The Effect of the Level of Goat Liver Addition to Goat Minced Meat on the Near-Infrared Spectra, Colour, and Shelf Life of Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Experimental Design
2.2. CIELab Parameters and pH Measurements
2.3. NIR Spectra Collection
2.4. Data Analysis
3. Results and Discussion
3.1. Changes in CIELAB Parameters and pH Due to Liver Addition and Storage
3.2. Changes in the NIR Spectra Due to the Level of Liver and Days of Storage
3.3. PLS Cross-Validation Models for the Measurement of CIELab Parameters
3.4. PLS Cross-Validation Models for the Prediction of the Addition of Liver and Days of Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nechepurenko, K.; Zolotukhina, O.; Horbenko, G.; Starostenko, B.; Panikarova, I.; Karpova, T. Overview of the market of minced meat products and ways to improve the technology of semi-finished products of a high degree of readiness. ScienceRise 2021, 2, 93–100. [Google Scholar] [CrossRef]
- Mehmood, L.; Mujahid, S.A.; Asghar, S.; Rahman, H.U.U.; Khalid, N. Formulation and quality evaluation of chicken nuggets supplemented with beef and chicken livers. Food Sci. Anim. Resour. 2024, 44, 620–634. [Google Scholar] [CrossRef] [PubMed]
- Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci. 2016, 120, 54–59. [Google Scholar] [CrossRef]
- Saguer, E.; Abril, B.; Pateiro, M. Strategies for porcine liver valorization as a source of food ingredients. Curr. Food Sci. Tech. Rep. 2024, 2, 241–253. [Google Scholar] [CrossRef]
- Grundy, H.H.; Brown, L.C.; Romero, M.R.; Donarski, J.A. Review: Methods to determine offal adulteration in meat products to support enforcement and food security. Food Chem. 2023, 399, 133818. [Google Scholar] [CrossRef] [PubMed]
- Alao, B.; Falowo, A.; Chulayo, A.; Muchenje, V. The potential of animal by-products in food systems: Production, prospects and challenges. Sustainability 2017, 9, 1089. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and goat meat processed products quality: A review. Foods 2020, 9, 960. [Google Scholar] [CrossRef]
- Kakimov, A.; Suychinov, A.; Tsoy, A.; Mustambayev, N.; Ibragimov, N.; Kuderinova, N.; Mirasheva, G.; Yessimbekov, Z. Nutritive and biological value of liver and blood of various slaughtered animals. J. Pharm. Res. Int. 2018, 22, 1–5. [Google Scholar] [CrossRef]
- Duizer, L.M.; Diana, A.; Rathomi, H.S.; Luftimas, D.E.; Rahmannia, S.; Santi, W.; Nugraha, G.I.; Haszard, J.J.; Gibson, R.S.; Houghton, L.A. An acceptability trial of desiccated beef liver and meat powder as potential fortifiers of complementary diets of young children in Indonesia. J. Food Sci. 2017, 82, 2206–2212. [Google Scholar] [CrossRef]
- Dalmás, P.S.; Bezerra, T.K.A.; Morgano, M.A.; Milani, R.F.; Madruga, M.S. Development of goat patê prepared with ‘variety meat’. Small Rum. Res. 2011, 98, 46–50. [Google Scholar] [CrossRef]
- Estévez, M.; Cava, R. Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pâté. Meat Sci. 2004, 68, 551–558. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, M.G. The stability and shelf life of meat and poultry. Food Beverage Stab. Shelf Life 2011, 11, 793–816. [Google Scholar]
- Horng, D.E.; Hernando, D.; Reeder, S.B. Quantification of liver fat in the presence of iron overload. J. Magn. Reson. Imaging 2016, 45, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Shackell, G.H. Traceability in the meat industry—The farm to plate continuum. Int. J. Food Sci. Technol. 2008, 43, 2134–2142. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, L.; Huang, X.; Lu, X. Detection and quantification of offal content in ground beef meat using vibrational spectroscopic-based chemometric analysis. Sci. Rep. 2017, 7, 15162. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, W. Application of near-infrared spectroscopy for assessing meat quality and safety. Infrared spectroscopy—Anharmonicity of biomolecules, crosslinking of biopolymers. Food Qual. Med. Appl. 2015, 23, 142–143. [Google Scholar]
- Prieto, N.; Roehe, R.; Lavin, P.; Batten, G.; Andres, S. Application of near infrared reflectance spectroscopy to predict meat and meat products quality: A review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef]
- Prieto, N.; Pawluczyk, O.; Edward, M.; Dugan, R.; Aalhus, J.L. A review of the principles and applications of near-infrared spectroscopy to characterize meat, fat, and meat products. Appl. Spectrosc. 2017, 7, 1406–1426. [Google Scholar] [CrossRef]
- Primrose, S.; Woolfe, M.; Rollinson, S. Food forensics: Methods for determining the authenticity of foodstuffs. Trends Food Sci. Technol. 2010, 21, 582–590. [Google Scholar] [CrossRef]
- Alamprese, C.; Amigo, J.M.; Casiraghi, E.; Engelsen, S.B. Identification and quantification of turkey meat adulteration in fresh, frozen-thawed and cooked minced beef by FT-NIR spectroscopy and chemometrics. Meat Sci. 2016, 121, 175–181. [Google Scholar] [CrossRef]
- Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of minced beef adulteration with turkey meat by UV–vis, NIR and MIR spectroscopy. LWT-Food Sci. Technol. 2013, 53, 225–232. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, H.; Zhang, B.; Zhang, J.; Wu, H.; Zhao, S.; Qie, M.; Guo, J.; Wang, Q.; Zhao, Y. Research progress on traceability and authenticity of beef. Food Rev. Int. 2021, 39, 1645–1665. [Google Scholar] [CrossRef]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Challenges in model development for meat composition using multipoint NIR spectroscopy from at-line to in-line monitoring: Multipoint NIR spectroscopy. J. Food Sci. 2017, 82, 1557–1562. [Google Scholar] [CrossRef]
- Edwards, K.; Manley, M.; Hoffman, L.C.; Williams, P.J. Non-destructive spectroscopic and imaging techniques for the detection of processed meat fraud. Foods 2021, 10, 448. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; van Ruth, S.; Scollan, N.; Koidis, A. Hyperspectral Imaging (HSI) for meat quality evaluation across the supply chain: Current and future trends. Curr. Res. Food Sci. 2022, 5, 1017–1027. [Google Scholar] [CrossRef]
- Kademi, H.I.; Ulusoy, B.H.; Hecer, C. Applications of miniaturized and portable near infrared spectroscopy (NIRS) for inspection and control of meat and meat products. Food Rev. Int. 2019, 35, 201–220. [Google Scholar] [CrossRef]
- Zhao, M.; O’Donnell, C.P.; Downey, G. Detection of offal adulteration in beefburgers using near infrared reflectance spectroscopy and multivariate modelling. J. Near Infrared Spectrosc. 2013, 21, 237–248. [Google Scholar] [CrossRef]
- Jiang, H.; Ru, Y.; Chen, Q.; Wang, J.; Xu, L. Near-infrared hyperspectral imaging for detection and visualization of offal adulteration in ground pork. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119307. [Google Scholar] [CrossRef]
- Dieters, L.S.E.; Meale, S.J.; Quigley, S.P.; Hoffman, L.C. Meat quality characteristics of lot-fed Australian Rangeland goats are unaffected by live weight at slaughter. Meat Sci. 2021, 175, 108437. [Google Scholar] [CrossRef]
- Saviztky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar]
- Bureau, S.; Cozzolino, D.; Clark, C.J. Contributions of Fourier-transform mid infrared (FT-MIR) spectroscopy to the study of fruit and vegetables: A review. Postharvest Biol. Technol. 2019, 148, 1–14. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be include in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137–148. [Google Scholar] [CrossRef]
- Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Baca-Bocanegra, B.; Pérez-Marin, D.; Heredia, F.J.; Garrido-Varo, A.; Hernández-Hierro, J.M. Reduction of the number of samples for cost-effective hyperspectral grape quality predictive models. Foods 2021, 10, 233. [Google Scholar] [CrossRef]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Ingle, P.; Khole, A.H.; Zhang, S.; Yang, Z.; Beya, M.; Bureš, D.; Cozzolino, D. Characterisation and identification of individual intact goat muscle samples (Capra sp.) using a portable near-infrared spectrometer and chemometrics. Foods 2022, 11, 2894. [Google Scholar] [CrossRef]
- Workman, J.; Weyer, L. Practical Guide to Interpretive Near-Infrared Spectroscopy; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2008. [Google Scholar]
- Fernández-Barroso, M.A.; Parrini, S.; Muñoz, M.; Palma-Granados, P.; Matos, G.; Ramírez, L.; Crovetti, A.; García-Casco, J.M.; Bozzi, R. Use of NIRS for the assessment of meat quality traits in open-air free-range Iberian pigs. J. Food Comp. Anal. 2021, 102, 104018. [Google Scholar] [CrossRef]
- Balage, J.M.; Luz e Silva, S.; Gomide, C.A.; Bonin, M.N.; Figueira, A.C. Predicting pork quality using Vis/NIR spectroscopy. Meat Sci. 2015, 108, 37–43. [Google Scholar] [CrossRef]
- Liu, Y.; Lyon, B.G.; Windham, W.R.; Lyon, C.E.; Savage, E.M. Prediction of physical, color, and sensory characteristics of broiler breasts by visible/near infrared reflectance spectroscopy. Poult. Sci. 2004, 83, 1467–1474. [Google Scholar] [CrossRef]
- Xing, J.; Ngadi, M.; Gunenc, A.; Prasher, S.; Gariepy, C. Use of visible spectroscopy for quality classification of intact pork meat. J. Food Eng. 2007, 82, 135–141. [Google Scholar] [CrossRef]
- Horváth, K.; Seregély, Z.; Andrássy, É.; Dalmadi, I.; Farkas, J. A preliminary study using near infrared spectroscopy to evaluate freshness and detect spoilage in sliced pork meat. Acta Aliment. 2008, 37, 93–102. [Google Scholar] [CrossRef]
- Kucha, C.T.; Ngadi, M.O. Rapid assessment of pork freshness using miniaturized NIR spectroscopy. J. Food Meas. Charact. 2020, 14, 1105–1115. [Google Scholar] [CrossRef]
- Li, Q.; Wu, X.; Zheng, J.; Wu, B.; Jian, H.; Sun, C.; Tang, Y. Determination of pork meat storage time using near-infrared spectroscopy combined with fuzzy clustering algorithms. Foods 2022, 11, 2101. [Google Scholar] [CrossRef] [PubMed]
- Prado, N.; Fernández-Ibáñez, V.; González, P.; Soldado, A. On-Site NIR spectroscopy to control the shelf life of pork meat. Food Anal. Methods 2011, 4, 582–589. [Google Scholar] [CrossRef]
- Cozzolino, D.; Wu, W.; Zhang, S.; Beya, M.; van Jaarsveld, P.; Hoffman, L.C. The ability of a portable near infrared instrument to evaluate the shelf-life of fresh and thawed goat muscles. Food Res. Int. 2024, 180, 114047. [Google Scholar] [CrossRef]
- Li, Y.-C.; Liu, S.-Y.; Meng, F.-B.; Liu, D.-Y.; Zhang, Y.; Wang, W.; Zhang, J.-M. Comparative review and the recent progress ins detection technologies of meat product adulteration. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2256–2296. [Google Scholar] [CrossRef] [PubMed]
- Fengou, L.C.; Lianou, A.; Tsakanikas, P.; Mohareb, F.; Nychas, G.E. Detection of meat adulteration using spectroscopy-based sensors. Foods 2021, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Dixit, Y.; Casado-Gavalda, M.P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P.J.; Sullivan, C. Developments and challenges in online NIR spectroscopy for meat processing. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1172–1187. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rum. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Archana, A.; Warner Robyn, D.; Dunshea Frank, R.; Leury Brian, J.; Ha Minh Chauhan Surinder, S. A review of some aspects of goat meat quality: Future research recommendations. Anim. Prod. Sci. 2023, 63, 1361–1375. [Google Scholar]
Treatment | Goat Meat % | Liver % | Goat Meat (g) | Liver (g) |
---|---|---|---|---|
T0 | 100 | 0 | 1000 | 0 |
T2 | 98 | 2 | 980 | 20 |
T4 | 96 | 4 | 960 | 40 |
T6 | 94 | 6 | 940 | 60 |
T8 | 92 | 8 | 920 | 80 |
Parameter | Days of Storage | % Addition of Goat Liver to Goat Minced Meat | ||||
---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | 8 | ||
pH | Day 0 | 6.26 ± 0.01 | 6.26 ± 0.01 | 6.29 ± 0.01 | 6.28 ± 0.01 | 6.28 ± 0.01 |
Day 2 | 6.27 ± 0.01 | 6.28 ± 0.01 | 6.30 ± 0.01 | 6.30 ± 0.01 | 6.30 ± 0.01 | |
Day 4 | 6.28 ± 0.01 | 6.27 ± 0.01 | 6.29 ± 0.01 | 6.30 ± 0.01 | 6.30 ± 0.01 | |
Day 6 | 6.26 ± 0.01 | 6.28 ± 0.01 | 6.29 ± 0.01 | 6.28 ± 0.01 | 6.28 ± 0.01 | |
Day 8 | 6.26 ± 0.01 | 6.28 ± 0.01 | 6.29 ± 0.01 | 6.29 ± 0.01 | 6.29 ± 0.01 | |
L* | Day 0 | 49.7 ± 4.2 | 49.7 ± 3.2 | 49.2 ± 3.3 | 47.8 ± 3.1 | 48.1 ± 3.5 |
Day 2 | 49.7 ± 4.2 | 49.5 ± 3.5 | 49.2 ± 3.6 | 47.7 ± 3.0 | 48.0 ± 3.6 | |
Day 4 | 49.5 ± 4.4 | 49.6 ± 3.5 | 49.1 ± 3.8 | 47.6 ± 2.9 | 47.9 ± 3.5 | |
Day 6 | 49.3 ± 4.3 | 49.7 ± 3.5 | 49.1 ± 3.7 | 47.4 ± 3.0 | 47.8 ± 3.5 | |
Day 8 | 49.2 ± 4.4 | 49.7 ± 3.5 | 48.9 ± 3.7 | 47.4 ± 3.0 | 47.8 ± 3.6 | |
a* | Day 0 | 12.0 ± 2.2 | 12.0 ± 2.2 | 12.3 ± 2.2 | 12.2 ± 2.2 | 12.1 ± 2.2 |
Day 2 | 14.8 ± 2.2 | 14.8 ± 1.8 | 14.8 ± 1.8 | 14.8 ± 1.8 | 14.8 ± 1.8 | |
Day 4 | 12.9 ± 2.1 | 12.9 ± 2.2 | 13.1 ± 2.2 | 13.1 ± 2.1 | 13.2 ± 2.2 | |
Day 6 | 12.5 ± 1.8 | 12.4 ± 1.8 | 12.6 ± 1.8 | 12.8 ± 1.8 | 12.7 ± 1.8 | |
Day 8 | 11.5 ± 1.8 | 11.5 ± 1.8 | 11.6 ± 1.8 | 11.7 ± 1.8 | 11.6 ± 1.8 | |
b* | Day 0 | 16.2 ± 1.3 | 17.5 ± 1.7 | 16.2 ± 1.6 | 16.1 ± 1.3 | 15.6 ± 1.3 |
Day 2 | 16.3 ± 1.4 | 17.6 ± 1.7 | 16.3 ± 1.7 | 15.9 ± 1.3 | 15.6 ± 1.4 | |
Day 4 | 16.3 ± 1.5 | 17.6 ± 1.7 | 16.3 ± 1.7 | 16.0 ± 1.2 | 15.6 ± 1.4 | |
Day 6 | 16.3 ± 1.5 | 176 ± 1.7 | 16.3 ± 1.6 | 16.1 ± 1.2 | 15.7 ± 1.3 | |
Day 8 | 16.3 ± 1.5 | 17.7 ± 1.6 | 16.4 ± 1.6 | 16.1 ± 1.2 | 15.7 ± 1.3 | |
Chroma | Day 0 | 20.2 ± 1.1 | 22.8 ± 1.1 | 20.8 ± 1.3 | 20.5 ± 1.3 | 20.5 ± 1.3 |
Day 2 | 20.3 ± 1.3 | 22.9 ± 1.1 | 20.8 ± 1.5 | 20.2 ± 1.4 | 19.4 ± 1.4 | |
Day 4 | 20.4 ± 1.2 | 22.9 ± 1.5 | 20.9 ± 1.5 | 20.4 ± 1.2 | 19.5 ± 1.7 | |
Day 6 | 20.3 ± 1.3 | 23.1 ± 1.2 | 20.9 ± 1.5 | 20.5 ± 1.3 | 19.5 ± 1.8 | |
Day 8 | 20.4 ± 1.3 | 23.1 ± 1.3 | 21.1 ± 1.3 | 20.5 ± 1.4 | 19.6 ± 1.3 | |
Hue° | Day 0 | 43.5 ± 1.3 | 45.6 ± 1.3 | 42.8 ± 1.3 | 41.2 ± 1.3 | 42.6 ± 1.3 |
Day 2 | 25.3 ± 1.3 | 24.9 ± 1.3 | 30.3 ± 1.4 | 32.9 ± 1.4 | 46.8 ± 1.4 | |
Day 4 | 30.7 ± 1.3 | 24.9 ± 1.3 | 30.4 ± 1.6 | 31.7 ± 1.5 | 43.9 ± 1.4 | |
Day 6 | 33.4 ± 1.3 | 24.9 ± 1.5 | 30.0 ± 1.6 | 30.8 ± 1.5 | 42.5 ± 1.4 | |
Day 8 | 48.0 ± 1.3 | 25.2 ± 1.4 | 29.4 ± 1.5 | 31.4 ± 1.4 | 43.6 ± 1.4 |
n | Mean | SD | Range | SECV | R2CV | RPD | |
---|---|---|---|---|---|---|---|
CAL | 90 | ||||||
L* | 48.9 | 3.3 | 59.2–39.8 | 3.3 | 0.10 | 1.0 | |
a* | 12.9 | 2.2 | 17.1–7.6 | 1.5 | 0.63 | 1.5 | |
b* | 16.4 | 1.4 | 20.3–13.1 | 0.90 | 0.60 | 1.6 | |
VAL | 60 | SEP | R | ||||
L* | 48.7 | 2.9 | 56.9–41.6 | 2.9 | 0.10 | ||
a* | 13.1 | 1.86 | 17.2–8.8 | 1.3 | 0.58 | ||
b* | 16.7 | 1.3 | 20.4–14.5 | 1.5 | 0.73 |
SECV | R2cv | RPD | SEP | |
---|---|---|---|---|
CAL—level of addition (n:90) | 2.4 | 0.32 | 1.0 | |
VAL—level of addition (n:60) | 0.23 | 3.1 | ||
CAL—days of storage (n = 90) | 0.98 | 0.92 | 2.8 | |
VAL—days of storage (n = 60) | 0.90 | 1.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, L.C.; Wu, W.; Zhang, S.; Beya, M.; Cozzolino, D. The Effect of the Level of Goat Liver Addition to Goat Minced Meat on the Near-Infrared Spectra, Colour, and Shelf Life of Samples. Foods 2025, 14, 1430. https://doi.org/10.3390/foods14081430
Hoffman LC, Wu W, Zhang S, Beya M, Cozzolino D. The Effect of the Level of Goat Liver Addition to Goat Minced Meat on the Near-Infrared Spectra, Colour, and Shelf Life of Samples. Foods. 2025; 14(8):1430. https://doi.org/10.3390/foods14081430
Chicago/Turabian StyleHoffman, Louwrens Christiaan, Wencong Wu, Shuxin Zhang, Michel Beya, and Daniel Cozzolino. 2025. "The Effect of the Level of Goat Liver Addition to Goat Minced Meat on the Near-Infrared Spectra, Colour, and Shelf Life of Samples" Foods 14, no. 8: 1430. https://doi.org/10.3390/foods14081430
APA StyleHoffman, L. C., Wu, W., Zhang, S., Beya, M., & Cozzolino, D. (2025). The Effect of the Level of Goat Liver Addition to Goat Minced Meat on the Near-Infrared Spectra, Colour, and Shelf Life of Samples. Foods, 14(8), 1430. https://doi.org/10.3390/foods14081430