Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Gelatin Solution
2.3. Gelling Properties Analysis
2.3.1. Determination of Gel Strength
2.3.2. Determination of Textural Properties
2.4. Rheological Behavior Analysis
2.4.1. Determination of Apparent Viscosity
2.4.2. Frequency Sweep
2.5. Structural Properties Analysis
2.5.1. Fourier Infrared Spectroscopy (FTIR)
2.5.2. Environmental Scanning Electron Microscopy
2.6. Determination of In Vitro Digestive Characteristics
2.6.1. Simulated Stomach Digestion
2.6.2. Determination of Free Amino Acid (FAA) Content
2.7. Determination of Fermentation Characteristics
2.7.1. In Vitro Fermentation
2.7.2. Determination of Gas Generation During In Vitro Fermentation
2.7.3. Determination of pH During In Vitro Fermentation
2.7.4. Microbial Diversity Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Gel Strength and Textural Properties
3.2. Analysis of Rheological Behaviors
3.2.1. Apparent Viscosity
3.2.2. Frequency Sweep
3.3. Structural Analysis
3.3.1. FTIR Analysis
3.3.2. Gels Network
3.4. Analysis of Digestive Properties
3.5. Analysis of Fermentation Characterization
3.5.1. Gas Production During the Fermentation Process
3.5.2. pH Changes During Fermentation
3.6. Microbial Diversity Change
3.6.1. Alpha Diversity Analysis
3.6.2. Intestinal Microbial Community Analysis
3.6.3. Functional Predictive Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Zhao, Q.; Wang, P.; Huang, Z.; Wang, H.; Shen, Q. Research progress of fish gelatin as a substitute for mammalian gelatin. J. Chin. Inst. Food Sci. Technol. 2021, 21, 334–342. [Google Scholar]
- Shi, H.; Jiang, M.; Zhang, X.; Xia, G.; Shen, X. Characteristics and food applications of aquatic collagen and its derivatives: A review. Food Res. Int. 2025, 202, 115531. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Dong, Y.; Xiang, Y.; Huang, L.; He, Q. Effect of curdlan on improving the property deterioration of fish gelatin gels induced by high temperature: An exploration of gel properties, structure and interaction mechanism. Food Hydrocoll. 2025, 166, 111277. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.C.; Shangguan, X.; Sha, X.; Wang, H.; Zhang, L.; Bansal, N. Fish gelatin modifications: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 260–269. [Google Scholar] [CrossRef]
- Sow, L.C.; Chong, J.M.N.; Liao, Q.X.; Yang, H. Effects of κ-carrageenan on the structure and rheological properties of fish gelatin. J. Food Eng. 2018, 239, 92–103. [Google Scholar] [CrossRef]
- Zahrin, S.A.; Ishak, W.R.W.; Atan, E.H.; Zainuddin, Z.; Rashid, N.H.b.A. A review of gelatine: Multifunctional additives in the food industry. Acta Sci. Pol.-Technol. Aliment. 2025, 24, 77–94. [Google Scholar] [CrossRef]
- Pranoto, Y.; Lee, C.M.; Park, H.J. Characterizations of fish gelatin films added with gellan and κ-carrageenan. LWT-Food Sci. Technol. 2007, 40, 766–774. [Google Scholar] [CrossRef]
- Tong, L.; Kang, X.Z.; Fang, Q.; Yang, W.G.; Cen, S.J.; Lou, Q.M.; Huang, T. Rheological properties and interactions of fish gelatin-κ-carrageenan polyelectrolyte hydrogels: The effects of salt. J. Texture Stud. 2022, 53, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Habibi, H.; Khosravi-Darani, K. Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatal. Agric. Biotechnol. 2017, 10, 130–140. [Google Scholar] [CrossRef]
- Binsi, P.K.; Nayak, N.; Sarkar, P.C.; Joshy, C.G.; Ninan, G.; Ravishankar, C.N. Gelation and thermal characteristics of microwave extracted fish gelatin-natural gum composite gels. J. Food Sci. Technol. 2017, 54, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X.; Ge, Y.; Hu, Y.; Zhu, R.; Yang, X.; Chen, S.; Peng, H.; Wang, C. Blueberry leaf polysaccharide/gelatin composite gel: Preparation, characterization, and formation mechanism. Int. J. Biol. Macromol. 2025, 304, 141020. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.L.; Sun, J.W.; Pei, M.Q.; Zhang, G.F.; Li, C.; Li, C.M.; Ma, X.K.; He, S.X.; Liu, L.B. Impact of non-covalent bound polyphenols on conformational, functional properties and in vitro digestibility of pea protein. Food Chem. 2022, 383, 132623. [Google Scholar] [CrossRef] [PubMed]
- Kaewruang, P.; Benjakul, S.; Prodpran, T. Characteristics and gelling property of phosphorylated gelatin from the skin of unicorn leatherjacket. Food Chem. 2014, 146, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Green, B.W. Use of microbial transglutaminase and nonmeat proteins to improve functional properties of low NaCl, phosphate-free patties made from channel catfish Ictalurus punctatus belly flap meat. J. Food Sci. 2008, 73, E218–E226. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Su, K.; Sun, W.; Huang, T.; Lou, Q.; Zhan, S. Comparative investigations of various modification methods on the gelling, rheological properties and mechanism of fish gelatin. Food Chem. 2023, 426, 136632. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Sun, W.; Zhan, S.; Jia, R.; Lou, Q.; Huang, T. Glycosylation with different saccharides on the gelling, rheological and structural properties of fish gelatin. Food Hydrocoll. 2024, 150, 109699. [Google Scholar] [CrossRef]
- Moretton, M.; Alongi, M.; Renoldi, N.; Anese, M. Steering protein and carbohydrate digestibility by food design to address elderly needs: The case of pea protein enriched bread. LWT 2023, 190, 115530. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, M.; Yao, W.; Yang, W.; Chen, F. In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota. Food Funct. 2022, 13, 9443–9458. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.T.; Xiao, J.; Zhu, M.Y.; Yang, H.C.; Liu, J.J.; Liu, Y. Study of physicochemical and gelation properties of fish gelatin from different sources. Appl. Sci. 2023, 13, 5337. [Google Scholar] [CrossRef]
- Sarraf, M.; Naji-Tabasi, S.; Beig-Babaei, A. Influence of calcium chloride and pH on soluble complex of whey protein-basil seed gum and xanthan gum. Food Sci. Nutr. 2021, 9, 6728–6736. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tan, Z.; Zhao, W.; Zheng, Y.; Ling, S.; Guo, X.; Dong, X. Molecular interactions and gel network modulation in ionic polysaccharide-gelatin hydrogels for improved texture of skipjack tuna products. Food Chem. 2025, 482, 144002. [Google Scholar] [CrossRef] [PubMed]
- Sezer, P.; Okur, I.; Oztop, M.H.; Alpas, H. Improving the physical properties of fish gelatin by high hydrostatic pressure (HHP) and ultrasonication (US). Int. J. Food Sci. Technol. 2020, 55, 1468–1476. [Google Scholar] [CrossRef]
- Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and functional properties of gelatin from splendid squid (Loligo formosana) skin as affected by extraction temperatures. Food Hydrocoll. 2012, 29, 389–397. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, J. Effect of protein mass concentration on rheological properties of Pickering emulsion gel prepared by corn germ protein. China Oils Fats 2018, 43, 16–19. [Google Scholar]
- Cheng, C.; Tu, Z.; Wang, H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: Phase behavior and structural properties. Food Res. Int. 2023, 167, 112652. [Google Scholar] [CrossRef] [PubMed]
- Cen, S.J.; Zhang, L.Y.; Liu, L.W.; Lou, Q.M.; Wang, C.C.; Huang, T. Phosphorylation modification on functional and structural properties of fish gelatin: The effects of phosphate contents. Food Chem. 2022, 380, 132209. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, J.; Wang, L.; Wang, P.; Ma, J.; Zhao, B.; Chen, X.; Wang, Y.; Zhang, W.; Wen, P. The impacts of different modification techniques on the gel properties and structural characteristics of fish gelatin. Food Hydrocoll. 2025, 158, 110536. [Google Scholar] [CrossRef]
- Zhu, Y.; Bhandari, B.; Prakash, S. Tribo-rheometry behaviour and gel strength of κ-carrageenan and gelatin solutions at concentrations, pH and ionic conditions used in dairy products. Food Hydrocoll. 2018, 84, 292–302. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z.-C.; Wang, H.; Liu, W.; Zhang, L.; Zhang, Y.; Shangguan, X.C. Comparison of rheological behaviors and nanostructure of bighead carp scales gelatin modified by different modification methods. J. Food Sci. Technol. 2017, 54, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, J.; Guo, X.; Deng, X.R.; Kang, S.H.; Zhu, X.R.; Guo, X.B. Effect of Phosphorylation on the Structure and Emulsification Properties of Different Fish Scale Gelatins. Foods 2022, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Uriarte-Montoya, M.H.; Santacruz-Ortega, H.; Cinco-Moroyoqui, F.J.; Rouzaud-Sandez, O.; Plascencia-Jatomea, M.; Ezquerra-Brauer, J.M. Giant squid skin gelatin: Chemical composition and biophysical characterization. Food Res. Int. 2011, 44, 3243–3249. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A. Intermolecular interactions in the formation of polysaccharide-gelatin complexes: A spectroscopic study. Polymers 2022, 14, 2777. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cai, X.; Huang, J.; Tang, Z.; Hu, Y.; Li, Y. Effects of environmental pH on protein properties and flavor factors of hairtail (Trichiurus haumela) in thermal processing. Food Chem. 2023, 413, 135615. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.; Tu, Z.C.; Wang, H.; Huang, W.J.; Zou, G.H.; Shan, S.; Sha, X.M. Progressive structural changes of microbial transglutaminase modified fish gelatin during gastric digestion. Int. J. Biol. Macromol. 2025, 296, 139646. [Google Scholar] [CrossRef] [PubMed]
- Piao, Y.Z.; Bibat, M.A.D.; Hwang, S.J.; Eun, J.B. Protein degradation and texture properties of skate Raja kenojei muscle during fermentation. J. Food Sci. Technol. 2022, 59, 4713–4722. [Google Scholar] [CrossRef] [PubMed]
- Matheus, A.O.R.; Rivas, N. Production and partial characterization of β-galactosidase from Kluyveromyces lactis grown in deproteinized whey. Arch. Latinoam. Nutr. 2003, 53, 194–201. [Google Scholar]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Zhang, R.; You, L.; Ma, Y.; Liao, L.; Pedisic, S. In vitro fermentation characteristics of polysaccharide from Sargassum fusiforme and its modulation effects on gut microbiota. Food Chem. Toxicol. 2021, 151, 112145. [Google Scholar] [CrossRef] [PubMed]
- Yüksel, E.; Voragen, A.G.J.; Kort, R. The pectin metabolizing capacity of the human gut microbiota. Crit. Rev. Food Sci. Nutr. 2024, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, H.; Jeong, D.; Kang, I.B.; Chon, J.W.; Kim, H.S.; Song, K.Y.; Seo, K.H. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: Targeted and untargeted community analysis with correlation of biomarkers. J. Nutr. Biochem. 2017, 44, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Ai, J.; Wu, Q.; Battino, M.; Bai, W.; Tian, L. Using untargeted metabolomics to profile the changes in roselle (Hibiscus sabdariffa L.) anthocyanins during wine fermentation. Food Chem. 2021, 364, 130425. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.M.; Tan, Y.S.; Chen, G.W.; Wang, G.; Sun, J.X.; Ou, S.Y.; Chen, W.; Bai, W.B. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M. Enzyme annotation and metabolic reconstruction using KEGG. Methods Mol. Biol. 2017, 1611, 135–145. [Google Scholar] [PubMed]
Sample | Gel Strength/g | Hardness/N | Gumminess/N | Chewiness/N | Resilience | Springiness | Cohesiveness |
---|---|---|---|---|---|---|---|
FG | 244.21 ± 57.53 g | 3.55 ± 0.78 g | 3.29 ± 0.71 e | 2.27 ± 1.14 e | 0.74 ± 0.37 de | 0.69 ± 0.19 b | 0.90 ± 0.05 bc |
FG–κC4 | 430.56 ± 15.05 f | 7.26 ± 0.06 ef | 6.79 ± 0.12 d | 6.41 ± 1.70 cd | 0.75 ± 0.07 cd | 0.97 ± 0.07 a | 0.91 ± 0.15 ab |
FG–κC5 | 450.67 ± 19.77 def | 8.12 ± 0.59 de | 7.62 ± 0.52 cd | 7.00 ± 0.53 bcd | 0.80 ± 0.27 ab | 0.94 ± 0.08 a | 0.91 ± 0.02 a |
FG–κC6 | 537.14 ± 23.16 a | 10.46 ± 0.48 a | 9.80 ± 0.51 a | 9.12 ± 0.54 a | 0.78 ± 0.15 bc | 0.96 ± 0.12 a | 0.91 ± 0.06 a |
FG–κC7 | 498.37 ± 6.99 abc | 8.76 ± 0.83 cd | 8.12 ± 0.77 bc | 7.49 ± 0.56 bc | 0.80 ± 0.13 ab | 0.95 ± 0.52 a | 0.91 ± 0.06 a |
FG–κC8 | 500.70 ± 38.07 abc | 9.56 ± 0.39 abc | 8.99 ± 0.40 ab | 8.26 ± 0.37 ab | 0.79 ± 0.07 ab | 0.95 ± 0.24 a | 0.92 ± 0.09 a |
FG–κC9 | 509.86 ± 44.44 abc | 9.66 ± 0.42 abc | 9.17 ± 0.38 ab | 8.49 ± 0.61 ab | 0.82 ± 0.13 a | 0.95 ± 0.28 a | 0.92 ± 0.05 a |
FG | 244.21 ± 57.53 g | 3.55 ± 0.78 g | 3.29 ± 0.71 e | 2.27 ± 0.11 e | 0.74 ± 0.37 de | 0.69 ± 0.19 b | 0.90 ± 0.05 bc |
FG–XG4 | 482.76 ± 28.02 cde | 9.11 ± 0.49 bcd | 8.34 ± 0.27 cd | 7.37 ± 0.48 bc | 0.66 ± 0.05 g | 0.93 ± 0.33 a | 0.88 ± 0.19 d |
FG–XG5 | 532.77 ± 20.69 ab | 9.90 ± 0.23 a | 9.16 ± 0.07 ab | 8.43 ± 0.08 ab | 0.71 ± 0.08 f | 0.95 ± 0.10 a | 0.89 ± 0.20 c |
FG–XG6 | 490.69 ± 4.43 bcd | 9.48 ± 0.54 ab | 8.85 ± 0.46 bc | 8.35 ± 0.36 ab | 0.72 ± 0.13 ef | 0.97 ± 0.10 a | 0.91 ± 0.03 abc |
FG–XG7 | 466.37 ± 8.74 cdef | 8.73 ± 0.35 cd | 8.22 ± 0.34 cd | 7.73 ± 0.38 abc | 0.78 ± 0.04 bc | 0.97 ± 0.35 a | 0.92 ± 0.09 a |
FG–XG8 | 442.91 ± 14.28 ef | 8.85 ± 0.08 d | 8.47 ± 0.25 c | 7.63 ± 2.12 d | 0.81 ± 0.07 a | 0.87 ± 0.14 a | 0.92 ± 0.04 a |
FG–XG9 | 487.57 ± 10.03 cd | 9.18 ± 0.13 bc | 9.14 ± 0.16 a | 9.09 ± 0.85 a | 0.81 ± 0.11 a | 0.97 ± 0.14 a | 0.93 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Lu, Q.; Chen, J.; Fan, X.; Zhan, S.; Yang, W.; Huang, T.; Li, F. Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels. Foods 2025, 14, 2631. https://doi.org/10.3390/foods14152631
Sun W, Lu Q, Chen J, Fan X, Zhan S, Yang W, Huang T, Li F. Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels. Foods. 2025; 14(15):2631. https://doi.org/10.3390/foods14152631
Chicago/Turabian StyleSun, Wanyi, Qiuyu Lu, Jiajing Chen, Xinxin Fan, Shengnan Zhan, Wenge Yang, Tao Huang, and Fulai Li. 2025. "Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels" Foods 14, no. 15: 2631. https://doi.org/10.3390/foods14152631
APA StyleSun, W., Lu, Q., Chen, J., Fan, X., Zhan, S., Yang, W., Huang, T., & Li, F. (2025). Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels. Foods, 14(15), 2631. https://doi.org/10.3390/foods14152631