojek, J. Fat content and fatty acids profile of colostrum and milk of primitive Konik horses (Equus caballus gmelini Ant.) during six months of lactation. J. Dairy Res. 2008, 75, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Minjigdorj, N.; Haug, A.; Austbø, D. Fatty acid composition of Mongolian mare milk. Acta Agric. Scand. A Anim. Sci. 2012, 62, 73–80. [Google Scholar] [CrossRef]
- Miranda, G.; Mahé, M.; Leroux, C.; Martin, P. Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 2004, 4, 2496–2509. [Google Scholar] [CrossRef]
- Csapó-Kiss, Z.; Stefler, J.; Martin, T.G.; Makray, S.; Csapó, J. Composition of mares’ colostrum and milk. Protein content, amino acid composition and contents of macro and micro-elements. Int. Dairy J. 1995, 5, 403–415. [Google Scholar] [CrossRef]
- Ostrovský, I.; Pavlíková, E.; Blaško, J.; Górová, R.; Kubinec, R.; Margetín, M.; Soják, L. Variation in fatty acid composition of ewes’ milk during continuous transition from dry winter to natural pasture diet. Int. Dairy J. 2009, 19, 545–549. [Google Scholar] [CrossRef]
- Valdivielso, I.; Bustamante, M.A.; Buccioni, A.; Franci, O.; de Gordoa, J.C.R.; de Renobales, M.; Barron, L.J.R. Commercial sheep flocks–fatty acid and fat-soluble antioxidant composition of milk and cheese related to changes in feeding management throughout lactation. J. Dairy Res. 2015, 82, 334–343. [Google Scholar] [CrossRef]
- Bravo-Lamas, L.; Aldai, N.; Kramer, J.K.G.; Barron, L.J.R. Case study using commercial dairy sheep flocks: Comparison of the fat nutritional quality of milk produced in mountain and valley farms. LWT—Food Sci. Technol. 2018, 89, 374–380. [Google Scholar] [CrossRef]
- Caprioli, G.; Nzekoue, F.K.; Fiorini, D.; Scocco, P.; Trabalza-Marinucci, M.; Acuti, G.; Tardella, F.M.; Sagratini, G.; Catorci, A. The effects of feeding supplementation on the nutritional quality of milk and cheese from sheep grazing on dry pasture. Int. J. Food Sci. Nutr. 2020, 71, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Recio, I.; de la Fuente, M.A.; Juárez, M.; Ramos, M. Bioactive components in sheep milk. In Bioactive Components in Milk and Dairy Products; Park, Y.W., Ed.; Wiley-Blackwell: Oxford, UK, 2009; pp. 83–104. [Google Scholar]
- Sosa, J.; Althaus, R.L.; Scaglione, L.M.; Roldan, V.; Moreyra, E. Composición química y mineral de la leche de ovejas Corridale y Hampshire down. FAVE 2001, 15, 7–21. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ashraf, M.; Hussain, A.; McDowell, L.R.; Ashraf, M.Y. Concentrations of minerals in milk of sheep and goats grazing similar pastures in a semiarid region of Pakistan. Small Rumin. Res. 2006, 65, 274–278. [Google Scholar] [CrossRef]
- Yabrir, B.; Hakem, A.; Mostefaoui, A.; Titouche, Y.; Bouzidi, A.; Mati, A. Nutritional value of Algerian breed ewe’s milk related to its mineral content. Pak. J. Nutr. 2014, 13, 176–180. [Google Scholar] [CrossRef]
- Barron, L.J.R.; de Labastida, E.F.; Perea, S.; Chávarri, F.; de Vega, C.; Vicente, M.S.; Torres, M.I.; Nájera, A.I.; Virto, M.; Santisteban, A.; et al. Seasonal changes in the composition of bulk raw ewe’s milk used for Idiazabal cheese manufacture. Int. Dairy J. 2001, 11, 771–778. [Google Scholar] [CrossRef]
- Lipko-Przybylska, J.; Albera, E.; Kankofer, M. Comparison of antioxidant defence parameters in colostrum and milk between Berrichon du Cher ewes and Uhrusk ewes. J. Dairy Res. 2010, 77, 117–122. [Google Scholar] [CrossRef]
- Hejtmánková, A.; Pivec, V.; Trnková, E.; Dragounová, H. Differences in the composition of total and whey proteins in goat and ewe milk and their changes throughout the lactation period. Czech J. Anim. Sci. 2012, 57, 323–331. [Google Scholar] [CrossRef]
- Alizadeh, A.; Ehsani, M.R.; Rofehgarinejad, L. Fatty acid profile and cholesterol content of Ghezel sheep milk during lactation period. Acta Aliment. 2017, 46, 457–463. [Google Scholar] [CrossRef]
- Valenti, B.; Luciano, G.; Morbidini, L.; Rossetti, U.; Codini, M.; Avondo, M.; Priolo, A.; Bella, M.; Nataleno, A.; Pauselli, M. Dietary pomegranate pulp: Effect on ewe milk quality during late lactation. Animals 2019, 9, 283. [Google Scholar] [CrossRef]
- Kawęcka, A.; Pasternak, M.; Słoniewska, D.; Miksza-Cybulska, A.; Bagnicka, E. Quality of mountain sheep milk used for the production of traditional cheeses. Ann. Anim. Sci. 2020, 20, 299–314. [Google Scholar] [CrossRef]
- Valdivielso, I.; Bustamante, M.A.; Aldezabal, A.; Amores, G.; Virto, M.; de Gordoa, J.R.; de Renobales, M.; Barron, L.J.R. Case study of a commercial sheep flock under extensive mountain grazing: Pasture derived lipid compounds in milk and cheese. Food Chem. 2016, 197, 622–633. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Lutz, N.W.; Confort-Gouny, S.; Cozzone, P.J.; Armand, M.; Bernard, M. Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chem. 2012, 135, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Belaunzaran, X.; Bessa, R.J.B.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Horse-meat for human consumption—Current research and future opportunities. Meat Sci. 2015, 108, 74–81. [Google Scholar] [CrossRef] [PubMed]
- De Caro, J.; Eydoux, C.; Chérif, S.; Lebrun, R.; Gargouri, Y.; Carrière, F.; De Caro, A. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 150, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Amara, S.; Lafont, D.; Parsiegla, G.; Point, V.; Chabannes, A.; Rousset, A.; Carrière, F. The galactolipase activity of some microbial lipases and pancreatic enzymes. Eur. J. Lipid Sci. Technol. 2013, 115, 442–451. [Google Scholar] [CrossRef]
- Sahaka, M.; Amara, S.; Wattanakul, J.; Gedi, M.A.; Aldai, N.; Parsiegla, G.; Lecomte, J.; Christeller, J.T.; Gray, D.; Gontero, B.; et al. The digestion of galactolipids and its ubiquitous function in nature for the uptake of the essential α-linolenic acid. Food Funct. 2020, 11, 6710–6744. [Google Scholar] [CrossRef]
- Medhammar, E.; Wijesinha-Bettoni, R.; Stadlmayr, B.; Nilsson, E.; Charrondiere, U.R.; Burlingame, B. Composition of milk from minor dairy animals and buffalo breeds: A biodiversity perspective. J. Sci. Food Agric. 2012, 92, 445–474. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Lavín, P.; Barron, L.J.R.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. An assessment of the fatty acid composition of horse-meat available at the retail level in northern Spain. Meat Sci. 2017, 124, 39–47. [Google Scholar] [CrossRef]
- Pietrzak-Fiećko, R.; Tomczyński, R.; Smoczyński, S.S. Effect of lactation period on the fatty acid composition in mares’ milk from different breeds. Arch. Anim. Breed. 2013, 56, 335–343. [Google Scholar] [CrossRef]
- Navrátilová, P.; Pospíšil, J.; Borkovcová, I.; Kaniová, L.; Dluhošová, S.; Horáková, S. Content of nutritionally important components in mare milk fat. Mljekarstvo 2018, 68, 282–294. [Google Scholar] [CrossRef]
- Kouba, J.M.; Burns, T.A.; Webel, S.K. Effect of dietary supplementation with long-chain n-3 fatty acids during late gestation and early lactation on mare and foal plasma fatty acid composition, milk fatty acid composition, and mare reproductive variables. Anim. Reprod. Sci. 2019, 203, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Yang, Y.; Li, Z.; Li, J.; Zhu, Y.; Meng, Q.; Liu, J.; Wang, X. Impact of different dietary regimens on the lipidomic profile of mare’s milk. Food Res. Int. 2022, 156, 111305. [Google Scholar] [CrossRef] [PubMed]
- Wohlt, J.E.; Kleyn, D.H.; Vandernoot, G.W.; Selfridge, D.J.; Novotney, C.A. Effect of stage of lactation, age of ewe, sibling status, and sex of lamb on gross and minor constituents of Dorset ewe milk. J. Dairy Sci. 1981, 64, 2175–2184. [Google Scholar] [CrossRef]
- Bruckmaier, R.M.; Gross, J.J. Lactational challenges in transition dairy cows. Anim. Prod. Sci. 2017, 57, 1471–1481. [Google Scholar] [CrossRef]
- Deichsel, K.; Aurich, J. Lactation and lactational effects on metabolism and reproduction in the horse mare. Livest. Prod. Sci. 2005, 98, 25–30. [Google Scholar] [CrossRef]
- Aldai, N.; de Renobales, M.; Barron, L.J.R.; Kramer, J.K.G. What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur. J. Lipid Sci. Technol. 2013, 115, 1378–1401. [Google Scholar] [CrossRef]
- Mazhitova, A.T.; Kulmyrzaev, A.A.; Ozbekova, Z.E.; Bodoshev, A. Amino acid and fatty acid profile of the mare’s milk produced on Suusamyr pastures of the Kyrgyz Republic during lactation period. Procedia Soc. Behav. Sci. 2015, 195, 2683–2688. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Hernandez, M.; Cruz-Hernandez, C.; Kraft, J.; Dugan, M.E.R. Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-ion SPE fractionation. Lipids 2008, 43, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Delmonte, P.; Ali-Reza, F.K.; Kramer, J.K.G.; Mossoba, M.; Sidisky, L.; Rader, J.I. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. J. Chromatogr. A 2011, 1218, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, M.; Martuzzi, F.; Summer, A.; Mariani, P. Protein and fat composition of mare’s milk: Some nutritional remarks with reference to human and cow’s milk. Int. Dairy J. 2002, 12, 869–877. [Google Scholar] [CrossRef]
- Uniacke-Lowe, T.; Huppertz, T.; Fox, P.F. Equine milk proteins: Chemistry, structure and nutritional significance. Int. Dairy J. 2010, 20, 609–629. [Google Scholar] [CrossRef]
- Foekel, C.; Schubert, R.; Kaatz, M.; Schmidt, I.; Bauer, A.; Hipler, U.; Vogelsang, H.; Rabe, K.; Jahreis, G. Dietetic effects of oral intervention with mare’s milk on the severity scoring of atopic dermatitis, on faecal microbiota and on immunological parameters in patients with atopic dermatitis. Int. J. Food Sci. Nutr. 2009, 60, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Businco, L.; Giampietro, P.G.; Lucenti, P.; Lucaroni, F.; Pini, C.; Di Felice, G.; Iacovacci, P.; Curadi, C.; Orlandi, M. Allergenicity of mare’s milk in children with cow’s milk allergy. J. Allergy Clin. Immunol. 2000, 105, 1031–1034. [Google Scholar] [CrossRef]
- Curadi, M.C.; Giampietro, P.G.; Lucenti, P.; Orlandi, M. Use of mare milk in pediatric allergology. Recent progress in animal production science. In Proceedings of the Animal Science and Production Association XIII Congress, Piacenza, Italy, 21–24 June 1999. [Google Scholar]
- Zhao, S.; Pan, F.; Cai, S.; Yi, J.; Zhou, L.; Liu, Z. Secrets behind protein sequences: Unveiling the potential reasons for varying allergenicity caused by caseins from cows, goats, camels, and mares based on bioinformatics analyses. Int. J. Mol. Sci. 2023, 24, 2481. [Google Scholar] [CrossRef]
- Inglingstad, R.A.; Devold, T.G.; Eriksen, E.K.; Holm, H.; Jacobsen, M.; Liland, K.H.; Rukke, E.O.; Vegarud, G.E. Comparison of the digestion of caseins and whey proteins in equine, bovine, caprine and human milks by human gastrointestinal enzymes. Dairy Sci. Technol. 2010, 90, 549–563. [Google Scholar] [CrossRef]
- Xiao, T.; Zeng, J.; Zhao, C.; Hou, Y.; Wu, T.; Deng, Z.; Zheng, L. Comparative analysis of protein digestion characteristics in human, cow, goat, sheep, mare, and camel milk under simulated infant condition. J. Agric. Food Chem. 2023, 71, 15035–15047. [Google Scholar] [CrossRef]
- Schweigert, F.J.; Gottwald, C. Effect of parturition on levels of vitamins A and E and of β-carotene in plasma and milk of mares. Equine Veter J. 1999, 31, 319–323. [Google Scholar] [CrossRef]
- Greiwe-Crandell, K.M.; Kronfeld, D.S.; Gay, L.S.; Sklan, D.; Tiegs, W.; Harris, P.A. Vitamin A repletion in Thoroughbred mares with retinyl palmitate or β-carotene. J. Anim. Sci. 1997, 75, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, J.; Aurich, J.E.; Wulf, M.; Hurtienne, A.; Schweigert, F.J.; Aurich, C. Effects of oral supplementation with β-carotene on concentrations of β-carotene, vitamin A and α-tocopherol in plasma, colostrum and milk of mares and plasma of their foals and on fertility in mares. J. Anim. Physiol. Anim. Nutr. 2012, 96, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Bondo, T.; Jensen, S.K. Administration of RRR-α-tocopherol to pregnant mares stimulates maternal IgG and IgM production in colostrum and enhances vitamin E and IgM status in foals. J. Anim. Physiol. Anim. Nutr. 2011, 95, 214–222. [Google Scholar] [CrossRef]
- Danyer, E.; Bilal, T. Effects of dietary fish oil and alpha-tocopherol supplementation on selected blood parameters and fatty acid profiles in mares and their foals. J. Anim. Physiol. Anim. Nutr. 2021, 105, 3–17. [Google Scholar] [CrossRef]
- Magan, J.B.; O’Callaghan, T.F.; Zheng, J.; Zhang, L.; Mandal, R.; Hennessy, D.; Fenelon, M.A.; Wishart, D.S.; Kelly, A.L.; McCarthy, N.A. Effect of diet on the vitamin B profile of bovine milk-based protein ingredients. Foods 2020, 9, 578. [Google Scholar] [CrossRef]
- Blanco-Doval, A.; Barron, L.J.R.; Aldai, N. Changes during lactation in the mineral element content of mare milk produced in semi-extensive rural farms. J. Food Compos. Anal. 2023, 123, 105629. [Google Scholar] [CrossRef]
- Albrecht, S.; Lane, J.A.; Marino, K.; Al Busadah, K.A.; Carrington, S.D.; Hickey, R.M.; Rudd, P.M. A comparative study of free oligosaccharides in the milk of domestic animals. Br. J. Nutr. 2014, 111, 1313–1328. [Google Scholar] [CrossRef]
- Difilippo, E.; Willems, H.; Vendrig, J.C.; Fink-Gremmels, J.; Gruppen, H.; Schols, H.A. Comparison of milk oligosaccharides pattern in colostrum of different horse breeds. J. Agric. Food Chem. 2015, 63, 4805–4814. [Google Scholar] [CrossRef] [PubMed]
- Karav, S.; Salcedo, J.; Frese, S.A.; Barile, D. Thoroughbred mare’s milk exhibits a unique and diverse free oligosaccharide profile. FEBS Open Bio 2018, 8, 1219–1229. [Google Scholar] [CrossRef]
- Rzekęć, A.; Vial, C.; Bigot, G. Green assets of equines in the European context of the ecological transition of agriculture. Animals 2020, 10, 106. [Google Scholar] [CrossRef]
- European Commission. The Common Agricultural Policy: 2023-27. 2023. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27_en (accessed on 26 June 2023).
- Hoffmann, I. Livestock biodiversity and sustainability. Livest. Sci. 2011, 139, 69–79. [Google Scholar] [CrossRef]
- Ryschawy, J.; Disenhaus, C.; Bertrand, S.; Allaire, G.; Aznar, O.; Plantureux, S.; Josien, E.; Guinot, C.; Lasseur, J.; Perrot, C.; et al. Assessing multiple goods and services derived from livestock farming on a nation-wide gradient. Animal 2017, 11, 1861–1872. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.; Ryschawy, J.; Duru, M.; Benoit, M.; Chatellier, V.; Delaby, L.; Donnars, C.; Dupraz, P.; Lemauviel-Lavenant, S.; Méda, B.; et al. Review: Associations among goods, impacts and ecosystem services provided by livestock farming. Animal 2019, 13, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- FAO. Livestock Keepers—Guardians of Biodiversity; Food and Agriculture Organization: Rome, Italy, 2009. [Google Scholar]
- Caballero, R.; Fernandez-Gonzalez, F.; Badia, R.P.; Molle, G.; Roggero, P.P.; Bagella, S.; D’Ottavio, P.; Papanastasis, V.P.; Fotiadis, G.; Siddiropoulou, A.; et al. Grazing systems and biodiversity in Mediterranean areas: Spain, Italy and Greece. Pastos 2009, 39, 9–154. [Google Scholar]
- Salvia, R.; Egidi, G.; Vinci, S.; Salvati, L. Desertification risk and rural development in southern Europe: Permanent assessment and implications for sustainable land management and mitigation policies. Land 2019, 8, 191. [Google Scholar] [CrossRef]
- Brown, J.H.; Pilliner, S.; Davies, Z. Horse and Stable Management; John Wiley & Sons: Sussex, UK, 2003. [Google Scholar]
- Elghandour, M.M.M.; Adegbeye, M.J.; Barbabosa-Pilego, A.; Perez, N.R.; Hernández, S.R.; Zaragoza-Bastida, A.; Salem, A.Z.M. Equine contribution in methane emission and its mitigation strategies. J. Equine Veter Sci. 2019, 72, 56–63. [Google Scholar] [CrossRef]
- Menard, C.; Duncan, P.; Fleurance, G.; Georges, J.; Lila, M. Comparative foraging and nutrition of horses and cattle in European wetlands. J. Appl. Ecol. 2002, 39, 120–133. [Google Scholar] [CrossRef]
- Karmiris, I.; Platis, P.D.; Kazantzidis, S.; Papachristou, T.G. Diet selection by domestic and wild herbivore species in a coastal Mediterranean wetland. Ann. Zool. Fenn. 2011, 48, 233–242. [Google Scholar] [CrossRef]
- Fleurance, G.; Farruggia, A.; Lanore, L.; Dumont, B. How does stocking rate influence horse behaviour, performances and pasture biodiversity in mesophile grasslands? Agric. Ecosyst. Environ. 2016, 231, 255–263. [Google Scholar] [CrossRef]
- Nolte, S.; van der Weyde, C.; Esselink, P.; Smit, C.; van Wieren, S.E.; Bakker, J.P. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh. J. Coast. Conserv. 2017, 21, 369–379. [Google Scholar] [CrossRef]
- Duncan, P.; Foose, T.J.; Gordon, I.J.; Gakahu, C.G.; Lloyd, M. Comparative nutrient extraction from forages by grazing bovids and equids: A test of the nutritional model of equid/bovid competition and coexistence. Oecologia 1990, 84, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Celaya, R.; Ferreira, L.; García, U.; García, R.R.; Osoro, K. Diet selection and performance of cattle and horses grazing in heathlands. Animal 2011, 5, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Celaya, R.; Ferreira, L.; García, U.; García, R.R.; Osoro, K. Heavy grazing by horses on heathlands of different botanical composition. In Forages and Grazing in Horse Nutrition; Saastamoinen, M., Fradinho, M.J., Santos, A.S., Miraglia, N., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 219–226. [Google Scholar]
- Bigot, G.; Brétiére, G.; Micol, D.; Turpin, N. Management of cattle and draught horse to maintain openness of landscapes in French Central Mountains. In Proceedings of the 17th Meeting of the FAO-CIHEAM Mountain Pasture Network—Pastoralims and Ecosystem Conservation, Trivero, Italy, 5–7 June 2013. [Google Scholar]
- Ferreira, L.M.M.; Celaya, R.; Benavides, R.; Jáuregui, B.M.; García, U.; Santos, A.S.; García, R.R.; Rodrigues, M.A.M.; Osoro, K. Foraging behaviour of domestic herbivore species grazing on heathlands associated with improved pasture areas. Livest. Sci. 2013, 155, 373–383. [Google Scholar] [CrossRef]
- López, C.L.; Celaya, R.; Ferreira, L.M.M.; García, U.; Rodrigues, M.A.M.; Osoro, K. Comparative foraging behaviour and performance between cattle and horses grazing in heathlands with different proportions of improved pasture area. J. Appl. Anim. Res. 2019, 47, 377–385. [Google Scholar] [CrossRef]
- López, C.L.; Ferreira, L.M.M.; García, U.; Moreno-Gonzalo, J.; Rodrigues, M.A.M.; Osoro, K.; Ferre, I.; Celaya, R. Diet selection and performance of horses grazing on different heathland types. Animal 2017, 11, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- López, C.L.; García, R.R.; Ferreira, L.M.M.; García, U.; Osoro, K.; Celaya, R. Impacts of horse grazing on botanical composition and diversity in different types of heathland. Rangel. J. 2017, 39, 375–385. [Google Scholar] [CrossRef]
- Osoro, K.; Ferreira, L.; García, U.; Martínez, A.; Celaya, R. Forage intake, digestibility and performance of cattle, horses, sheep and goats grazing together on an improved heathland. Anim. Prod. Sci. 2017, 57, 102–109. [Google Scholar] [CrossRef]
- Edouard, N.; Fleurance, G.; Dumont, B.; Baumont, R.; Duncan, P. Does sward height affect feeding patch choice and voluntary intake in horses? Appl. Anim. Behav. Sci. 2009, 119, 219–228. [Google Scholar] [CrossRef]
- Odberg, F.O.; Francis-Smith, K. A study on eliminative and grazing behavior—The use of the field by captive horses. Equine Veter J. 1976, 8, 147–149. [Google Scholar] [CrossRef]
- Taylor, E.L. Grazing behavior and helminthic disease. Br. J. Anim. Behav. 1954, 2, 61–62. [Google Scholar] [CrossRef]
- Fleurance, G.; Duncan, P.; Fritz, H.; Cabaret, J.; Cortet, J.; Gordon, I.J. Selection of feeding sites by horses at pastures: Testing the antiparasite theory. Appl. Anim. Behav. Sci. 2007, 108, 288–301. [Google Scholar] [CrossRef]
- Fleurance, G.; Duncan, P.; Fritz, H.; Cabaret, J.; Gordon, I.J. Importance of nutritional and anti-parasite strategies in the foraging decisions of horses: An experimental test. Oikos 2005, 110, 602–612. [Google Scholar] [CrossRef]
- Dumont, B.; Rossignol, N.; Loucougaray, G.; Carrère, P.; Chadoeuf, J.; Fleurance, G.; Bonis, A.; Farruggia, A.; Gaucherand, S.; Ginane, C.; et al. When does grazing generate stable vegetation patterns in temperate pastures? Agric. Ecosyst. Environ. 2012, 153, 50–56. [Google Scholar] [CrossRef]
- Illius, A.W.; Gordon, I.J. The allometry of Food intake in grazing ruminants. J. Anim. Ecol. 1987, 56, 989–999. [Google Scholar] [CrossRef]
- Ringmark, S.; Skarin, A.; Jansson, A. Impact of year-round grazing by horses on pasture nutrient dynamics and the correlation with pasture nutrient content and fecal nutrient composition. Animals 2019, 9, 500. [Google Scholar] [CrossRef]
- Collas, C.; Fleurance, G.; Cabaret, J.; Martin-Rosset, W.; Wimel, L.; Cortet, J.; Dumont, B. How does the suppression of energy supplementation affect herbage intake, performance and parasitism in lactating saddle mares? Animal 2014, 8, 1290–1297. [Google Scholar] [CrossRef]
- Brinkmann, L.; Gerken, M.; Riek, A. Adaptation strategies to seasonal changes in environmental conditions of a domesticated horse breed, the Shetland pony (Equus ferus caballus). J. Exp. Biol. 2012, 215, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Köhler, M.; Hiller, G.; Tischew, S. Year-round horse grazing supports typical vascular plant species, orchids and rare bird communities in a dry calcareous grassland. Agric. Ecosyst. Environ. 2016, 234, 48–57. [Google Scholar] [CrossRef]
- Gilhaus, K.; Hölzel, N. Seasonal variations of fodder quality and availability as constraints for stocking rates in year-round grazing schemes. Agric. Ecosyst. Environ. 2016, 234, 5–15. [Google Scholar] [CrossRef]
- Arnold, W.; Ruf, T.; Kuntz, R. Seasonal adjustment of energy budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure. J. Exp. Biol. 2006, 209, 4566–4573. [Google Scholar] [CrossRef]
- Stachurska, A.; Pluta, M.; Wójcik, M.; Giżejewski, Z.; Janczarek, I.; Różańska-Boczula, M. Coat cover hair density is a symptom of primitive horse adaptation to the environment. Pferdeheilkunde Equine Med. 2018, 34, 550–556. [Google Scholar] [CrossRef]
- Habeck, J.O. Republic of Sakha (Yakutia). 2000. Available online: https://www.spri.cam.ac.uk/resources/rfn/sakha.html#ref (accessed on 26 June 2023).
- Librado, P.; Der Sarkissian, C.; Ermini, L.; Schubert, M.; Jónsson, H.; Albrechtsen, A.; Fumagalli, M.; Yang, M.A.; Gamba, C.; Seguin-Orlando, A.; et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl. Acad. Sci. USA 2015, 112, E6889–E6897. [Google Scholar] [CrossRef] [PubMed]
- Pereladova, O.B.; Sempéeré, A.J.; Soldatova, N.V.; Dutov, V.U.; Fisenko, G.; Flint, V.E. Przewalski’s horse—Adaptation to semi-wild life in desert conditions. Oryx 1999, 33, 47–58. [Google Scholar] [CrossRef]
- Sneddon, J.C.; Van Der Walt, J.G.; Mitchell, G. Water homeostasis in desert-dwelling horses. J. Appl. Physiol. 1991, 71, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Marsoner, T.; Egarter Vigl, L.; Manck, F.; Jaritz, G.; Tappeiner, U.; Tasser, E. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the alpine space. Ecol. Indic. 2018, 94, 55–63. [Google Scholar] [CrossRef]
- Miraglia, N. Equids contribution to sustainable development in rural areas: A new challenge for the third millennium. In Forages and Grazing in Horse Nutrition; Saastamoinen, M., Fradinho, M.J., Santos, A.S., Miraglia, N., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; pp. 439–452. [Google Scholar]
- Degen, A.A. Sheep and goat milk in pastoral societies. Small Rumin. Res. 2007, 68, 7–19. [Google Scholar] [CrossRef]
- Boyce, P.N.; McLoughlin, P.D. Ecological interactions involving feral horses and predators: Review with implications for biodiversity conservation. J. Wildl. Manag. 2021, 85, 1091–1103. [Google Scholar] [CrossRef]
- Richmond, S.E.; Wemelsfelder, F.; Beltrán de Heredia, I.; Ruíz, R.; Canali, E.; Dwyer, C.M. Evaluation of animal-based indicators to be used in a welfare assessment protocol for sheep. Front. Veter Sci. 2017, 4, 210. [Google Scholar] [CrossRef] [PubMed]
- Minero, M.; Dalla Costa, E.; Dai, F. AWIN welfare assessment protocol for horses. In AWIN Animal Welfare Indicators; European Union’s Seventh Framework Programme: Milan, Italy, 2015. [Google Scholar]
- Feh, C. Relationships and communication in socially natural horse herds. In The Domestic Horse: The Origins, Development and Management of Its Behavior; Mills, D.S., McDonnell, S.M., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 83–94. [Google Scholar]
- Waters, A.J.; Nicol, C.J.; French, N.P. Factors influencing the development of stereotypic and redirected behaviours in young horses: Findings of a four year prospective epidemiological study. Equine Veter J. 2002, 34, 572–579. [Google Scholar] [CrossRef]
- Popescu, S.; Lazar, E.A.; Borda, C.; Niculae, M.; Sandru, C.D.; Spinu, M. Welfare quality of breeding horses under different housing conditions. Animals 2019, 9, 81. [Google Scholar] [CrossRef]
- European Commission. Feasibility Study on Animal Welfare Labelling and Establishing a Community Reference Centre for Animal Protection and Welfare—Part 1: Animal Welfare Labelling; Directorate-General for Health and Food Safety: Brussels, Belgium, 2009. [Google Scholar]
- Animal Welfair. Available online: https://www.animalwelfair.com/es/ (accessed on 13 March 2024).
- European Commission. For a fair, healthy and environmentally-friendly food system farm to fork strategy. In Communication (2020) 381 from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Available online: https://food.ec.europa.eu/animals/animal-welfare/eu-platform-animal-welfare/thematic-sub-groups/animal-welfare-labelling_en (accessed on 26 June 2023).
- European Commission. Commission Regulation No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Loo, E.; Lai, K.; Mansor, R. Antimicrobial usage and resistance in dairy cattle production. In Veterinary Medicine and Pharmaceuticals; Bekoe, S.O., Saravanan, M., Adosraku, R.K., Ramkumar, P.K., Eds.; IntechOpen: London, UK, 2019; pp. 7–16. [Google Scholar]
- Rodríguez-Ortega, T.; Oteros-Rozas, E.; Ripoll-Bosch, R.; Tichit, M.; Martín-López, B.; Bernués, A. Applying the ecosystem services framework to pasture-based livestock farming systems in Europe. Animal 2014, 8, 1361–1372. [Google Scholar] [CrossRef]
- Gocht, A.; Espinosa, M.; Leip, A.; Lugato, E.; Schroeder, L.A.; Van Doorslaer, B.; Paloma, S.G. A grassland strategy for farming systems in Europe to mitigate GHG emissions—An integrated spatially differentiated modelling approach. Land Use Policy 2016, 58, 318–334. [Google Scholar] [CrossRef]
- Soussana, J.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A generalized model for the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- FAO. Livestock’s Long Shadow: Environmental Issues and Options; Food and Agriculture Organization: Rome, Italy, 2006; Available online: https://www.fao.org/3/a0701e/a0701e00.htm (accessed on 27 July 2023).
- Dumont, B.; Tallowin, J.R. Interactions between grassland management and species diversity. In Grassland Productivity and Ecosystem Services; Lemaire, G., Hodgson, J., Chabbi, A., Eds.; Centre for Agricultural Bioscience International: Surrey, UK, 2011; pp. 129–137. [Google Scholar]
- Bernués, A. Animals on the land. Ecosystem services and disservices of grazing livestock systems. In The Meat Crisis: Developing More Sustainable and Ethical Production and Consumption, 2nd ed.; D’Silva, J., Webster, J., Eds.; Taylor & Francis Group: London, UK, 2017; pp. 67–92. [Google Scholar]
- Loucougaray, G.; Bonis, A.; Bouzillé, J. Effects of grazing by horses and/or cattle on the diversity of coastal grasslands in western France. Biol. Conserv. 2004, 116, 59–71. [Google Scholar] [CrossRef]
- Stewart, G.B.; Pullin, A.S. The relative importance of grazing stock type and grazing intensity for conservation of mesotrophic ‘old meadow’ pasture. J. Nat. Conserv. 2008, 16, 175–185. [Google Scholar] [CrossRef]
- Garrido, P.A.; Marell, A.; Öckinger, E.; Skarin, A.; Jansson, A.; Thulin, C.G. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J. Appl. Ecol. 2019, 56, 946–955. [Google Scholar] [CrossRef]
- Rigueiro-Rodríguez, A.; Mouhbi, R.; Santiago-Freijanes, J.J.; Gonzalez-Hernandez, M.D.P.; Mosquera-Losada, M.R. Horse grazing systems: Understory biomass and plant biodiversity of a Pinus radiata stand. Sci. Agric. 2012, 69, 38–46. [Google Scholar] [CrossRef]
- Nolte, S.; Esselink, P.; Bakker, J.P. Flower production of Aster tripolium is affected by behavioral differences in livestock species and stocking densities: The role of activity and selectivity. Ecol. Res. 2013, 28, 821–831. [Google Scholar] [CrossRef]
- Mosquera Losada, M.R.; Mouhbi, R.; González-Hernández, M.P.; Rigueiro Rodríguez, A. Efecto del Pastoreo con Caballo de Monte Sobre la Diversidad de Plantas Vasculares en dos Sistemas de Pastoreo (Rotacional y Continuo) con Sotobosque Dominado por Ulex europaeus. In Proceedings of the 5° Congreso Forestal Español—Montes y Sociedad: Saber qué Hacer. Sociedad Española de Ciencias Forestales-Junta de Castilla y León, Pontevedra, Spain, 21–25 September 2009. [Google Scholar]
- Celaya, R.; Martínez, A.; Osoro, K. Vegetation dynamics in Cantabrian heathlands associated with improved pasture areas under single or mixed grazing by sheep and goats. Small Rumin. Res. 2007, 72, 165–177. [Google Scholar] [CrossRef]
- Rook, A.J.; Tallowin, J.R. Grazing and pasture management for biodiversity benefit. Anim. Res. 2003, 52, 181–189. [Google Scholar] [CrossRef]
- Milotic, T.; Quide, S.; Van Loo, T.; Hoffmann, M. Linking functional group richness and ecosystem functions of dung beetles: An experimental quantification. Oecologia 2017, 183, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Bloor, J.M.G.; Jay-Robert, P.; Le Morvan, A.; Fleurance, G. Déjections des herbivores domestiques au pasturage: Caractéristiques et role dans le fonctionnement des prairies. INRAE Prod. Anim. 2012, 25, 45–56. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv. Agron. 1993, 49, 119–200. [Google Scholar]
- INRA. Equine Nutrition: INRA Nutrient Requirements, Recommended Allowances and Feed Tables; Martin-Rosset, W., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015. [Google Scholar]
- Parvage, M.M.; Ulén, B.; Kirchmann, H. Are horse paddocks threatening water quality through excess loading of nutrients? J. Environ. Manag. 2015, 147, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.; Smith, P.; Wilkinson, J.M. Mitigating climate change: The role of domestic livestock. Animal 2010, 4, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bernués, A.; Riedel, J.L.; Asensio, M.A.; Blanco, M.; Sanz, A.; Revilla, R.; Casasús, I. An integrated approach to studying the role of grazing livestock systems in the conservation of rangelands in a protected natural park (Sierra de Guara, Spain). Livest. Prod. Sci. 2005, 96, 75–85. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.; Thompson, D.K.; Flannigan, M.D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 2019, 9, 18796. [Google Scholar] [CrossRef] [PubMed]
- De Luis, M.; González-Hidalgo, J.C.; Raventós, J. Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad. Dev. 2003, 14, 203–213. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Insausti, K.; Beldarrain, L.R.; Lavín, M.P.; Aldai, N.; Mantecón, Á.R.; Sáez, J.L.; Canals, R.M. Horse meat production in northern Spain: Ecosystem services and sustainability in high nature value farmland. Anim. Front. 2021, 11, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Pardini, A.; Natali, F.; Tallarico, R. Horse grazing in firebreaks sown with Trifolium brachycalycinum (Katznl. & Morley) and Cynodon dactylon (L.). Pers. Agrofor. Syst. 2007, 70, 17–24. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Moss, A.R.; Jouany, J.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Franz, R.; Soliva, C.R.; Kreuzer, M.; Steuer, P.; Hummel, J.; Clauss, M. Methane production in relation to body mass of ruminants and equids. Evol. Ecol. Res. 2010, 12, 727–738. [Google Scholar]
- Vermorel, M.; Jouany, J.P.; Eugene, M.; Sauvant, D.; Noblet, J.; Dourmad, J.Y. Evaluation quantitative des emissions de methane enterique par les animaux d’elevage en 2007 en France. INRAE Prod. Anim. 2008, 21, 403–418. [Google Scholar]
- Steinfeld, H.; Gerber, P. Livestock production and the global environment: Consume less or produce better? Proc. Natl. Acad. Sci. USA 2010, 107, 18237–18238. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Production Data of FAOSTAT. 2021. Available online: http://www.fao.org/faostat/en/#home (accessed on 26 June 2023).
- Lamy, A.; Costa, S.; Vial, C.; Badji, I.; Carrere, M.; Rollet, P.; Amiot, M.J. Horsemeat consumption in France: Determinants and sustainable market perspectives. Meat Sci. 2023, 198, 109083. [Google Scholar] [CrossRef]
- Sebbane, M.; Vial, C.; Lamy, A. A horse in your plate? A cluster analysis of French consumers hippophagy acceptance. Meat Sci. 2023, 203, 109220. [Google Scholar] [CrossRef]
- Jaskari, M.; Leipämaa-Leskinen, H.; Syrjälä, H. Revealing the paradoxes of horsemeat—The challenges of marketing horsemeat in Finland. Nord. J. Bus. 2015, 64, 86–102. [Google Scholar]
- Reist, S.; Hintermann, F.; Sommer, R. The Livestock Revolution: An Opportunity for Poor Farmers? InfoResources Focus (1/07). 2007; 1–16. Available online: www.inforesources.ch/pdf/focus07_1_e.pdf(accessed on 14 March 2023).
- FAO. Migration, Agriculture and Rural Development: Addressing the Root Causes of Migration and Harnessing Its Potential for Development; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- Cobano-Delgado, V.; Llorent-Bedmar, V. Women’s well-being and rural development in depopulated Spain. Int. J. Environ. Res. Public Health 2020, 17, 1966. [Google Scholar] [CrossRef]
- Cooper, T.; Hart, K.; Baldock, D. Provision of Public Goods through Agriculture in the European Union; Institute for European Environmental Policy: London, UK, 2009. [Google Scholar]
- ESPON. Shrinking rural regions in Europe: Towards smart and innovative approaches to regional development challenges in depopulating rural regions. In ESPON Policy Brief; ESPON: Luxembourg, 2017. [Google Scholar]
- European Union. Rural Areas and the Primary Sector in the EU. 2018. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/facts-and-figures/rural-areas_en (accessed on 26 June 2023).
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- European Commission. Food and farming: Focus on land. In The 2015 EU Agricultural Outlook Conference; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- ILOSTAT. Employment in Agriculture (% of Total Employment) (Modeled ILO Estimate)—European Union; ILOSTAT, 2020. Available online: https://ilostat.ilo.org/data/ (accessed on 22 April 2024).
- Dumont, B.; Dupraz, P.; Sabatier, R.; Donnars, C. A collective scientific assessment of the roles, impacts, and services associated with livestock production systems in Europe. Forages 2017, 229, 63–76. [Google Scholar]
- European Horse Network. The European Horse Industry in the European Regions—Key Figures 2010. 2010. Available online: http://parimutuel-europe.org/Download/Key_Figures_2010_EN.pdf (accessed on 27 July 2023).
- Cordilhac, C.; Abellan, C. Jobs in the French equine sector. In The New Equine Economy in the 21st Century; Vial, C., Evans, R., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 55–60. [Google Scholar]
- Vial, C.; Barget, E.; Clipet, F. Economic impact of equestrian events, examples from France. In The New equine Economy in the 21st Century; Vial, C., Evans, R., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 21–32. [Google Scholar]
- Meert, H.; Van Huylenbroeck, G.; Vernimmen, T.; Bourgeois, M.; van Hecke, E. Farm household survival strategies and diversification on marginal farms. J. Rural. Stud. 2005, 21, 81–97. [Google Scholar] [CrossRef]
- Jouven, M.; Vial, C.; Fleurance, G. Horses and rangelands: Perspectives in Europe based on a French case study. Grass Forage Sci. 2016, 71, 178–194. [Google Scholar] [CrossRef]
- Bernués, A.; Tello-García, E.; Rodríguez-Ortega, T.; Ripoll-Bosch, R.; Casasús, I. Agricultural practices, ecosystem services and sustainability in high nature value farmland: Unraveling the perceptions of farmers and nonfarmers. Land Use Policy 2016, 59, 130–142. [Google Scholar] [CrossRef]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Bernués, A.; Alfnes, F.; Clemetsen, M.; Eik, L.O.; Faccioni, G.; Ramanzin, M.; Ripoll-Bosch, R.; Rodríguez-Ortega, T.; Sturaro, E. Exploring social preferences for ecosystem services of multifunctional agriculture across policy scenarios. Ecosyst. Serv. 2019, 39, 101002. [Google Scholar] [CrossRef]
- Faccioni, G.; Sturaro, E.; Ramanzin, M.; Bernués, A. Socio-economic valuation of abandonment and intensification of alpine agroecosystems and associated ecosystem services. Land Use Policy 2019, 81, 453–462. [Google Scholar] [CrossRef]
- Van Eetvelde, V.; Antrop, M. Analyzing structural and functional changes of traditional landscapes—Two examples from southern France. Landsc. Urban Plan. 2004, 67, 79–95. [Google Scholar] [CrossRef]
- Scherf, B.D.; Pilling, D. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Commission on Genetic Resources for Food and Agriculture Assessments, Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- FAO. Status and Trends of Animal Genetic Resources; Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization: Rome, Italy, 2022. [Google Scholar]
- Hall, S.J. The horse in human society. In The Domestic Horse. The Evolution, Development and Management of Its Behavior; Mills, D., McDonnell, S., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 23–32. [Google Scholar]
- UNESCO. Browse the Lists of Intangible Cultural Heritage and the Register of Good Safeguarding Practices. 2023. Available online: https://ich.unesco.org/en/lists (accessed on 26 June 2023).
Cow | Mare | Ewe | |
---|---|---|---|
Lipid fraction | |||
Fat content (%) | 3.4–5.0 G | 1.3–2.1 G | 6.3–10 G |
Triacylglycerides (% fat) | 97–98 | 80–85 | 97–98 |
Phospholipids (% fat) | 0.5–1.0 | 0.8–10 | 0.2–1.0 |
Free fatty acids (% fat) | 0.1–0.2 | 9.4–9.6 | 0.1–0.2 |
Cholesterol (mg/L) | 13–26 G | 5.0–9.8 G | 15–33 G |
Fat globule size (μm) | 2.8–4.6 | 2.0–3.0 | 3.0–3.8 |
Protein fraction | |||
Protein content (%) | 3.3–3.7 G | 2.1–3.9 G | 4.5–8.6 G |
Casein (% protein) | 71–84 | 49–53 G | 75–78 G |
α-casein (% casein) | 46–50 | 19–23 | 30–50 |
β-casein (% casein) | 33–40 | 79–93 | 42–62 |
κ-casein (% casein) | 10–12 | 1.8–2.1 | 7.5–8.9 |
Whey protein (% protein) | 16–20 | 36–44 G | 14–21 G |
α-lactalbumin (% whey protein) | 15–24 G | 36–38 G | 13–24 G |
β-lactoglobulin (% whey protein) | 64–88 G | 29–30 G | 64–87 G |
Immunoglobulins (% whey protein) | 8.0–16 G | 15–17 G | 4.5–6.6 |
Lactoferrin (% whey protein) | 2.3–2.7 G | 7.0–9.2 G | 6.4–8.2 |
Lysozime (% whey protein) | nd | 4.4–5.0 G | nd |
Micelles size (nm) | 150–182 | 255–312 | 180–210 |
Lactose (%) | 4.7–5.4 G | 6.4–6.7 G | 4.1–5.1 G |
Ash (%) | 0.6–0.8 G | 0.3–0.5 G | 0.2–0.5 G |
Calcium (mg/100 mL or g milk) | 119–134 G | 85–99 G | 55–218 G |
Potassium (mg/100 mL or g milk) | 135–151 G | 54–73 G | 104–132 G |
Phosphorous (mg/100 mL or g milk) | 86–109 G | 52–66 G | 103–133 G |
Ca/P | 1.2–1.3 | 1.5–1.7 | 1.2–1.3 |
Vitamins | |||
Fat soluble vitamins | |||
Vitamin A (μg/100 mL or g milk) | 62–285 G | 35–104 G | 72–393 G |
Vitamin E (μg/100 mL or g milk) | 81–166 G | nd-117 G | 167–318 G |
Water soluble vitamins | |||
Vitamin C (mg/100 mL or g milk) | 0.3–2.3 | 0.7–8.1 | 0.4–6.0 |
Vitamin B1 (μg/100 mL or g milk) | 28–90 | 20–52 | 28–80 |
Vitamin B2 (μg/100 mL or g milk) | 116–202 | 5.0–48 | 160–429 |
Vitamin B3 (μg/100 mL or g milk) | 50–130 | 70–140 | 300–500 |
Vitamin B5 (μg/100 mL or g milk) | 260–490 | 277–300 | 350–430 |
Vitamin B6 (μg/100 mL or g milk) | 30–70 | 8.0–61 | 27–80 |
Vitamin B9 (μg/100 mL or g milk) | 1.0–18 | 0.13 | 0.2–6.0 |
Vitamin B12 (μg/100 mL or g milk) | 0.3–0.7 | 0.3–2.0 | 0.3–0.7 |
Fatty Acid | Cow | Mare | Ewe |
---|---|---|---|
4:0 | 0.020–3.3 | 0.090–0.16 | 1.9–3.6 |
6:0 | 1.1–1.8 | 0.19–0.39 | 1.3–2.8 |
8:0 | 0.95–2.2 | 0.58–5.2 | 1.0–2.7 |
10:0 | 1.9–3.7 | 2.6–11 | 3.3–7.9 |
11:0 | 0.038–0.060 | 0.030–0.050 | 0.030–0.33 |
12:0 | 2.1–4.1 | 4.2–9.9 | 2.4–4.1 |
13:0 | 0.070–0.15 | 0.040–0.19 | 0.070–0.096 |
14:0 | 7.4–12 | 6.0–9.7 | 8.5–10 |
15:0 | 1.0–2.6 | 0.22–0.56 | 0.97–1.2 |
16:0 | 19–34 | 18–27 | 19–25 |
17:0 | 0.53–2.4 | 0.35–0.53 | 0.44–0.83 |
18:0 | 9.0–17 | 0.83–4.9 | 9.3–13 |
20:0 | 0.13–0.21 | 0.080–0.10 | 0.20–0.36 |
21:0 | 0.050–0.49 | 0.56–0.77 | 0.010–0.10 |
22:0 | 0.060–0.57 | 0.030–0.30 | 0.11–0.18 |
23:0 | 0.020–0.063 | nd | 0.064–0.092 |
24:0 | 0.040–0.18 | nd | 0.040–0.080 |
SFA | 52–69 | 43–58 | 55–74 |
10:1 | 0.24–0.27 | 1.1–1.7 | 0.15–0.25 |
9c-12:1 | nd–0.080 | 0.15–0.26 | 0.030–0.11 |
9c-14:1 | 0.71–3.4 | 0.18–0.89 | 0.14–0.32 |
9c-15:1 | 0.23–0.27 | nd–0.32 | 0.090–0.14 |
9c-16:1 | 1.0–3.1 | 3.2–7.0 | 0.79–1.3 |
9c-17:1 | 0.24–1.2 | 0.27–0.87 | 0.26–0.38 |
9c-18:1 | 17–22 | 14–22 | 18–21 |
11c-18:1 | 0.44–0.56 | 0.71–1.4 | 0.21–0.29 |
12c-18:1 | 0.23–0.25 | 0.69–0.74 | 0.37–0.46 |
t-18:1 | 1.3–6.5 | nd | 2.7–7.0 |
7c-20:1 | 0.040–1.5 | 0.25–0.44 | 0.22–0.32 |
11c-22:1 | 0.040–0.54 | nd | nd |
15c-24:1 | 0.010–0.061 | nd | nd |
MUFA | 24–39 | 18–32 | 23–31 |
NC-dienes | 0.58–1.5 | 0.030–0.14 | 0.88–1.8 |
CLA | 0.49–2.4 | 0.0010–0.14 | 1.2–2.8 |
18:2n-6 (LA) | 1.3–3.9 | 6.2–18 | 1.7–2.8 |
18:3n-6 | 0.040–0.63 | 0.15–1.3 | 0.054–0.080 |
20:2n-6 | 0.027–0.59 | 0.12–0.47 | 0.057–0.070 |
20:3n-6 | 0.010–0.11 | 0.090–0.10 | 0.030–0.16 |
20:4n-6 | 0.040–0.14 | 0.080–0.60 | 0.15–0.21 |
22:2n-6 | <0.010–0.14 | nd | 0.090–0.12 |
18:3n-3 (LNA) | 0.43–1.6 | 3.7–23 | 0.82–1.7 |
20:5n-3 (EPA) | 0.060–0.15 | nd | 0.046–0.17 |
22:5n-3 (DPA) | 0.050–0.10 | 0.080–0.12 | 0.11–0.23 |
22:6n-3 (DHA) | <0.010–0.010 | nd | 0.020–0.11 |
PUFA | 2.8–7.2 | 18–31 | 2.6–7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco-Doval, A.; Barron, L.J.R.; Aldai, N. Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management. Foods 2024, 13, 1412. https://doi.org/10.3390/foods13091412
Blanco-Doval A, Barron LJR, Aldai N. Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management. Foods. 2024; 13(9):1412. https://doi.org/10.3390/foods13091412
Chicago/Turabian StyleBlanco-Doval, Ana, Luis Javier R. Barron, and Noelia Aldai. 2024. "Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management" Foods 13, no. 9: 1412. https://doi.org/10.3390/foods13091412
APA StyleBlanco-Doval, A., Barron, L. J. R., & Aldai, N. (2024). Nutritional Quality and Socio-Ecological Benefits of Mare Milk Produced under Grazing Management. Foods, 13(9), 1412. https://doi.org/10.3390/foods13091412