Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Extracts
2.3. DPPH Radical Scavenging Activity Analysis
2.4. Total Phenolic Content Analysis
2.5. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
2.7. Isotope Ratio Mass Spectrometry (IRMS)
2.8. Statistical Data Processing
3. Results and Discussion
3.1. Paprika
3.1.1. Antioxidant Activity (AA) and Total Phenolic Compound (TPC) Content
3.1.2. Correlation Between Antioxidant Activity and Total Phenolic Content
3.1.3. FTIR Results
3.1.4. Multi-Elemental Composition
3.1.5. Stable Isotope Composition of Light Elements
3.1.6. Differentiating Samples According to the Country of Origin
3.1.7. Differentiating Samples According to the Agricultural Production Practice
3.2. Cinnamon
3.2.1. Antioxidant Activity (AA) and Total Phenolic Compound (TPC) Content
3.2.2. Correlation Between Antioxidant Activity and Total Phenolic Content
3.2.3. FTIR Results
3.2.4. Ceylon Cinnamon vs. Cassia
3.2.5. Organic vs. Non-Organic Cassia
3.2.6. Organic vs. Non-Organic Ceylon Cinnamon
3.2.7. Multi-Elemental Composition
3.2.8. Stable Isotope Composition of Light Elements
3.2.9. Differentiating Samples According to the Country of Origin
3.2.10. Differentiating Samples According to the Agricultural Production Practice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Antioxidant Activity |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
TPC | Total Phenolic Content |
FTIR | Fourier-Transform Infrared Spectroscopy |
IRMS | Isotope Ratio Mass Spectrometry |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
PCA | Principal Component Analysis |
OPLS-DA | Orthogonal Partial Least Squares Discriminant Analysis |
DA | Discriminant Analysis |
ED-XRF | Energy-Dispersive X-ray Fluorescence |
EU | European Union |
SIMCA | Soft Independent Modeling by Class Analogy |
References
- European Commission. Results of the First Coordinated Control Plan on the Authenticity of Herbs and Spices. 2021. Available online: https://ec.europa.eu/newsroom/sante/items/727969/en (accessed on 15 December 2024).
- Danciu, V.; Hosu, A.; Cimpoiu, C. Thin-Layer Chromatography in Spices Analysis. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 282–300. [Google Scholar] [CrossRef]
- Pustjens, A.M.; Weesepoel, Y.; Ruth, S.M. Food Fraud and Authenticity: Emerging Issues and Future Trends. In Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies; Leadley, C.E., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 3–20. [Google Scholar] [CrossRef]
- Embuscado, M.E. Bioactives from culinary spices and herbs: A review. J. Food Bioact. 2019, 6, 68–99. [Google Scholar] [CrossRef]
- Kim, E.A.; Lee, S.Y.; Baek, D.Y.; Park, S.-Y. A Comparison of the Nutrient Composition and Statistical Profile in Red Pepper Fruits (Capsicum annuum L.) Based on Genetic and Environmental Factors. Appl. Biol. Chem. 2019, 62, 48. [Google Scholar] [CrossRef]
- Vinković, T.; Gluščić, V.; Mendaš, G.; Vinković Vrček, I.; Parađiković, N.; Tkalec, M.; Štolfa Čamagajevac, I. Phytochemical Composition of Ground Paprika from the Eastern Danube Region. Poljoprivreda 2018, 24, 3–12. [Google Scholar] [CrossRef]
- Huang, H.; Chen, R.; Ma, H.; Yuan, Z. Quality Attributes and Chemical Composition of Commercial Cinnamon Oils. Qual. Assur. Saf. Crops Foods 2018, 11, 89–94. [Google Scholar] [CrossRef]
- Velázquez, R.; Rodríguez, A.; Hernández, A.; Casquete, R.; Benito, M.J.; Martín, A. Spice and herb frauds: Types, incidence, and detection: The state of the art. Foods 2023, 12, 3373. [Google Scholar] [CrossRef]
- Vera, D.N.; Ruisánchez, I.; Callao, M.P. Establishing Time Stability for Multivariate Qualitative Methods. Case Study: Sudan I and IV Adulteration in Food Spices. Food Control 2018, 92, 341–347. [Google Scholar] [CrossRef]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. The detection of substitution adulteration of paprika with spent paprika by the application of molecular spectroscopy tools. Foods 2020, 9, 944. [Google Scholar] [CrossRef]
- Blahová, J.; Svobodová, Z. Assessment of Coumarin Levels in Ground Cinnamon Available in the Czech Retail Market. Sci. World J. 2012, 2012, 263851. [Google Scholar] [CrossRef]
- National Center for Complementary and Integrative Health (NCCIH). Cinnamon: Usefulness and Safety. 2024. Available online: https://www.nccih.nih.gov/health/cinnamon (accessed on 10 June 2025).
- Feltes, G.; Ballen, S.C.; Steffens, J.; Paroul, N.; Steffens, C. Differentiating True and False Cinnamon: Exploring Multiple Approaches for Discrimination. Micromachines 2023, 14, 1819. [Google Scholar] [CrossRef]
- Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M.; Pascoa, R.N.M.J. Authentication/Discrimination, Identification, and Quantification of Cinnamon Adulterants Using NIR Spectroscopy and Different Chemometric Tools: A Tutorial to Deal with Counterfeit Samples. Food Control 2023, 147, 109619. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Ground Cinnamon Products Added to FDA Public Health Alert Due to Presence of Elevated Levels of Lead. 2024. Available online: https://www.fda.gov/food/alerts-advisories-safety-information/more-ground-cinnamon-products-added-fda-public-health-alert-due-presence-elevated-levels-lead (accessed on 10 June 2025).
- U.S. Food and Drug Administration (FDA). FDA Public Health Alert for Additional Ground Cinnamon Product Due to Presence of Elevated Levels of Lead. 2024. Available online: https://www.fda.gov/food/alerts-advisories-safety-information/fda-alert-concerning-certain-cinnamon-products-due-presence-elevated-levels-lead (accessed on 10 June 2025).
- NPR. Lead in Cinnamon: Where Do Things Stand, 1 Year After a Scary Recall? 2024. Available online: https://www.npr.org/2024/10/24/nx-s1-5119336/cinnamon-lead-fda-recall-what-we-know (accessed on 10 June 2025).
- Everstine, K.; Spink, J.; Kennedy, S. Economically Motivated Adulteration (EMA) of Food: Common Characteristics of EMA Incidents. J. Food Prot. 2013, 76, 723–735. [Google Scholar] [CrossRef]
- Castell, A.; Arroyo-Manzanares, N.; López-García, I.; Zapata, F.; Viñas, P. Authentication strategy for paprika analysis according to geographical origin and study of adulteration using near infrared spectroscopy and chemometric approaches. Food Control 2024, 161, 110397. [Google Scholar] [CrossRef]
- Chao, K.; Dhakal, S.; Schmidt, W.F.; Qin, J.; Kim, M.; Peng, Y.; Huang, Q. Raman and IR spectroscopic modality for authentication of turmeric powder. Food Chem. 2020, 320, 126567. [Google Scholar] [CrossRef] [PubMed]
- Núñez, N.; Vidal-Casanella, O.; Sentellas, S.; Saurina, J.; Núñez, O. Characterization, classification and authentication of turmeric and curry samples by targeted LC-HRMS polyphenolic and curcuminoid profiling and chemometrics. Molecules 2020, 25, 2942. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; de Franca, R.L.; Tumbajulca, M.; Barraza-Jauregui, G.; Barbin, D.F.; Siche, R. Detection of cumin powder adulteration with allergenic nutshells using FT-IR and portable NIRS coupled with chemometrics. J. Food Compos. Anal. 2023, 116, 105044. [Google Scholar] [CrossRef]
- Rocamora-Rivera, B.; Arroyo-Manzanares, N.; Viñas, P. Detection of adulterated oregano samples using untargeted headspace–gas chromatography–ion mobility spectrometry analysis. Foods 2024, 13, 516. [Google Scholar] [CrossRef]
- Schendel, R.R.; Pandeya, P.R. Determination of Total Phenolics and Antioxidant Capacity in Food and Ingredients. In Nielsen’s Food Analysis, 6th ed.; Ismail, B.P., Nielsen, S.S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 419–429. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Zhao, T.; Nakano, A. Agricultural Product Authenticity and Geographical Origin Traceability. Jpn. Agric. Res. Q. 2018, 52, 115–122. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef]
- Krauß, S.; Vetter, W. Stable Carbon and Nitrogen Isotope Ratios of Red Bell Pepper Samples from Germany, The Netherlands, and Spain. J. Agric. Food Chem. 2019, 67, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- De Rijke, E.; Schoorl, J.C.; Cerli, C.; Vonhof, H.B.; Verdegaal, S.J.A.; Vivó-Truyols, G.; Lopatka, M.; Dekter, R.; Bakker, D.; Sjerps, M.J.; et al. The use of δ2H and δ18O isotopic analyses combined with chemometrics as a traceability tool for the geographical origin of bell peppers. Food Chem. 2016, 204, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Brunner, M.; Katona, R.; Stefanka, Z. Determination of the geographical origin of processed spice using multielement and isotopic patterns on the example of Szegedi paprika. Eur. Food Res. Technol. 2010, 231, 623–634. [Google Scholar] [CrossRef]
- Rohman, A.; Ghazali, M.A.B.; Windarsih, A.; Irnawati; Riyanto, S.; Yusof, F.M. Comprehensive Review on Application of FTIR Spectroscopy Coupled with Chemometrics for Authentication Analysis of Fats and Oils in Food Products. Molecules 2020, 25, 5485. [Google Scholar] [CrossRef]
- Lixourgioti, P.; Goggin, K.A.; Zhao, X.; Murphy, D.J.; van Ruth, S.; Koidis, A. Authentication of Cinnamon Spice Samples Using FT-IR Spectroscopy and Chemometric Classification. LWT 2022, 154, 112760. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensm. Wiss. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in Olive Oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, S.; Cho, B.K. Optimal Variable Selection for Fourier Transform Infrared Spectroscopic Analysis of Starch-Adulterated Garlic Powder. Sens. Actuators B Chem. 2015, 216, 622–628. [Google Scholar] [CrossRef]
- Potočnik, D.; Jagodic Hudobivnik, M.; Mazej, D.; Ogrinc, N. Optimization of the sample preparation method for determination of multi-elemental composition in fruit samples by ICP-MS analysis. Meas. Sens. 2021, 18, 100292. [Google Scholar] [CrossRef]
- Mudrić, S.; Gašić, U.M.; Dramićanin, A.M.; Ćirić, I.Ž.; Milojković-Opsenica, D.M.; Popović-Đorđević, J.B.; Momirović, N.M.; Tešić, Ž.L. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Tvrzník, P.; Jeřábek, T.; Kráčmar, S.; Fišera, M. Changes in Phenolic Content in Ground Red Pepper (Capsicum annuum L.) during Storage. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 345–348. [Google Scholar] [CrossRef]
- Medina-Juárez, L.Á.; Molina-Quijada, D.M.A.; Del Toro Sánchez, C.L.; González-Aguilar, G.A.; Gámez-Meza, N. Antioxidant Activity of Peppers (Capsicum annuum L.) Extracts and Characterization of Their Phenolic Constituents. Interciencia 2012, 37, 588–593. [Google Scholar]
- Rudan Tasič, D.; Klofutar, C.; Škerjanc, J.; Šmalc, A.; Golob, T. Fizikalnokemijske Metode v Živilstvu [Physicochemical Methods in Food Science]; Biotehniška Fakulteta, Oddelek za Živilstvo: Ljubljana, Slovenia, 2007. [Google Scholar]
- Dominguez-Martinez, I.; Meza-Marquez, O.; Osorio-Revilla, G.; Proal-Najera, J.; Gallardo-Velázquez, T. Determination of Capsaicin, Ascorbic Acid, Total Phenolic Compounds and Antioxidant Activity of Capsicum annuum L. var. Serrano by Mid-Infrared Spectroscopy (Mid-FTIR) and Chemometric Analysis. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 133–142. [Google Scholar] [CrossRef]
- Lv, J.; Huang, H.; Yu, L.; Whent, M.; Niu, Y.; Shi, H.; Wang, T.Y.; Luthria, D.; Charles, D.; Yu, L.L. Phenolic composition and nutraceutical properties of organic and conventional cinnamon and peppermint. Food Chem. 2012, 132, 1442–1450. [Google Scholar] [CrossRef]
- Horn, B.; Esslinger, S.; Pfister, M.; Fauhl-Hassek, C.; Riedl, J. Non-Targeted Detection of Paprika Adulteration Using Mid-Infrared Spectroscopy and One-Class Classification. Food Chem. 2018, 257, 112–119. [Google Scholar] [CrossRef]
- Galvin-King, P.; Haughey, S.A.; Elliott, C.T. Herb and Spice Fraud: The Drivers, Challenges, and Detection. Food Control 2017, 88, 85–97. [Google Scholar] [CrossRef]
- Palacios-Morillo, A.; Jurado, J.M.; Alcazar, A.; Pablos, F. Geographical Characterization of Spanish PDO Paprika by Multivariate Analysis of Multielemental Content. Talanta 2014, 128, 15–22. [Google Scholar] [CrossRef]
- Garcia, E.; Cabrera, C.; Lorenz, M.L.; Lopez, M.C. Chromium Levels in Spices and Aromatic Herbs. Sci. Total Environ. 2000, 247, 51–56. [Google Scholar] [CrossRef]
- Lopez, F.F.; Cabrera, C.; Lorenzo, M.L.; Lopez, M.C. Aluminum Levels in Spices and Aromatic Herbs. Sci. Total Environ. 2000, 257, 191–197. [Google Scholar] [CrossRef]
- Ördög, A.; Poor, P.; Štajner, D.I.; Popović, B.M.; Batori, Z.; Tari, I. Comparison of the Mineral Content of Processed Spice Samples of Sweet and Hot Paprika from the Szeged Region. J. Elementol. 2018, 23, 521–530. [Google Scholar] [CrossRef]
- Mahne Opatić, A.M.; Nečemer, M.; Lojen, S.; Vidrih, R. Stable Isotope Ratio and Elemental Composition Parameters in Combination with Discriminant Analysis Classification Model to Assign Country of Origin to Commercial Vegetables—A Preliminary Study. Food Control 2017, 80, 252–258. [Google Scholar] [CrossRef]
- Fiamegos, Y.; Dumitrascu, C.; Papoci, S.; de la Calle, M.B. Authentication of PDO Paprika Powder (Pimentón de la Vera) by Multivariate Analysis of the Elemental Fingerprint Determined by ED-XRF—A Feasibility Study. Food Control 2021, 120, 107496. [Google Scholar] [CrossRef] [PubMed]
- Fiamegos, Y.; Papoci, S.; Dumitrascu, C.; Ghidotti, M.; Zdiniakova, T.; Ulberth, F.; de la Calle Guntiñas, M.B. Are the Elemental Fingerprints of Organic and Conventional Food Different? ED-XRF as Screening Technique. J. Food Compos. Anal. 2021, 99, 103854. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.L.; Rossmann, A.; Voerkelius, S.; Schnitzler, W.H.; Georgi, M.; Grassmann, J.; Zimmermann, G.; Winkler, R. Isotope Characteristics of Vegetables and Wheat from Conventional and Organic Production. Isot. Environ. Health Stud. 2005, 41, 223–228. [Google Scholar] [CrossRef]
- Flores, P.; Fenoll, J.; Hellín, P. The Feasibility of Using δ15N and δ13c Values for Discriminating between Conventionally and Organically Fertilized Pepper (Capsicum annuum L.). J. Agric. Food Chem. 2007, 55, 5740–5745. [Google Scholar] [CrossRef]
- Perez-Lopez, A.J.; Lopez-Nicolas, J.M.; Nuñez-Delicado, E.; Amor, F.M.; Carbonell-Barrachina, A.A. Effects of Agricultural Practices on Color, Carotenoid Composition, and Mineral Contents of Sweet Peppers, cv. Almuden. J. Agric. Food Chem. 2007, 55, 8158–8164. [Google Scholar] [CrossRef]
- Santos Lopes, J.; Sales de Lima, A.B.; Ribeiro da Cruz Cangussu, R.; Viana da Silva, M.; Passini Barbosa Ferrão, S.; Soares Santos, L. Application of Spectroscopic Techniques and Chemometric Methods to Differentiate Between True Cinnamon and False Cinnamon. Food Chem. 2022, 368, 130746. [Google Scholar] [CrossRef]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and Evaluation of Essential Oil Components of Cinnamon Barks Using GC–MS and FTIR Spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Yasmin, J.; Ahmed, M.R.; Lohumi, S.; Wakholi, C.; Lee, H.; Mo, C.; Cho, B.K. Rapid Authentication Measurement of Cinnamon Powder Using FT-NIR and FT-IR Spectroscopic Techniques. Qual. Assur. Saf. Crops Foods 2019, 11, 257–267. [Google Scholar] [CrossRef]
- Silva Bruni, A.R.; Oliveira, V.M.A.T.; Fernandez, A.S.T.; Sakai, O.A.; Marco, P.H.; Valderrama, P. Attenuated Total Reflectance Fourier Transform (ATR-FTIR) Spectroscopy and Chemometrics for Organic Cinnamon Evaluation. Food Chem. 2021, 365, 130466. [Google Scholar] [CrossRef]
- Shumaila, G.; Safdar, M. Proximate Composition and Mineral Analysis of Cinnamon. Pak. J. Nutr. 2009, 8, 1456–1460. [Google Scholar] [CrossRef]
- Özcan, M.M.; Akbulut, M. Estimation of Minerals, Nitrate, and Nitrite Contents of Medicinal and Aromatic Plants Used as Spices, Condiments, and Herbal Tea. Food Chem. 2007, 106, 852–858. [Google Scholar] [CrossRef]
- Goncalves, L.L.; Fernandes, T.; Bernardo, M.A.; Brito, J.A. Assessment of Human Health Risk of Toxic Elements Due to Cinnamon Ingestion in the Diet. Biol. Trace Elem. Res. 2018, 189, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Krejpcio, Z.; Krol, E.; Sionkowski, S. Evaluation of Heavy Metal Contents in Spices and Herbs Available on the Polish Market. Pol. J. Environ. Stud. 2006, 16, 97–100. [Google Scholar]
- Singh, V.; Garg, A.N. Availability of Essential Trace Elements in Indian Cereals, Vegetables, and Spices Using INAA and the Contribution of Spices to Daily Dietary Intake. Food Chem. 2006, 94, 81–89. [Google Scholar] [CrossRef]
- Tokalioglu, S. Determination of Trace Elements in Commonly Consumed Medicinal Herbs by ICP-MS and Multivariate Analysis. Food Chem. 2012, 134, 2504–2508. [Google Scholar] [CrossRef]
- Primožič, S. Determining the Authenticity of Cinnamon (Cinnamomum spp.) and Ground Pepper (Capsicum annuum) on the Slovenian Market. Master’s Thesis, University of Ljubljana, Ljubljana, Slovenia, 2024. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=154465 (accessed on 19 April 2025).
- Sewenig, S.; Hener, U.; Mosandl, A. Online Determination of 2H/1H and 13C/12C Isotope Ratios of Cinnamaldehyde from Different Sources Using Gas Chromatography Isotope Ratio Mass Spectrometry. Eur. Food Res. Technol. 2003, 217, 444–448. [Google Scholar] [CrossRef]
- Sinkovič, L.; Nečemer, M.; Ogrinc, N.; Žnidarčič, D.; Stopar, D.; Vidrih, R.; Meglič, V. Parameters for Discrimination between Organic and Conventional Production: A Case Study for Chicory Plants (Cichorium intybus L.). Food Chem. Toxicol. 2020, 136, 111109. [Google Scholar] [CrossRef]
Elements | Paprika (mg/kg) |
---|---|
Macroelements | |
Na | 98.2–1540 |
Mg | 1670–3310 |
P | 2580–4720 |
S | 1840–2780 |
K | 17,400–34,300 |
Ca | 854–3580 |
Microelements | |
V | 0.03–1.18 |
Cr | 0.16–5.74 |
Mn | 8.88–40.2 |
Fe | 66.2–607 |
Co | 0.05–1.18 |
Ni | 0.13–3.84 |
Cu | 7.71–13.8 |
Zn | 13.6–32.5 |
Al | 17.7–629 |
Se | 0.006–0.17 |
Rb | 5.59–41.1 |
Sr | 3.87–33.4 |
Mo | 0.07–1.97 |
Ag | 0.001–0.09 |
Cs | 0.01–0.20 |
Ba | 0.62–7.88 |
Toxic elements | |
Hg | 0.0004–0.0032 |
Pb | 0.01–0.54 |
As | 0.02–0.18 |
Cd | 0.028–0.318 |
Elements | Cinnamon (mg/kg) |
---|---|
Macroelements | |
Na | 6–1760 |
Mg | 517–1440 |
P | 327–1200 |
S | 638–3400 |
K | 4420–15,500 |
Ca | 6520–35,600 |
Microelements | |
V | 0.03–3.31 |
Cr | 0.05–4.68 |
Mn | 21.3–598 |
Fe | 15.4–1680 |
Co | 0.02–0.81 |
Ni | 0.08–6.45 |
Cu | 2.12–12.3 |
Zn | 5.42–27.1 |
Al | 23.2–2390 |
Se | 0.003–0.14 |
Rb | 7.62–39.2 |
Sr | 32.3–256 |
Mo | 0.01–0.27 |
Ag | 0.001–0.02 |
Cs | 0.03–0.89 |
Ba | 22.5–152 |
Toxic elements | |
Hg | 0.002–0.062 |
Pb | 0.021–4.01 |
As | 0.01–0.25 |
Cd | 0.05–0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Primožič, S.; Terro, C.; Strojnik, L.; Šegatin, N.; Poklar Ulrih, N.; Ogrinc, N. Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach. Foods 2025, 14, 2323. https://doi.org/10.3390/foods14132323
Primožič S, Terro C, Strojnik L, Šegatin N, Poklar Ulrih N, Ogrinc N. Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach. Foods. 2025; 14(13):2323. https://doi.org/10.3390/foods14132323
Chicago/Turabian StylePrimožič, Sabina, Cathrine Terro, Lidija Strojnik, Nataša Šegatin, Nataša Poklar Ulrih, and Nives Ogrinc. 2025. "Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach" Foods 14, no. 13: 2323. https://doi.org/10.3390/foods14132323
APA StylePrimožič, S., Terro, C., Strojnik, L., Šegatin, N., Poklar Ulrih, N., & Ogrinc, N. (2025). Assessing the Authenticity and Quality of Paprika (Capsicum annuum) and Cinnamon (Cinnamomum spp.) in the Slovenian Market: A Multi-Analytical and Chemometric Approach. Foods, 14(13), 2323. https://doi.org/10.3390/foods14132323