Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia
Abstract
1. Introduction
2. Materials and Methods
2.1. Conditioning of Vinal Pods
2.2. Preparation of Ethanolic Extracts
2.3. Experimental Design for RSM Optimization
2.4. Characterisation of the Response Variables
2.4.1. Antioxidant Capacity (DPPH and ABTS Assays)
2.4.2. Total Polyphenolic Content (TPC)
2.4.3. Total Flavonoids (TF)
2.4.4. Relative Energy Efficiency
2.4.5. Total and Relative Carbon Footprint
2.5. Polyphenol Profile by HPLC
2.6. Comparing Extraction Methods
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimized Conditions for Extraction
3.1.1. Experimental Data
3.1.2. Factor Effect on Responses
- a.
- Dynamic Maceration
- b.
- Ultrasound-assisted extraction
- c.
- Microwave-assisted extraction
3.1.3. Experimental Evaluation of the Optimized Models
3.2. Characterization of the Extracts
3.2.1. Comparison of Functional Characteristics
3.2.2. Relative Energy Efficiency and Carbon Footprint
3.2.3. Polyphenolic Profile of the Optimized Extracts
3.2.4. Principal Component Analysis (PCA)
3.3. Selection of the Optimal Method for Obtaining Functional Extracts
4. Conclusions
- DME, optimized for 40 min, 50 °C, and 42% ethanol, proved to be the most efficient method, compared to ME and UE, achieving the highest total phenolic compound contents and requiring the lowest solvent volumes. Furthermore, DME proved to be technically and economically viable, as well as environmentally sustainable, for scale-up.
- The CA of the optimized vinal extracts was up to four times higher than that of tea, coffee, and berries.
- The application of RSM was crucial to optimizing these methods, allowing not only the identification of optimal operating conditions but also revealing complex interactions between the factors studied. This interrelationship demonstrates that process efficiency depends on a delicate balance between the applied conditions.
- To the best of our knowledge, this study represents the first documented comparison of extraction techniques for optimizing the extraction of bioactive compounds from Neltuma spp., employing RSM, and considering energy and carbon footprint.
- This work underscores the importance of integrating advanced statistical tools with functional characteristics and energy, environmental, and practical criteria to develop more efficient, affordable, and adaptable extraction processes.
- Favoring the added value of native species also drives the development of bioactive ingredients for innovative applications and sustainable industrial scaling.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation |
AC | Antioxidant Capacity Evaluated by the DPPH Assay |
CF | Carbon Footprint |
DME | Dynamic Maceration Extraction |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
Dw | Dry Weight of Original Powder |
GAE | Gallic Acid Equivalent |
ME | Microwave-Assisted Extraction |
NUS | Neglected and Underutilized Species |
TEAC | Trolox Equivalent Antioxidant Capacity Evaluated by the ABTS Assay |
TPC | Total Polyphenol Content |
UE | Ultrasound-Assisted Extraction |
RCF | Relative Carbon Footprint |
References
- Hughes, C.E.; Ringelberg, J.J.; Lewis, G.P.; Catalano, S.A. Disintegration of the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 2022, 205, 147. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO: Rome, Italy, 2021. [Google Scholar]
- Bortolotto, I.M.; de Cássia Avellaneda Guimarães, R.; Campos, R.P.; da Silva Lopes, M.R.; da Silva, L.P.R.; Silva, R.H.; Damasceno-Junior, G.A.; Pott, A.; Hiane, P.A. Food composition data: Edible plants in Pantanal. In Local Food Plants of Brazil; Padulosi, S., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 297–324. [Google Scholar]
- Puppo, M.C.; Felker, P. Prosopis as a Heat Tolerant Nitrogen Fixing Desert Food Legume: Prospects for Economic Development in Arid Lands; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Ndlovu, M.; Scheelbeek, P.; Ngidi, M.; Mabhaudhi, T. Underutilized crops for diverse, resilient and healthy agri-food systems: A systematic review of sub-Saharan Africa. Front. Sustain. Food Syst. 2024, 8, 1498402. [Google Scholar] [CrossRef]
- Knez, M.; Ranić, M.; Gurinović, M. Underutilized plants increase biodiversity, improve food and nutrition security, reduce malnutrition, and enhance human health and well-being. Let’s put them back on the plate! Nutr. Rev. 2024, 82, 1111–1124. [Google Scholar] [CrossRef]
- Talucder, M.S.A.; Ruba, U.B.; Robi, M.A.S. Potentiality of neglected and underutilized species (NUS) as a future resilient food: A systematic review. J. Agric. Food Res. 2024, 16, 101116. [Google Scholar] [CrossRef]
- Sciammaro, L.P.; Quintero Ruiz, N.A.; Ferrero, C.; Giacomino, S.; Picariello, G.; Mamone, G.; Puppo, M.C. Prosopis spp. powder: Influence of chemical components in water adsorption properties. Int. J. Food Sci. Technol. 2021, 56, 278–286. [Google Scholar] [CrossRef]
- Correa Uriburu, F.M.; Cattaneo, F.; Maldonado, L.M.; Zampini, I.C.; Alberto, M.R.; Isla, M.I. Prosopis alba Seed as a Functional Food Waste for Food Formulation Enrichment. Foods 2022, 11, 2857. [Google Scholar] [CrossRef]
- Dalzotto, D.; Hoffmann, E.; Dalponte, M. Uso sustentable del género Prosopis en Argentina; Universidad Nacional de Río Negro: Río Negro, Argentina, 2024; ISBN 978-950-34-2400-1. [Google Scholar]
- Graziani, A.; Cardile, V.; Crupi, R.; Venuti, V.; Trovato, A.; Toscano, S.; Parisi, V. Antioxidant and anti-inflammatory effects of Prosopis spp. leaves: Phytochemical and biological studies. Phytomedicine 2021, 93, 153794. [Google Scholar]
- González-Cortazar, M.; Salinas-Sánchez, D.O.; Herrera-Ruiz, M.; Hernández-Hernández, P.; Zamilpa, A.; Jiménez-Ferrer, E.; Ble-González, E.A. Chemical profile analysis of Prosopis laevigata extracts and their topical anti-inflammatory and antibacterial activities. Plants 2025, 14, 1118. [Google Scholar] [CrossRef] [PubMed]
- Nava-Solis, U.; Rodriguez-Canales, M.; Hernandez-Hernandez, A.B.; Velasco-Melgoza, D.A.; Moreno-Guzman, B.P.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Antimicrobial activity of the methanolic leaf extract of Prosopis laevigata. Sci. Rep. 2022, 12, 20807. [Google Scholar] [CrossRef] [PubMed]
- Seling, G.S.; Rivero, R.C.; Busch, V.M.; Buera, M.P. Effect of Milling and Extraction Techniques on the Functional and Phytochemical Properties of Neltuma ruscifolia Pods. Foods 2024, 13, 1652. [Google Scholar]
- Weremfo, A.; Abassah-Oppong, S.; Adulley, F.; Dabie, K.; Seidu-Larry, S. Response surface methodology as a tool to optimize the extraction of bioactive compounds from plant sources. J. Sci. Food Agric. 2022, 103, 26–36. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Contreras-Esquivel, J.C.; Muñiz-Márquez, D.B.; Ramírez-Moreno, E.; Belmares-Cerda, R.E.; Montañez, J.C.; Aguilar, C.N. Microwave-assisted extraction of phenolic antioxidants from semiarid plants. Am. J. Agric. Biol. Sci. 2014, 9, 299–310. [Google Scholar] [CrossRef]
- Herrero, M. Towards green extraction of bioactive natural compounds. Anal. Bioanal. Chem. 2023, 416, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, L.G.I.; Genevois, C.E.; Busch, V.M. Novel Flours from Leguminosae (Neltuma ruscifolia) Pods for Technological Improvement and Nutritional Enrichment of Wheat Bread. Heliyon 2023, 9, e14210. [Google Scholar] [CrossRef]
- Rivero, R.; Archaina, D.; Sosa, N.; Leiva, G.; Baldi Coronel, B.; Schebor, C. Development of Healthy Gummy Jellies Containing Honey and Propolis. J. Sci. Food Agric. 2020, 100, 1030–1037. [Google Scholar] [CrossRef]
- Rolandelli, G.; Farroni, A.E.; Buera, M.D.P. Physicochemical Transformations of Corn-Based Snacks with Underexploited Grains Addition during Storage: Multi-Analytical Assessment. Int. J. Food Sci. Technol. 2023, 58, 623–630. [Google Scholar] [CrossRef]
- Rivero, R.C.; Archaina, D.A.; Busquet, C.M.; Baldi Coronel, B.M.; Busch, V.M. Development of a Honey-Based Powder Ingredient Using a Mixture Design: Botanical Origin Effect and Hydration Properties. LWT—Food Sci. Technol. 2021, 147, 111446. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Archaina, D.; Rivero, R.; Sosa, N.; Baldi Coronel, B. Influence of the Harvesting Procedure and Extracting Process on the Antioxidant Capacity of Ethanolic Propolis Extracts. J. Apic. Res. 2015, 54, 474–481. [Google Scholar] [CrossRef]
- Nowak, P.M.; Bis, A.; Rusin, M.; Woźniakiewicz, M. Carbon Footprint of the Analytical Laboratory and the Three-Dimensional Approach to Its Reduction. Green. Anal. Chem. 2023, 4, 100051. [Google Scholar] [CrossRef]
- Farley, M.; Nicolet, B.P. Re-Use of Laboratory Utensils Reduces CO2 Equivalent Footprint and Running Costs. PLoS ONE 2023, 18, e0283697. [Google Scholar] [CrossRef]
- Busch, V.M.; Pereyra-Gonzalez, A.; Šegatin, N.; Santagapita, P.R.; Ulrih, N.P.; Buera, M.D.P. Propolis encapsulation by spray drying: Characterization and stability. LWT 2017, 75, 227–235. [Google Scholar] [CrossRef]
- Ruiz-Nieto, J.E.; Hernández-Ruiz, J.; Hernández-Marín, J.; Mendoza-Carrillo, J.; Abraham-Juárez, M.; Isiordia-Lachica, P.M.; Mireles-Arriaga, A.I. Mesquite (Prosopis spp.) Tree as a Feed Resource for Animal Growth. Agrofor. Syst. 2020, 94, 1139–1149. [Google Scholar] [CrossRef]
- Hamwi, M.; Nayal, R.; Abajy, M.Y. Optimization of Extraction Process to Maximize Phenolic Content, Flavonoid Content, and Antioxidant Activity of Prosopis farcta Using Response Surface Methodology. Bull. Pharm. Sci. Assiut Univ. 2024, 47, 883–898. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Zhong, J.; Ayatollahi, S.A.; Kobarfard, F.; Faizi, M.; Khosravi-Dehaghi, N.; Suleria, H.A. LC-ESI-QTOF-MS/MS Characterization of Phenolic Compounds from Prosopis farcta and Their Potential Antioxidant Activities. Cell. Mol. Biol. 2021, 67, 189–200. [Google Scholar] [CrossRef]
- Szpisják-Gulyás, N.; Al-Tayawi, A.N.; Horváth, Z.H.; László, Z.; Kertész, S.; Hodúr, C. Methods for Experimental Design, Central Composite Design and the Box–Behnken Design to Optimise Operational Parameters: A Review. Acta Aliment. 2023, 52, 521–537. [Google Scholar] [CrossRef]
- González-Quijano, G.K.; Arrieta-Baez, D.; Dorantes-Álvarez, L.; Aparicio-Ozores, G.; Guerrero-Legarreta, I. Effect of Extraction Method on the Content of Phytoestrogens and Main Phenolics in Mesquite Pod Extracts (Prosopis sp.). Rev. Mex. Ing. Quim. 2019, 18, 303–312. [Google Scholar] [CrossRef]
- Díaz-Batalla, L.; Hernández-Uribe, J.P.; Gutiérrez-Dorado, R.; Téllez-Jurado, A.; Castro-Rosas, J.; Pérez-Cadena, R.; Gómez-Aldapa, C.A. Nutritional Characterization of Prosopis laevigata Legume Tree (Mesquite) Seed Flour and the Effect of Extrusion Cooking on Its Bioactive Components. Foods 2018, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.J.; Cuello, A.S.; Zampini, I.C.; Ordoñez, R.M.; Alberto, M.R.; Quispe, C.; Isla, M.I. Polyphenolic Compounds and Anthocyanin Content of Prosopis nigra and Prosopis alba Pods Flour and Their Antioxidant and Anti-Inflammatory Capacities. Food Res. Int. 2014, 64, 762–771. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Fleite, S.; Cassanello, M.C.; Buera, M.P. Modifications of Biological Membranes, Fat Globules and Liposomes Promoted by Cavitation Processes: Consequences and Applications. Chem. Phys. Lipids 2025, 267, 105462. [Google Scholar] [CrossRef]
- Vega, M.; Delannoy, F.; Cano, D.; Giandoménico, E.; Piacentini, R. Carbon Footprint Estimation at the National University of Rosario, Argentina: Evaluation and Perspective. ARPHA Proc. 2024, 7, 357–365. [Google Scholar] [CrossRef]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Rana, H.K.; Singh, V.; Yadav, T.C.; Varadwaj, P.; Pandey, A.K. Evaluation of Antidiabetic Activity of Dietary Phenolic Compound Chlorogenic Acid in Streptozotocin-Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Silico Toxicity, In Vitro and In Vivo Studies. Comput. Biol. Med. 2021, 134, 104462. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic Acid: A Comprehensive Review of the Dietary Sources, Processing Effects, Bioavailability, Beneficial Properties, Mechanisms of Action, and Future Directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef]
- Sharifi-Zahabi, E.; Hajizadeh-Sharafabad, F.; Nachvak, S.M.; Mirzaian, S.; Darbandi, S.; Shidfar, F. A Comprehensive Insight into the Molecular Effect of Theobromine on Cardiovascular-Related Risk Factors: A Systematic Review of In Vitro and In Vivo Studies. Phytother. Res. 2023, 37, 1469–1484. [Google Scholar] [CrossRef]
- Bispo, M.S.; Veloso, M.C.C.; Pinheiro, H.L.C.; Andrade, J.B.; De Almeida, R.M.; Pereira, P.A.P. Simultaneous determination of caffeine, theobromine, and theophylline by high-performance liquid chromatography. J. Chromatogr. Sci. 2002, 40, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Sidoryk, K.; Jaromin, A.; Filipczak, N.; Cmoch, P.; Cybulski, M. Synthesis and Antioxidant Activity of Caffeic Acid Derivatives. Molecules 2018, 23, 2199. [Google Scholar] [CrossRef]
- Azeem, M.; Niazi, S.; Fayyaz, F.; Zahoor, A.; Zehra, T.; Fatima, M.; Abid, H.M.U. An Overview of Anticancer, Anti-Inflammatory, Antioxidant, Antimicrobial, Cardioprotective, and Neuroprotective Effects of Rutin. Curr. Pharm. Res. 2024, 2, 119–155. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic Acid Derivatives and Their Biological Efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Fakayode, O.A.; Li, H. Green extraction of polyphenols via deep eutectic solvents and assisted technologies from agri-food by-products. Molecules 2023, 28, 6852. [Google Scholar] [CrossRef]
- Radnia, M.R.; Mahdian, E.; Sani, A.M.; Hesarinejad, M.A. Comparison of microwave and pulsed electric field methods on extracting antioxidant compounds from Arvaneh plant (Hymenocrater platystegius Rech. F). Sci. Rep. 2024, 14, 25903. [Google Scholar] [CrossRef]
- Villalba, R.; Denis Ibars, J.; Martínez, K.; Coronel, E.; Friesen, A.; Mereles, L. Variations in the composition of “algarrobas” (Prosopis sp.) flours from Paraguayan Chaco. Biol. Life Sci. Forum 2022, 17, 25. [Google Scholar] [CrossRef]
- Suárez-Rebaza, L.A.; de Albuquerque, R.D.; Zavala, E.; Alva-Plasencia, P.M.; Ganoza-Suárez, M.M.; Ganoza-Yupanqui, M.L.; Bussmann, R.W. Chemical composition and antioxidant capacity of purified extracts of Prosopis pallida (Humb. & Bonpl. ex Willd.) Kunth (Fabaceae) fruits from Northern Peru. Bol. Latinoam. Caribe Plantas Med. Aromát. 2023, 22, 5. [Google Scholar]
- Cardozo, M.L.; Ordoñez, R.M.; Zampini, I.C.; Cuello, A.S.; Dibenedetto, G.; Isla, M.I. Evaluation of antioxidant capacity, genotoxicity and polyphenol content of non-conventional foods: Prosopis flour. Food Res. Int. 2010, 43, 1505–1510. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Theoduloz, C.; Jiménez-Aspee, F.; Echeverría, J. Bioactive constituents from South American Prosopis and their use and toxicity. Curr. Pharm. Des. 2020, 26, 542–555. [Google Scholar] [CrossRef] [PubMed]
Compounds | Wavelength (nm) | DME | ME | UE | ||
---|---|---|---|---|---|---|
Gallic acid | 210 | 168 ± 5 a | 60 ± 4 b | 35.8% | 3 ± 1 c | 1.9% |
Chlorogenic | 325 | 5 ± 1 a | 3 ± 1 b | 68.7% | 2 ± 1 c | 40.8% |
Theobromine | 271 | 75 ± 3 a | 20 ± 1 b | 26.5% | 12 ± 1 c | 16.5% |
Caffeic | 320 | 6 ± 1 a | 3 ± 1 b | 51.0% | 2 ± 1 c | 40.5% |
Rutin | 355 | 114 ± 8 a | 27 ± 5 b | 23.8% | 17 ± 1 c | 14.8% |
Cinnamic | 275 | 7 ± 1 a | 4 ± 1 b | 52.8% | 4 ± 1 b | 51.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seling, G.S.; Rivero, R.C.; Sisi, C.V.; Busch, V.M.; Buera, M.P. Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia. Foods 2025, 14, 2927. https://doi.org/10.3390/foods14172927
Seling GS, Rivero RC, Sisi CV, Busch VM, Buera MP. Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia. Foods. 2025; 14(17):2927. https://doi.org/10.3390/foods14172927
Chicago/Turabian StyleSeling, Giuliana S., Roy C. Rivero, Camila V. Sisi, Verónica M. Busch, and M. Pilar Buera. 2025. "Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia" Foods 14, no. 17: 2927. https://doi.org/10.3390/foods14172927
APA StyleSeling, G. S., Rivero, R. C., Sisi, C. V., Busch, V. M., & Buera, M. P. (2025). Integrated Approach for the Optimization of the Sustainable Extraction of Polyphenols from a South American Abundant Edible Plant: Neltuma ruscifolia. Foods, 14(17), 2927. https://doi.org/10.3390/foods14172927