Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Inoculum Preparation
2.2. Underbeer Preparation
2.3. Properties of Strains Related to Beverage Production
2.3.1. Ethanol Tolerance
2.3.2. H2S Production
2.4. Parameters Related to Fermentation
2.4.1. Yeast Viability in Fermented Beverages
2.4.2. pH
2.4.3. Titratable Acidity
2.4.4. Fermentative Vigor
2.4.5. ASBC Turbidity
2.4.6. ASBC Color
2.4.7. High-Performance Liquid Chromatography Analysis
2.5. Statistical Analysis
3. Results
3.1. Properties of Strains Related to Beverage Production
3.1.1. Ethanol Tolerance
3.1.2. H2S Production
3.2. Parameters Related to Fermentation
3.2.1. Yeast Viability in Fermented Beverages
3.2.2. pH
3.2.3. Titratable Acidity
3.2.4. Fermentative Vigor
3.2.5. ASBC Turbidity
3.2.6. ASBC Color
3.2.7. High-Performance Liquid Chromatography Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giri, N.A.; Sakhale, B.K.; Nirmal, N.P. Functional Beverages: An Emerging Trend in Beverage World. In Recent Frontiers of Phytochemicals Applications in Food, Pharmacy, Cosmetics, and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 123–142. [Google Scholar] [CrossRef]
- Abdul Manan, M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. Int. J. Food Sci. 2025, 2025, 5567567. [Google Scholar] [CrossRef]
- Śmiechowska, M.; Jakubowski, M.; Dmowski, P. Nowe Trendy Na Rynku Niskoalkoholowych Napojów Fermentowanych. Kosmos 2018, 67, 575–582. [Google Scholar] [CrossRef]
- Cuvas-Limon, R.B.; Nobre, C.; Cruz, M.; Rodriguez-Jasso, R.M.; Ruíz, H.A.; Loredo-Treviño, A.; Texeira, J.A.; Belmares, R. Spontaneously Fermented Traditional Beverages as a Source of Bioactive Compounds: An Overview. Crit. Rev. Food Sci. Nutr. 2021, 61, 2984–3006. [Google Scholar] [CrossRef]
- Tireki, S. A Review on Packed Non-Alcoholic Beverages: Ingredients, Production, Trends and Future Opportunities for Functional Product Development. Trends Food Sci. Technol. 2021, 112, 442–454. [Google Scholar] [CrossRef]
- Tamang, J.P.; Lama, S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J. Appl. Microbiol. 2022, 132, 3533–3542. [Google Scholar] [CrossRef]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic and Potentially Probiotic Yeasts—Characteristics and Food Application. Foods 2021, 10, 1306. [Google Scholar] [CrossRef]
- De Guidi, I.; Legras, J.L.; Galeote, V.; Sicard, D. Yeast Domestication in Fermented Food and Beverages: Past Research and New Avenues. Curr. Opin. Food Sci. 2023, 51, 101032. [Google Scholar] [CrossRef]
- Mulero-Cerezo, J.; Briz-Redón, Á.; Serrano-Aroca, Á. Saccharomyces cerevisiae Var. Boulardii: Valuable Probiotic Starter for Craft Beer Production. Appl. Sci. 2019, 9, 3250. [Google Scholar]
- Silva, L.C.; Schmidt, G.B.; Alves, L.G.O.; Oliveira, V.S.; Laureano-Melo, R.; Stutz, E.; Martins, J.F.P.; Paula, B.P.; Luchese, R.H.; Guerra, A.F.; et al. Use of Probiotic Strains to Produce Beers by Axenic or Semi-Separated Co-Culture System. Food Bioprod. Process. 2020, 124, 408–418. [Google Scholar] [CrossRef]
- Andrade, V.T.; de Castro, R.J.S. Fermented Grain-Based Beverages as Probiotic Vehicles and Their Potential Antioxidant and Antidiabetic Properties. Biocatal. Agric. Biotechnol. 2023, 53, 102873. [Google Scholar] [CrossRef]
- Gutiérrez-Nava, M.A.; Jaén-Echeverría, E.; Acevedo-Sandoval, O.A.; Román-Gutiérrez, A.D. Fermentation of Barley Wort with Saccharomyces Boulardii to Generate a Beverage with Probiotic Potential. Futur. Foods 2024, 9, 100373. [Google Scholar] [CrossRef]
- Hinojosa-Avila, C.R.; Chedraui-Urrea, J.J.T.T.; Estarrón-Espinosa, M.; Gradilla-Hernández, M.S.; García-Cayuela, T.; Sebastián Gradilla-Hernández, M.; García-Cayuela, T. Chemical Profiling and Probiotic Viability Assessment in Gueuze-Style Beer: Fermentation Dynamics, Metabolite and Sensory Characterization, and in Vitro Digestion Resistance. Food Chem. 2025, 462, 140916. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, A.; Kordowska-Wiater, M. Probiotic Yeasts and How to Find Them—Polish Wines of Spontaneous Fermentation as Source for Potentially Probiotic Yeasts. Foods 2023, 12, 3392. [Google Scholar] [CrossRef]
- Staniszewski, A.; Staniszewska, P.; Kordowska-Wiater, M. Probiotic Yeasts and How to Find Them—From Spoilage to Probiotic. Appl. Sci. 2024, 14, 11698. [Google Scholar] [CrossRef]
- Pirrone, A.; Naselli, V.; Gugino, I.M.; Porrello, A.; Viola, E.; Craparo, V.; Vella, A.; Alongi, D.; Seminerio, V.; Carusi, M.; et al. Use of Non-Conventional Yeasts for Enhancing the Sensory Quality of Craft Beer. Food Res. Int. 2025, 208, 116164. [Google Scholar] [CrossRef]
- Matraxia, M.; Alfonzo, A.; Prestianni, R.; Francesca, N.; Gaglio, R.; Todaro, A.; Alfeo, V.; Perretti, G.; Columba, P.; Settanni, L.; et al. Non-Conventional Yeasts from Fermented Honey by-Products: Focus on Hanseniaspora Uvarum Strains for Craft Beer Production. Food Microbiol. 2021, 99, 103806. [Google Scholar] [CrossRef]
- Fu, X.; Guo, L.; Li, Y.; Chen, X.; Song, Y.; Li, S. Transcriptional Analysis of Mixed-Culture Fermentation of Lachancea Thermotolerans and Saccharomyces cerevisiae for Natural Fruity Sour Beer. Fermentation 2024, 10, 180. [Google Scholar] [CrossRef]
- Guerrini, S.; Galli, V.; Barbato, D.; Facchini, G.; Mangani, S.; Pierguidi, L.; Granchi, L. Effects of Saccharomyces cerevisiae and Starmerella bacillaris on the Physicochemical and Sensory Characteristics of Sparkling Pear Cider (Perry). Eur. Food Res. Technol. 2023, 249, 341–352. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.; Liu, S.Q. Transforming Spent Coffee Grounds’ Hydrolysates with Yeast Lachancea Thermotolerans and Lactic Acid Bacterium Lactiplantibacillus Plantarum to Develop Potential Novel Alcoholic Beverages. Foods 2023, 12, 1161. [Google Scholar] [CrossRef]
- Nikolaou, A.; Nelios, G.; Kanellaki, M.; Kourkoutas, Y. Freeze-Dried Immobilized Kefir Culture in Cider-Making. J. Sci. Food Agric. 2020, 100, 3319–3327. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, M.; Riedl, R.; Koob, J.; Jacob, F. Fermentation and Spoilage Yeasts and Their Relevance for the Beverage Industry—A Review. BrewingScience 2012, 65, 33–52. [Google Scholar]
- Chu, Y.; Li, M.; Jin, J.; Dong, X.; Xu, K.; Jin, L.; Qiao, Y.; Ji, H. Advances in the Application of the Non-Conventional Yeast Pichia Kudriavzevii in Food and Biotechnology Industries. J. Fungi 2023, 9, 170. [Google Scholar] [CrossRef]
- Haniffadli, A.; Ban, Y.; Rahmat, E.; Kang, C.H.; Kang, Y. Unforeseen Current and Future Benefits of Uncommon Yeast: The Metschnikowia Genus. Appl. Microbiol. Biotechnol. 2024, 108, 534. [Google Scholar] [CrossRef]
- van Wyk, N.; Badura, J.; von Wallbrunn, C.; Pretorius, I.S. Exploring Future Applications of the Apiculate Yeast Hanseniaspora. Crit. Rev. Biotechnol. 2024, 44, 100–119. [Google Scholar] [CrossRef]
- Temple, N.J. A Rational Definition for Functional Foods: A Perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef]
- Podpiwek, the Traditional Polish Refreshing Soft-Drink—3 Seas Europe. Available online: https://3seaseurope.com/podpiwek-refreshing-soft-drink-underbeer-poland/ (accessed on 20 April 2025).
- Podpiwek|FermXpert. Available online: https://fermxpert.com/pl/podpiwek/ (accessed on 20 April 2025).
- Modzelan, M. Podpiwek Kujawski. Wiedza I Jakość 2020, 2, 11–12. [Google Scholar]
- Ramírez-Cota, G.Y.; López-Villegas, E.O.; Jiménez-Aparicio, A.R.; Hernández-Sánchez, H. Modeling the Ethanol Tolerance of the Probiotic Yeast Saccharomyces cerevisiae Var. Boulardii CNCM I-745 for Its Possible Use in a Functional Beer. Probiotics Antimicrob. Proteins 2021, 13, 187–194. [Google Scholar] [CrossRef]
- Barbosa, C.; Lage, P.; Esteves, M.; Chambel, L.; Mendes-Faia, A.; Mendes-Ferreira, A. Molecular and Phenotypic Characterization of Metschnikowia Pulcherrima Strains from Douro Wine Region. Fermentation 2018, 4, 8. [Google Scholar] [CrossRef]
- Hsiung, R.T.; Fang, W.T.; LePage, B.A.; Hsu, S.A.; Hsu, C.H.; Chou, J.Y. In Vitro Properties of Potential Probiotic Indigenous Yeasts Originating from Fermented Food and Beverages in Taiwan. Probiotics Antimicrob. Proteins 2021, 13, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Cervera, J.; Visinoni, F.; Zhang, P.; Hollywood, K.; Vrhovsek, U.; Severn, O.; Delneri, D. Effect of Hanseniaspora Vineae and Saccharomyces cerevisiae Co-Fermentations on Aroma Compound Production in Beer. Food Microbiol. 2024, 123, 104585. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.T.; Du, X.; Wee, J. Microbial and Chemical Analysis of Non-Saccharomyces Yeasts from Chambourcin Hybrid Grapes for Potential Use in Winemaking. Fermentation 2021, 7, 15. [Google Scholar] [CrossRef]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Validation of Bismuth-Containing Indicator Media for Predicting H2S-Producing Potential of Saccharomyces cerevisiae Wine Yeasts Under Enological Conditions. Am. J. Enol. Vitic. 1995, 46, 269–273. [Google Scholar] [CrossRef]
- Baǧder Elmaci, S.; Özçelik, F.; Tokatli, M.; Çakir, I. Technological Properties of Indigenous Wine Yeast Strains Isolated from Wine Production Regions of Turkey. Antonie Leeuwenhoek 2014, 105, 835–847. [Google Scholar] [CrossRef]
- Sanders, E.R. Aseptic Laboratory Techniques: Plating Methods. J. Vis. Exp. 2012, 63, e3064. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid Contents and the Effect of Fermentation Condition of Kombucha Tea Beverages on Physicochemical, Microbiological and Sensory Properties. Cyta-J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef]
- Oliveira Alves, R.; Lins, A.; Monteiro, B.; Da Macaúbas Silva, C.; Da Sarmento Silva, T.M.; De Lira Oliveira, R.; Porto, C.S.; Souza Porto, T. Investigation of the Influence of Different Camellia Sinensis Teas on Kombucha Fermentation and Development of Flavored Kombucha with Brazilian Fruits. Beverages 2025, 11, 13. [Google Scholar] [CrossRef]
- Pyrovolou, K.; Tataridis, P.; Revelou, P.K.; Strati, I.F.; Konteles, S.J.; Tarantilis, P.A.; Houhoula, D.; Batrinou, A. Fermentation of a Strong Dark Ale Hybrid Beer Enriched with Carob (Ceratonia siliqua L.) Syrup with Enhanced Polyphenol Profile. Appl. Sci. 2024, 14, 1199. [Google Scholar] [CrossRef]
- Da Costa, M.P.; Frasao, B.D.S.; Lima, B.R.C.D.C.; Rodrigues, B.L.; Junior, C.A.C. Simultaneous Analysis of Carbohydrates and Organic Acids by HPLC-DAD-RI for Monitoring Goat’s Milk Yogurts Fermentation. Talanta 2016, 152, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Is the Color of Beer Related to the Color of the Distillers Grain?—Hunterlab. Available online: https://support.hunterlab.com/hc/en-us/articles/202022605-Is-the-color-of-beer-related-to-the-color-of-the-distillers-grain (accessed on 3 July 2025).
- Ji, X.X.; Zhang, Q.; Yang, B.X.; Song, Q.R.; Sun, Z.Y.; Xie, C.Y.; Tang, Y.Q. Response Mechanism of Ethanol-Tolerant Saccharomyces cerevisiae Strain ES-42 to Increased Ethanol during Continuous Ethanol Fermentation. Microb. Cell Fact. 2025, 24, 33. [Google Scholar] [CrossRef]
- Stewart, G.G. Saccharomyces Species in the Production of Beer. Beverages 2016, 2, 34. [Google Scholar] [CrossRef]
- Wimalasena, T.T.; Greetham, D.; Marvin, M.E.; Liti, G.; Chandelia, Y.; Hart, A.; Louis, E.J.; Phister, T.G.; Tucker, G.A.; Smart, K.A. Phenotypic Characterisation of Saccharomyces Spp. Yeast for Tolerance to Stresses Encountered during Fermentation of Lignocellulosic Residues to Produce Bioethanol. Microb. Cell Fact. 2014, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Sola, I.M.M.S.; Evers, L.D.; Wojeicchowski, J.P.; de Assis, T.M.; Marinho, M.T.; Demiate, I.M.; Alberti, A.; Nogueira, A. Impact of Pure, Co-, and Sequential Fermentations with Hanseniaspora Sp. and Saccharomyces cerevisiae on the Volatile Compounds of Ciders. Fermentation 2024, 10, 177. [Google Scholar] [CrossRef]
- Martin, V.; Valera, M.J.; Medina, K.; Dellacassa, E.; Schneider, R.; Boido, E.; Carrau, F. Application of Hanseniaspora Vineae to Improve White Wine Quality. In White Wine Technology; Academic Press: Cambridge, MA, USA, 2022; pp. 99–115. [Google Scholar] [CrossRef]
- Al Daccache, M.; Koubaa, M.; Salameh, D.; Vorobiev, E.; Maroun, R.G.; Louka, N. Control of the Sugar/Ethanol Conversion Rate during Moderate Pulsed Electric Field-Assisted Fermentation of a Hanseniaspora Sp. Strain to Produce Low-Alcohol Cider. Innov. Food Sci. Emerg. Technol. 2020, 59, 102258. [Google Scholar] [CrossRef]
- Xu, A.; Xiao, Y.; He, Z.; Liu, J.; Wang, Y.; Gao, B.; Chang, J.; Zhu, D. Use of Non-Saccharomyces Yeast Co-Fermentation with Saccharomyces cerevisiae to Improve the Polyphenol and Volatile Aroma Compound Contents in Nanfeng Tangerine Wines. J. Fungi 2022, 8, 128. [Google Scholar] [CrossRef]
- Du Plessis, H.; Du Toit, M.; Nieuwoudt, H.; Van der Rijst, M.; Hoff, J.; Jolly, N. Modulation of Wine Flavor Using Hanseniaspora Uvarum in Combination with Different Saccharomyces cerevisiae, Lactic Acid Bacteria Strains and Malolactic Fermentation Strategies. Fermentation 2019, 5, 64. [Google Scholar] [CrossRef]
- Del Fresno, J.M.; Loira, I.; Escott, C.; Carrau, F.; González, C.; Cuerda, R.; Morata, A. Application of Hanseniaspora Vineae Yeast in the Production of Rosé Wines from a Blend of Tempranillo and Albillo Grapes. Fermentation 2021, 7, 141. [Google Scholar] [CrossRef]
- Candida Krusei|Viticulture and Enology. Available online: https://wineserver.ucdavis.edu/industry-info/enology/wine-microbiology/yeast-mold/candida-krusei (accessed on 25 June 2025).
- Torres-Díaz, L.L.; Murillo-Peña, R.; Iribarren, M.; de Sáenz Urturi, I.; Marín-San Román, S.; González-Lázaro, M.; Pérez-Álvarez, E.P.; Garde-Cerdán, T. Exploring Metschnikowia Pulcherrima as a Co-Fermenter with Saccharomyces cerevisiae: Influence on Wine Aroma during Fermentation and Ageing. Beverages 2024, 10, 26. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Metschnikowia Pulcherrima Selected Strain for Ethanol Reduction in Wine: Influence of Cell Immobilization and Aeration Condition. Foods 2019, 8, 378. [Google Scholar] [CrossRef]
- Morata, A.; Loira, I.; Escott, C.; del Fresno, J.M.; Bañuelos, M.A.; Suárez-Lepe, J.A. Applications of Metschnikowia Pulcherrima in Wine Biotechnology. Fermentation 2019, 5, 63. [Google Scholar] [CrossRef]
- Hou, R.; Jelley, R.E.; van Leeuwen, K.A.; Pinu, F.R.; Fedrizzi, B.; Deed, R.C. Hydrogen Sulfide Production during Early Yeast Fermentation Correlates with Volatile Sulfur Compound Biogenesis but Not Thiol Release. FEMS Yeast Res. 2023, 23, foad031. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, T. Production of H2S by Yeasts: Role of Nutrients. J. Appl. Bacteriol. 1971, 34, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Azhar, M.A.; Munaim, M.S. Survival of Isolated Probiotic Yeast Strains from Kefir Towards Bile and Acidic Environments. Int. J. Chem. Biochem. Sci. 2023, 23, 63–67. [Google Scholar]
- de Pereira Paula, B.; de Souza Lago, H.; Firmino, L.; Fernandes Lemos Júnior, W.J.; Ferreira Dutra Corrêa, M.; Fioravante Guerra, A.; Signori Pereira, K.; Zarur Coelho, M.A. Technological Features of Saccharomyces cerevisiae Var. Boulardii for Potential Probiotic Wheat Beer Development. LWT 2021, 135, 110233. [Google Scholar] [CrossRef]
- Sadurski, J.; Polak-Berecka, M.; Staniszewski, A.; Wa’sko, A.W. Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review. Foods 2024, 13, 2216. [Google Scholar] [CrossRef]
- Youn, H.Y.; Kim, D.H.; Kim, H.J.; Bae, D.; Song, K.Y.; Kim, H.; Seo, K.H. Survivability of Kluyveromyces Marxianus Isolated From Korean Kefir in a Simulated Gastrointestinal Environment. Front. Microbiol. 2022, 13, 842097. [Google Scholar] [CrossRef]
- Bauer, F.F.; Pretorius, I.S. Yeast Stress Response and Fermentation Efficiency: How to Survive the Making of Wine—A Review. S. Afr. J. Enol. Vitic. 2000, 21, 27–51. [Google Scholar] [CrossRef]
- Postaru, M.; Tucaliuc, A.; Cascaval, D.; Galaction, A.I. Cellular Stress Impact on Yeast Activity in Biotechnological Processes—A Short Overview. Microorganisms 2023, 11, 2522. [Google Scholar] [CrossRef]
- de Paula, B.P.; Chávez, D.W.H.; Lemos Junior, W.J.F.; Guerra, A.F.; Corrêa, M.F.D.; Pereira, K.S.; Coelho, M.A.Z. Growth Parameters and Survivability of Saccharomyces Boulardii for Probiotic Alcoholic Beverages Development. Front. Microbiol. 2019, 10, 474445. [Google Scholar] [CrossRef]
- Walker, G.M.; Basso, T.O. Mitigating Stress in Industrial Yeasts. Fungal Biol. 2020, 124, 387–397. [Google Scholar] [CrossRef]
- Costa, A.C.T.; Russo, M.; Fernandes, A.A.R.; Broach, J.R.; Fernandes, P.M.B. Transcriptional Response of Multi-Stress-Tolerant Saccharomyces cerevisiae to Sequential Stresses. Fermentation 2023, 9, 195. [Google Scholar] [CrossRef]
- Morelli, L.; Capurso, L. FAO/WHO Guidelines on Probiotics: 10 Years Later. J. Clin. Gastroenterol. 2012, 46, S1–S2. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Sica, P.; Tonoli, F.; Silverio, M.S.; Douradinho, R.; Mota, L.A.; Prado, L.; Leite, G.M.G.L.; Carvalho, R.S.; Pinto, A.U.; Baptista, A.S. Pre-Adaptation of Yeast (Saccharomyces cerevisiae) Strains to Very High Gravity Can Improve Fermentation Parameters and Reduce Osmotic Stress. Biomass Convers. Biorefinery 2024, 15, 9123–9137. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef]
- Chen, A.; Si, Q.; Xu, Q.; Pan, C.; Qu, T.; Chen, J. Evaluation of Stress Tolerance and Fermentation Performance in Commercial Yeast Strains for Industrial Applications. Foods 2025, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Ruiz, J.; Belda, I.; Benito-Vázquez, I.; Marquina, D.; Calderón, F.; Santos, A.; Benito, S. The Genus Metschnikowia in Enology. Microorganisms 2020, 8, 1038. [Google Scholar] [CrossRef] [PubMed]
- Sipiczki, M.; Czentye, K.; Kállai, Z. High Intragenomic, Intergenomic, and Phenotypic Diversity in Pulcherrimin-Producing Metschnikowia Yeasts Indicates a Special Mode of Genome Evolution. Sci. Rep. 2024, 14, 10521. [Google Scholar] [CrossRef] [PubMed]
- Steiner, E.; Becker, T.; Gastl, M. Turbidity and Haze Formation in Beer—Insights and Overview. J. Inst. Brew. 2010, 116, 360–368. [Google Scholar] [CrossRef]
- Alexandre, H.; Guilloux-Benatier, M. Yeast Autolysis in Sparkling Wine—A Review. Aust. J. Grape Wine Res. 2006, 12, 119–127. [Google Scholar] [CrossRef]
- Chraniuk, P.; Bzducha-Wróbel, A. Functional Properties of Yeast Mannoproteins—Current Knowledge and Future Perspectives. Fermentation 2025, 11, 374. [Google Scholar] [CrossRef]
- Mencher, A.; Morales, P.; Valero, E.; Tronchoni, J.; Patil, K.R.; Gonzalez, R. Proteomic Characterization of Extracellular Vesicles Produced by Several Wine Yeast Species. Microb. Biotechnol. 2020, 13, 1581–1596. [Google Scholar] [CrossRef]
- Speers, R.A.; Jin, Y.L.; Paulson, A.T.; Stewart, R.J. Effects of β-Glucan, Shearing and Environmental Factors on the Turbidity of Wort and Beer. J. Inst. Brew. 2003, 109, 236–244. [Google Scholar] [CrossRef]
- Meledina, T.V.; Davydenko, S.G.; Dedegkaev, A.T. Yeast Physiological State Influence on Beer Turbidity. Agron. Res. 2015, 13, 992–1001. [Google Scholar]
- Rozès, N.; Vion, C.; Yeramian, N.; Hranilovic, A.; Masneuf-Pomarède, I.; Marullo, P. Influence of Yeasts on Wine Acidity: New Insights into Saccharomyces cerevisiae. OENO One 2024, 58, 1–17. [Google Scholar] [CrossRef]
- Sánchez-Suárez, F.; Peinado, R.A. Use of Non-Saccharomyces Yeast to Enhance the Acidity of Wines Produced in a Warm Climate Region: Effect on Wine Composition. Fermentation 2024, 10, 17. [Google Scholar] [CrossRef]
- Pinu, F.R.; Villas-Boas, S.G.; Martin, D. Pre-Fermentative Supplementation of Fatty Acids Alters the Metabolic Activity of Wine Yeasts. Food Res. Int. 2019, 121, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Ambroset, C.; Petit, M.; Brion, C.; Sanchez, I.; Delobel, P.; Guérin, C.; Chiapello, H.; Nicolas, P.; Bigey, F.; Dequin, S.; et al. Deciphering the Molecular Basis of Wine Yeast Fermentation Traits Using a Combined Genetic and Genomic Approach. G3 Genes|Genomes|Genetics 2011, 1, 263–281. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Front. Microbiol. 2016, 7, 185047. [Google Scholar] [CrossRef]
- Mančić, S.; Stojanović, S.S.; Danilović, B.; Djordjević, N.; Malićanin, M.; Lazić, M.; Karabegović, I. Oenological Characterization of Native Hanseniaspora Uvarum Strains. Fermentation 2022, 8, 92. [Google Scholar] [CrossRef]
- Vilela, A. Use of Nonconventional Yeasts for Modulating Wine Acidity. Fermentation 2019, 5, 27. [Google Scholar] [CrossRef]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not Your Ordinary Yeast: Non-Saccharomyces Yeasts in Wine Production Uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, E.; Kręgiel, D. Enzymatic profiles and Antimicrobial activity of the yeast metschnikowia pulcherrima. Acta Innov. 2017, 23, 17–24. [Google Scholar]
- Karabegović, I.; Malićanin, M.; Danilović, B.; Stanojević, J.; Stojanović, S.S.; Nikolić, N.; Lazić, M. Potential of Non-Saccharomyces Yeast for Improving the Aroma and Sensory Profile of Prokupac Red Wine. OENO One 2021, 55, 181–195. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Gao, H.; Bai, X.; Li, L.; Wei, R.; Dong, Z. Metabolomics and Flavor Diversity in Cabernet Sauvignon Wines Fermented by Various Origins of Hanseniaspora Uvarum in the Presence and Absence of Saccharomyces cerevisiae. LWT 2024, 203, 116396. [Google Scholar] [CrossRef]
- Wang, C.; Mas, A.; Esteve-Zarzoso, B. Interaction between Hanseniaspora Uvarum and Saccharomyces cerevisiae during Alcoholic Fermentation. Int. J. Food Microbiol. 2015, 206, 67–74. [Google Scholar] [CrossRef]
- Benito, S.; Morata, A.; Palomero, F.; González, M.C.; Suárez-Lepe, J.A. Formation of Vinylphenolic Pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in Red Wines Produced Following Different Fermentation Strategies. Food Chem. 2011, 124, 15–23. [Google Scholar] [CrossRef]
- Pons-Mercadé, P.; Giménez, P.; Vilomara, G.; Conde, M.; Cantos, A.; Rozès, N.; Ferrer, S.; Canals, J.M.; Zamora, F.; Pons-Mercadé, P.; et al. New Insights about the Influence of Yeasts Autolysis on Sparkling Wines Composition and Quality. In Grapes and Wine; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Probiotic Drink Market Size, Growth & Trends 2025 to 2035. Available online: https://www.futuremarketinsights.com/reports/probiotic-drink-market (accessed on 15 August 2025).
- Mukherjee, A.; Gómez-Sala, B.; O’Connor, E.M.; Kenny, J.G.; Cotter, P.D. Global Regulatory Frameworks for Fermented Foods: A Review. Front. Nutr. 2022, 9, 902642. [Google Scholar] [CrossRef]
Strain Number | Strain Species | Strain Code 1 |
---|---|---|
15 | Hanseniaspora uvarum | 15_Hans_uvarum |
16 | Hanseniaspora uvarum | 16_Hans_uvarum |
37 | Saccharomyces cerevisiae | 37_Sacch_cerevisiae |
101 | Pichia kudriavzevii | 101_Pich_kudriavzevii |
110 | Metschnikowia pulcherrima | 110_Metsch_pulcherrima |
113 | Metschnikowia pulcherrima | 113_Metsch_pulcherrima |
SB | Saccharomyces cerevisiae var. boulardii | Sacch_boulardi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staniszewski, A.; Staniszewska, P.; Komoń-Janczara, E.; Kordowska-Wiater, M. Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages. Foods 2025, 14, 2921. https://doi.org/10.3390/foods14162921
Staniszewski A, Staniszewska P, Komoń-Janczara E, Kordowska-Wiater M. Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages. Foods. 2025; 14(16):2921. https://doi.org/10.3390/foods14162921
Chicago/Turabian StyleStaniszewski, Adam, Patrycja Staniszewska, Elwira Komoń-Janczara, and Monika Kordowska-Wiater. 2025. "Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages" Foods 14, no. 16: 2921. https://doi.org/10.3390/foods14162921
APA StyleStaniszewski, A., Staniszewska, P., Komoń-Janczara, E., & Kordowska-Wiater, M. (2025). Probiotic Yeast and How to Use Them—Combining Traditions and New Waves in Fermented Beverages. Foods, 14(16), 2921. https://doi.org/10.3390/foods14162921