Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. HA/Fmoc-FRGDF Gel Preparation
2.3. Que/HA/Fmoc-FRGDF Gel Preparation
2.4. Rheological Properties
2.5. In Vitro Degradation Property
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Circular Dichroism (CD) Spectroscopy
2.8. Transmission Electron Microscope (TEM)
2.9. Assessment of Encapsulation Efficiency (EE%) and Loading Capacity (LC%)
2.10. In Vitro Release
2.11. Study on the Release Kinetics of Que
2.12. Statistical Analysis
3. Results and Discussion
3.1. Rheological Properties of HA/Fmoc-FRGDF Binary Hydrogels
3.2. In Vitro Degradation Properties HA/Fmoc-FRGDF Binary Hydrogels
3.3. The Effect of Inclusion of Que on the Properties of the Ternary Complex Hydrogels
3.3.1. Rheological Properties
3.3.2. Secondary Structure
3.4. Microscopic Structure Observation
3.5. Encapsulation and In Vitro Release of Que
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Chen, Y.-Y.; Zha, X.-Q.; Li, Q.-M.; Pan, L.-H.; Luo, J.-P. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res. Int. 2021, 147, 110542. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Agrawal, G.; Thakur, S.; Thakur, V.K.; Tanaka, M.; Mishra, Y.K.; Christie, G.; Mostafavi, E.; Boukherroub, R. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int. J. Biol. Macromol. 2023, 247, 125606. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, R.; Derakhshankhah, H.; Haghshenas, B.; Massoumi, B.; Abbasian, M.; Jaymand, M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int. J. Biol. Macromol. 2020, 156, 438–445. [Google Scholar] [CrossRef]
- Sun, X.; Yao, F.; Li, J. Nanocomposite hydrogel-based strain and pressure sensors: A review. J. Mater. Chem. A 2020, 8, 18605–18623. [Google Scholar] [CrossRef]
- Pradhan, S.; Brooks, A.K.; Yadavalli, V.K. Nature-derived materials for the fabrication of functional biodevices. Mater. Today Bio 2020, 7, 100065. [Google Scholar] [CrossRef]
- Tang, X.; Gu, X.; Wang, Y.; Chen, X.; Ling, J.; Yang, Y. Stable antibacterial polysaccharide-based hydrogels as tissue adhesives for wound healing. RSC Adv. 2020, 10, 17280–17287. [Google Scholar] [CrossRef]
- Lin, Q.; Ge, S.; McClements, D.J.; Li, X.; Jin, Z.; Jiao, A.; Wang, J.; Long, J.; Xu, X.; Qiu, C. Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Crit. Rev. Food Sci. Nutr. 2023, 63, 4092–4105. [Google Scholar] [CrossRef]
- Williams, R.J.; Hall, T.E.; Glattauer, V.; White, J.; Pasic, P.J.; Sorensen, A.B.; Waddington, L.; McLean, K.M.; Currie, P.D.; Hartley, P.G. The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials 2011, 32, 5304–5310. [Google Scholar] [CrossRef]
- Braun, G.A.; Ary, B.E.; Dear, A.J.; Rohn, M.C.; Payson, A.M.; Lee, D.S.; Parry, R.C.; Friedman, C.; Knowles, T.P.; Linse, S. On the mechanism of self-assembly by a hydrogel-forming peptide. Biomacromolecules 2020, 21, 4781–4794. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Smaldone, G.; Rosa, E.; Pecoraro, G.; Morelli, G.; Accardo, A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci. Rep. 2024, 14, 9940. [Google Scholar] [CrossRef]
- Bakhtiary, N.; Ghalandari, B.; Ghorbani, F.; Varma, S.N.; Liu, C. Advances in peptide-based hydrogel for tissue engineering. Polymers 2023, 15, 1068. [Google Scholar] [CrossRef]
- Wang, Y.; Zoneff, E.; Thomas, J.; Hong, N.; Tan, L.; McGillivray, D.; Perriman, A.; Law, K.; Thompson, L.; Moriarty, N. Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands. Nat. Commun. 2023, 14, 457. [Google Scholar] [CrossRef]
- Li, R.; Horgan, C.C.; Long, B.; Rodriguez, A.L.; Mather, L.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. Tuning the mechanical and morphological properties of self-assembled peptide hydrogels via control over the gelation mechanism through regulation of ionic strength and the rate of pH change. RSC Adv. 2015, 5, 301–307. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr. Polym. 2020, 234, 115920. [Google Scholar] [CrossRef]
- Maiti, S.; Maji, B.; Badwaik, H.; Pandey, M.M.; Lakra, P.; Yadav, H. Oxidized ionic polysaccharide hydrogels: Review on derived scaffolds characteristics and tissue engineering applications. Int. J. Biol. Macromol. 2024, 280, 136089. [Google Scholar] [CrossRef]
- Li, R.; Pavuluri, S.; Bruggeman, K.; Long, B.M.; Parnell, A.J.; Martel, A.; Parnell, S.R.; Pfeffer, F.M.; Dennison, A.J.; Nicholas, K.R. Coassembled nanostructured bioscaffold reduces the expression of proinflammatory cytokines to induce apoptosis in epithelial cancer cells. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1397–1407. [Google Scholar] [CrossRef]
- Li, R.; Tai, M.-R.; Su, X.-N.; Ji, H.-W.; Chen, J.-P.; Liu, X.-F.; Song, B.-B.; Zhong, S.-Y.; Nisbet, D.R.; Barrow, C.J. Insights into the Mechanism Underpinning Composite Molecular Docking During the Self-Assembly of Fucoidan Biopolymers with Peptide Nanofibrils. Mar. Drugs 2025, 23, 169. [Google Scholar] [CrossRef]
- Çelik, E.; Bayram, C.; Akçapınar, R.; Türk, M.; Denkbaş, E.B. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Mater. Sci. Eng. C 2016, 66, 221–229. [Google Scholar] [CrossRef]
- Abul-Haija, Y.M.; Ulijn, R.V. Sequence adaptive peptide–polysaccharide nanostructures by biocatalytic self-assembly. Biomacromolecules 2015, 16, 3473–3479. [Google Scholar] [CrossRef]
- Yang, X.; Xie, Y.; Wang, Y.; Qi, W.; Huang, R.; Su, R.; He, Z. Self-assembled microporous peptide-polysaccharide aerogels for oil–water separation. Langmuir 2018, 34, 10732–10738. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, C.; Zhao, J.; Li, W.; Guo, F.; Qin, J.; Wang, Y. Unlocking the potential of hyaluronic acid: Exploring its physicochemical properties, modification, and role in food applications. Trends Food Sci. Technol. 2023, 142, 104218. [Google Scholar] [CrossRef]
- Bokatyi, A.N.; Dubashynskaya, N.V.; Skorik, Y.A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 2024, 337, 122145. [Google Scholar] [CrossRef]
- Tan, C.; Yao, X.; Jafari, S.M.; Sun, B.; Wang, J. Hyaluronic acid-based nanodelivery systems for food bioactive compounds. Trends Food Sci. Technol. 2023, 141, 104163. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Xiong, Q.; Wang, Y.; Wan, J.; Yuan, P.; Chen, H.; Zhang, L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int. J. Biol. Macromol. 2020, 147, 937–945. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Chen, J.-Y.; Ouyang, D.; Lu, J.-H. Quercetin in animal models of Alzheimer’s disease: A systematic review of preclinical studies. Int. J. Mol. Sci. 2020, 21, 493. [Google Scholar] [CrossRef]
- Scarpa, E.-S.; Giordani, C.; Antonelli, A.; Petrelli, M.; Balercia, G.; Silvetti, F.; Pieroni, A.; Sabbatinelli, J.; Rippo, M.R.; Olivieri, F. The combination of natural molecules naringenin, hesperetin, curcumin, polydatin and quercetin synergistically decreases SEMA3E expression levels and DPPIV activity in in vitro models of insulin resistance. Int. J. Mol. Sci. 2023, 24, 8071. [Google Scholar] [CrossRef]
- Oliver, S.; Yee, E.; Kavallaris, M.; Vittorio, O.; Boyer, C. Water soluble antioxidant dextran–quercetin conjugate with potential anticancer properties. Macromol. Biosci. 2018, 18, 1700239. [Google Scholar] [CrossRef]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Al-Serwi, R.H.; Eladl, M.A.; El-Sherbiny, M.; Saleh, M.A.; Othman, G.; Alshahrani, S.M.; Alnefaie, R.; Jan, A.M.; Alnasser, S.M.; Albalawi, A.E. Targeted drug administration onto cancer cells using hyaluronic acid–quercetin-conjugated silver nanoparticles. Molecules 2023, 28, 4146. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Li, Z.; Govindan, R.; Jayakumar, R.; Wang, C.; Gu, F.L. Zinc oxide-quercetin nanocomposite as a smart nano-drug delivery system: Molecular-level interaction studies. Appl. Surf. Sci. 2021, 536, 147741. [Google Scholar] [CrossRef]
- Guo, Q.; Xiao, X.; Lu, L.; Ai, L.; Xu, M.; Liu, Y.; Goff, H.D. Polyphenol–polysaccharide complex: Preparation, characterization, and potential utilization in food and health. Annu. Rev. Food Sci. Technol. 2022, 13, 59–87. [Google Scholar] [CrossRef]
- Ke, C.; Li, L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review. Carbohydr. Polym. 2023, 302, 120430. [Google Scholar] [CrossRef]
- Tian, Z.; Zheng, L.; Ai, B.; Yang, Y.; Zheng, X.; Xiao, D.; Wang, S.; Sheng, Z. Research progress on interactions of protein-polyphenol-starch ternary system and their effects on functional properties of each component. Food Sci. 2023, 44, 348–355. [Google Scholar]
- Liu, F.; Ma, C.; Zhang, R.; Gao, Y.; McClements, D.J. Controlling the potential gastrointestinal fate of β-carotene emulsions using interfacial engineering: Impact of coating lipid droplets with polyphenol-protein-carbohydrate conjugate. Food Chem. 2017, 221, 395–403. [Google Scholar] [CrossRef]
- Xu, B.; Jia, Y.; Li, B.; Ma, H.; Yang, W. Ultrastable emulsions constructed by self-assembly of two protein-polyphenol-anionic polysaccharide ternary complexes-stablized high internal phase emulsions. LWT 2023, 176, 114517. [Google Scholar] [CrossRef]
- Aye, S.-S.S.; Li, R.; Boyd-Moss, M.; Long, B.; Pavuluri, S.; Bruggeman, K.; Wang, Y.; Barrow, C.R.; Nisbet, D.R.; Williams, R.J. Scaffolds formed via the non-equilibrium supramolecular assembly of the synergistic ECM peptides RGD and PHSRN demonstrate improved cell attachment in 3D. Polymers 2018, 10, 690. [Google Scholar] [CrossRef]
- Kocak, F.Z.; Yar, M.; Rehman, I.U. In vitro degradation, swelling, and bioactivity performances of in situ forming injectable chitosan-matrixed hydrogels for bone regeneration and drug delivery. Biotechnol. Bioeng. 2024, 121, 2767–2779. [Google Scholar] [CrossRef]
- Han, P.; An, N.; Yang, L.; Ren, X.; Lu, S.; Ji, H.; Wang, Q.; Dong, J. Molecular dynamics simulation of the interactions between sesamol and myosin combined with spectroscopy and molecular docking studies. Food Hydrocoll. 2022, 131, 107801. [Google Scholar] [CrossRef]
- Tai, M.-R.; Ji, H.-W.; Chen, J.-P.; Liu, X.-F.; Song, B.-B.; Zhong, S.-Y.; Rifai, A.; Nisbet, D.R.; Barrow, C.J.; Williams, R.J. Biomimetic triumvirate nanogel complexes via peptide-polysaccharide-polyphenol self-assembly. Int. J. Biol. Macromol. 2023, 251, 126232. [Google Scholar] [CrossRef]
- Li, R.; McRae, N.L.; McCulloch, D.R.; Boyd-Moss, M.; Barrow, C.J.; Nisbet, D.R.; Stupka, N.; Williams, R.J. Large and small assembly: Combining functional macromolecules with small peptides to control the morphology of skeletal muscle progenitor cells. Biomacromolecules 2018, 19, 825–837. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Miastkowska, M.; Sapuła, P.; Sycz, A.; Pluta, K.; Malina, D.; Chwastowski, J. Kinetic analysis of in vitro release profiles of salicylic acid and fluocinolone acetonide from dual delivery systems composed of polymeric nanocarriers and a hydrogel matrix. J. Drug Deliv. Sci. Technol. 2024, 92, 105355. [Google Scholar] [CrossRef]
- Kulkarni, A.; Michel, S.; Butler, J.E.; Ziegler, K.J. Gelation and large thermoresponse of cranberry-based xyloglucan. Carbohydr. Polym. 2024, 339, 122189. [Google Scholar] [CrossRef]
- Li, R.; Tai, M.-R.; Wu, Y.-R.; Zhou, Q.-L.; Xia, Q.-Y.; Zhong, S.-Y.; Qi, Y.; Barrow, C.J.; Williams, R.J. Controlling the supramolecular ordering of fish gelatin via simultaneous assembly with fucoidan resulting in nanostructural modification and enhanced rheological performance. LWT 2023, 184, 115078. [Google Scholar] [CrossRef]
- Firipis, K.; Boyd-Moss, M.; Long, B.; Dekiwadia, C.; Hoskin, W.; Pirogova, E.; Nisbet, D.R.; Kapsa, R.M.; Quigley, A.F.; Williams, R.J. Tuneable hybrid hydrogels via complementary self-assembly of a bioactive peptide with a robust polysaccharide. ACS Biomater. Sci. Eng. 2021, 7, 3340–3350. [Google Scholar] [CrossRef]
- Sun, F.; Niu, H.; Wang, D.; Wu, Y.; Mu, H.; Ma, L.; Duan, J. Novel moisture-preserving derivatives of hyaluronan resistant to hyaluronidase and protective to UV light. Carbohydr. Polym. 2017, 157, 1198–1204. [Google Scholar] [CrossRef]
- Perera, G.G.G.; Argenta, D.F.; Caon, T. The rheology of injectable hyaluronic acid hydrogels used as facial fillers: A review. Int. J. Biol. Macromol. 2024, 268, 131880. [Google Scholar] [CrossRef]
- Warwar Damouny, C.; Martin, P.; Vasilyev, G.; Vilensky, R.; Fadul, R.; Redenski, I.; Srouji, S.; Zussman, E. Injectable hydrogels based on inter-polyelectrolyte interactions between hyaluronic acid, gelatin, and cationic cellulose nanocrystals. Biomacromolecules 2022, 23, 3222–3234. [Google Scholar] [CrossRef]
- Yang, Q.; Xie, Z.; Hu, J.; Liu, Y. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater. Sci. Eng. C 2021, 128, 112319. [Google Scholar] [CrossRef]
- Wen, C.; Lin, X.; Wang, J.; Liu, H.; Liu, G.; Xu, X.; Zhang, J.; Liu, J. Protein–Pectin Delivery Carriers for Food Bioactive Ingredients: Preparation, Release Mechanism, and Application. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70183. [Google Scholar] [CrossRef]
- Najari, Z.; Dokouhaki, M.; Juliano, P.; Adhikari, B. Advances in the application of protein-polysaccharide-polyphenol ternary complexes for creating and stabilizing Pickering emulsions. Future Foods 2024, 9, 100299. [Google Scholar] [CrossRef]
- Xu, X.; Li, L.; Ma, C.; Li, D.; Yang, Y.; Bian, X.; Fan, J.; Zhang, N.; Zuo, F. Soy protein isolate-citrus pectin-gallic acid ternary composite high internal phase Pickering emulsion for delivery of β-carotene: Physicochemical, structural and digestive properties. Food Res. Int. 2023, 169, 112910. [Google Scholar] [CrossRef]
- Yang, J.; Mao, L.; Yang, W.; Sun, C.; Dai, L.; Gao, Y. Evaluation of non-covalent ternary aggregates of lactoferrin, high methylated pectin, EGCG in stabilizing β-carotene emulsions. Food Chem. 2018, 240, 1063–1071. [Google Scholar] [CrossRef]
- Warren, J.P.; Culbert, M.P.; Miles, D.E.; Maude, S.; Wilcox, R.K.; Beales, P.A. Controlling the self-assembly and material properties of β-sheet peptide hydrogels by modulating intermolecular interactions. Gels 2023, 9, 441. [Google Scholar] [CrossRef]
- Modepalli, V.N.; Rodriguez, A.L.; Li, R.; Pavuluri, S.; Nicholas, K.R.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. In vitro response to functionalized self-assembled peptide scaffolds for three-dimensional cell culture. Pept. Sci. 2014, 102, 197–205. [Google Scholar] [CrossRef]
- Li, R.; Boyd-Moss, M.; Long, B.; Martel, A.; Parnell, A.; Dennison, A.J.; Barrow, C.J.; Nisbet, D.R.; Williams, R.J. Facile control over the supramolecular ordering of self-assembled peptide scaffolds by simultaneous assembly with a polysacharride. Sci. Rep. 2017, 7, 4797. [Google Scholar] [CrossRef]
- Mirzayeva, T.; Čopíková, J.; Kvasnička, F.; Bleha, R.; Synytsya, A. Screening of the chemical composition and identification of hyaluronic acid in food supplements by fractionation and fourier-transform infrared spectroscopy. Polymers 2021, 13, 4002. [Google Scholar] [CrossRef]
- Huang, X.; Xia, B.; Liu, Y.; Wang, C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem. X 2024, 22, 101459. [Google Scholar] [CrossRef]
- Chen, S.; Han, Y.; Huang, J.; Dai, L.; Du, J.; McClements, D.J.; Mao, L.; Liu, J.; Gao, Y. Fabrication and characterization of layer-by-layer composite nanoparticles based on zein and hyaluronic acid for codelivery of curcumin and quercetagetin. ACS Appl. Mater. Interfaces 2019, 11, 16922–16933. [Google Scholar] [CrossRef]
- Ghayour, N.; Hosseini, S.M.H.; Eskandari, M.H.; Esteghlal, S.; Nekoei, A.-R.; Gahruie, H.H.; Tatar, M.; Naghibalhossaini, F. Nanoencapsulation of quercetin and curcumin in casein-based delivery systems. Food Hydrocoll. 2019, 87, 394–403. [Google Scholar] [CrossRef]
- Riopedre, M.; Biriukov, D.; Dračínský, M.; Martinez-Seara, H. Hyaluronan-Arginine Enhanced Interaction Emerges from Distinctive Molecular Signature with Improved Electrostatics and Side-Chain Specificity. arXiv 2023, arXiv:2304.00547. [Google Scholar]
- Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Rodriguez, A.L.; Wang, T.-Y.; Bruggeman, K.F.; Li, R.; Williams, R.J.; Parish, C.L.; Nisbet, D.R. Tailoring minimalist self-assembling peptides for localized viral vector gene delivery. Nano Res. 2016, 9, 674–684. [Google Scholar] [CrossRef]
- Chakraborty, P.; Ghosh, M.; Schnaider, L.; Adadi, N.; Ji, W.; Bychenko, D.; Dvir, T.; Adler-Abramovich, L.; Gazit, E. Composite of peptide-supramolecular polymer and covalent polymer comprises a new multifunctional, bio-inspired soft material. Macromol. Rapid Commun. 2019, 40, 1900175. [Google Scholar] [CrossRef]
- Li, S.-F.; Hu, T.-G.; Wu, H. Fabrication of colon-targeted ethyl cellulose/gelatin hybrid nanofibers: Regulation of quercetin release and its anticancer activity. Int. J. Biol. Macromol. 2023, 253, 127175. [Google Scholar] [CrossRef]
- Bellar, A.; Kessler, S.P.; Obery, D.R.; Sangwan, N.; Welch, N.; Nagy, L.E.; Dasarathy, S.; de la Motte, C. Safety of hyaluronan 35 in healthy human subjects: A pilot study. Nutrients 2019, 11, 1135. [Google Scholar] [CrossRef]
- Pang, X.; Lu, Z.; Du, H.; Yang, X.; Zhai, G. Hyaluronic acid-quercetin conjugate micelles: Synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf. B Biointerfaces 2014, 123, 778–786. [Google Scholar] [CrossRef]
- Zhou, P.; Yan, B.; Wei, B.; Fu, L.; Wang, Y.; Wang, W.; Zhang, L.; Mao, Y. Quercetin-solid lipid nanoparticle-embedded hyaluronic acid functionalized hydrogel for immunomodulation to promote bone reconstruction. Regen. Biomater. 2023, 10, rbad025. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Cerea, M.; Maroni, A.; Palugan, L.; Bellini, M.; Foppoli, A.; Melocchi, A.; Zema, L.; Gazzaniga, A. Novel hydrophilic matrix system with non-uniform drug distribution for zero-order release kinetics. J. Control. Release 2018, 287, 247–256. [Google Scholar] [CrossRef]
- Preskorn, S.H. Fundamental Pharmacokinetic Concepts and Their Clinical Relevance: Clearance, Zero Versus First Order and Nonlinear Pharmacokinetics. J. Psychiatr. Pract. 2021, 27, 380–383. [Google Scholar] [CrossRef]
- Hasnain, M.S.; Rishishwar, P.; Rishishwar, S.; Ali, S.; Nayak, A.K. Isolation and characterization of Linum usitatisimum polysaccharide to prepare mucoadhesive beads of diclofenac sodium. Int. J. Biol. Macromol. 2018, 116, 162–172. [Google Scholar] [CrossRef]
Sample | Zero-Order | First-Order | Korsmeyer and Peppas | |
---|---|---|---|---|
B0 | Fitted curve | |||
R2 | 0.9727 | 0.9717 | 0.9737 | |
Prob > F | 4.1207 × 10−7 | 3.2795 × 10−8 | 1.5263 × 10−8 | |
B1 | Fitted curve | |||
R2 | 0.9879 | 0.9850 | 0.9906 | |
Prob > F | 3.6121 × 10−8 | 2.7540 × 10−9 | 5.3644 × 10−10 | |
B2 | Fitted curve | |||
R2 | 0.9901 | 0.9800 | 0.9901 | |
Prob > F | 1.7698 × 10−8 | 1.3585 × 10−8 | 7.5763 × 10−10 | |
B3 | Fitted curve | |||
R2 | 0.9829 | 0.9928 | 0.9930 | |
Prob > F | 1.2025 × 10−7 | 2.7232 × 10−10 | 1.5440 × 10−10 | |
B4 | Fitted curve | |||
R2 | 0.8720 | 0.9276 | 0.9554 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.-N.; Wang, Y.-Y.; Khan, M.F.; Zhu, L.-N.; Chen, Z.-L.; Wang, Z.; Song, B.-B.; Zhao, Q.-L.; Zhong, S.-Y.; Li, R. Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform. Foods 2025, 14, 2629. https://doi.org/10.3390/foods14152629
Su X-N, Wang Y-Y, Khan MF, Zhu L-N, Chen Z-L, Wang Z, Song B-B, Zhao Q-L, Zhong S-Y, Li R. Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform. Foods. 2025; 14(15):2629. https://doi.org/10.3390/foods14152629
Chicago/Turabian StyleSu, Xian-Ni, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong, and Rui Li. 2025. "Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform" Foods 14, no. 15: 2629. https://doi.org/10.3390/foods14152629
APA StyleSu, X.-N., Wang, Y.-Y., Khan, M. F., Zhu, L.-N., Chen, Z.-L., Wang, Z., Song, B.-B., Zhao, Q.-L., Zhong, S.-Y., & Li, R. (2025). Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform. Foods, 14(15), 2629. https://doi.org/10.3390/foods14152629