Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review
Abstract
1. Introduction
2. Sensory Changes During Sous-Vide Cooking
2.1. Flavour Changes During Sous-Vide Cooking
2.2. Colour Changes During Sous-Vide Cooking
2.3. Texture Changes During Sous-Vide Cooking
2.4. Consumer Taste Changes During Sous-Vide Cooking
3. Changes in Muscle Composition During Sous-Vide Cooking
3.1. Lipid Changes During Sous-Vide Cooking
3.2. Protein Changes During Sous-Vide Cooking
3.2.1. Effects of Protein Changes on Meat Texture
3.2.2. Protein Oxidation and Its Effects on Meat Quality
3.2.3. Changes in Some Specific Proteins
3.2.4. Changes in Amino Acids During Sous-Vide Cooking
3.3. Water Changes During Sous-Vide Cooking
3.4. Other Changes During Sous-Vide Cooking
4. Future Prospects
- •
- While meats primarily consist of similar components (water, protein, and lipid), the specific characteristics of different meats can vary. To date, most studies have focused on the selection and optimization of sous-vide cooking for a single type of meat. Thus, the effects of sous-vide cooking across different species should be studied.
- •
- There are existing standards for evaluating ready-to-eat food, with most emphasizing microbial aspects. However, as demands for high food quality continue to rise, grading standards for sous-vide-cooked meat require further discussion and definition. This should include the development of quantitative methods and a scientific evaluation system to assess the quality of such products.
- •
- Research has explored the molecular mechanisms underlying quality changes in sous-vide cooked meat, particularly regarding flavour development. Studies have examined changes in certain lipids and proteins, with previous work discussing and quantifying specific lipid oxidation products and protein denaturation. Nonetheless, a more systematic and in-depth exploration is needed. Using omics approaches and precise instrumental analysis, components of sous-vide-cooked meats could be evaluated with high resolution. For example, mass spectrometry-based proteomics can provide detailed qualitative and quantitative analyses of individual proteins, clarify the relationships between texture changes and specific structural proteins, and enhance the understanding of how sous-vide cooking maintains meat texture. Investigating the changes in the activity and metabolic pathways of endogenous enzymes during sous-vide cooking can also shed light on biological activities. Advanced techniques such as low-field nuclear magnetic resonance and nuclear magnetic resonance imaging can elaborate on the moisture migration patterns, aiding comprehension of water retention mechanisms. These methods would enable more precise explanations of molecular-level changes during sous-vide cooking.
- •
- Most previous studies have focused on sous-vide cooking’s effects on pure meat, yet food processing often involves combinations of multiple ingredients rather than simple meat cuts. Thus, attention should be paid to the impact of additives and interactions between different raw materials. For instance, how salt ions affect meat’s water retention (whether positively or negatively), how to preserve or counteract this effect, and how the Maillard reaction proceeds in the presence of sugar and its impact on meat texture and flavour.
- •
- Previous research has confirmed that time and temperature are critical parameters influencing the quality of sous-vide cooked meat, with certain biochemical reactions (e.g., protein denaturation and enzyme inactivation) being irreversible and dependent on strict temperature conditions. This places higher demands on the temperature control capabilities of cooking equipment. Research into instruments with superior temperature control can facilitate the production of sous-vide foods with more consistent and controllable quality.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. World Food and Agriculture; Statistical Yearbook: Rome, Italy, 2024; pp. 15–17. [Google Scholar]
- Fidler, J.C. Preservation of food. In Current Trends in Cryobiology; Smith, A.U., Ed.; Plenum Press: London, UK, 1970; pp. 43–60. [Google Scholar]
- van Veen, T.W.S. International trade and food safety in developing countries. Food Control 2005, 16, 491–496. [Google Scholar] [CrossRef]
- Ayub, H.; Ahmad, A. Physiochemical changes in sous-vide and conventionally cooked meat. Int. J. Gastron. Food Sci. 2019, 17, 100145. [Google Scholar] [CrossRef]
- Jiang, S.; Xue, D.J.; Zhang, Z.; Shan, K.; Ke, W.X.; Zhang, M.; Zhao, D.; Nian, Y.Q.; Xu, X.L.; Zhou, G.H.; et al. Effect of Sous-vide cooking on the quality and digestion characteristics of braised pork. Food Chem. 2022, 375, 131683. [Google Scholar] [CrossRef]
- Werenska, M. Effect of different sous-vide cooking temperature-time combinations on the functional and sensory properties of goose meat. Poult. Sci. 2024, 103, 103701. [Google Scholar] [CrossRef]
- Creed, P.G. Sensory and nutritional aspects of sous vide processed foods. In Sous Vide and Cook–Chill Processing for the Food Industry; Aspen Publishers: Gaithersburg, MD, USA, 1998; pp. 57–88. [Google Scholar]
- Rinald, M.; Santi, S.; Paciulli, M.; Ganino, T.; Pellegrini, N.; Visconti, A.; Vitaglione, P.; Barbanti, D.; Chiavaro, E. Comparison of physical, microstructural and antioxidative properties of pumpkin cubes cooked by conventional, vacuum cooking and sous vide methods. J. Sci. Food Agric. 2021, 101, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Rasmussen, F.D.; Cavender, G.A.; Sullivan, G.A. Texture, color and sensory evaluation of sous-vide cooked beef steaks processed using high pressure processing as method of microbial control. LWT-Food Sci. Technol. 2019, 103, 169–177. [Google Scholar] [CrossRef]
- Hunt, H.B.; Watson, S.C.; Chaves, B.D.; Sullivan, G.A. Inactivation of Salmonella in nonintact beef during low-temperature sous vide cooking. J. Food Prot. 2023, 86, 100010. [Google Scholar] [CrossRef] [PubMed]
- Thathsarani, A.P.K.; Alahakoon, A.U.; Liyanage, R. Current status and future trends of sous vide processing in meat industry; A review. Trends Food Sci. Technol. 2022, 129, 353–363. [Google Scholar] [CrossRef]
- Pandita, G.; Bhosale, Y.K.; Choudhary, P. Sous vide: A proposition to nutritious and superior quality cooked food. ACS Food Sci. Technol. 2023, 3, 592–599. [Google Scholar] [CrossRef]
- Onyeaka, H.; Nwabor, O.; Jang, S.; Obileke, K.; Hart, A.; Anumusu, C.; Miri, T. Sous vide processing: A viable approach for the assurance of microbial food safety. J. Sci. Food Agric. 2022, 102, 3503–3512. [Google Scholar] [CrossRef]
- Bahureksa, W.; Young, R.B.; Mckenna, A.M.; Chen, H.; Thorn, K.A.; Rosario-Ortiz, F.L.; Borch, T. Nitrogen enrichment during soil organic matter burning and molecular evidence of maillard reactions. Environ. Sci. Technol. 2022, 56, 4597–4609. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Li, D.C.; Shi, P.Y.; Wu, J.J.; Dai, Z.Y.; Dong, X.P.; Lu, Y.B. Effect of sous vide cooking technology on the quality, protein structure, microstructure, and flavor of yellowfin tuna (Thunnus albacares). Food Chem. 2025, 484, 144423. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.I.; Lee, E.J.; Hong, G.P. Effects of temperature and time on the cookery properties of sous-vide processed pork loin. Food Sci. Anim. Resour. 2019, 39, 65–72. [Google Scholar] [CrossRef]
- Trbovich, V.R.; Garza, H.; Wick, M.P.; England, E.M.; Garcia, L.G. Investigating the effects of sous vide cooking on tenderness and protein concentration in young fed and cow semitendinosus muscles. Meat Muscle Biol. 2017, 1, 34. [Google Scholar] [CrossRef]
- Treovich, V.R.; Garza, H.; Garcia, L.G. Temperature and time effects of sous vide on tenderness in beef semitendinous muscles. Meat Muscle Biol. 2017, 1, 81. [Google Scholar] [CrossRef]
- Karyotis, D.; Skandamis, P.N.; Juneja, V.K. Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Res. Int. 2017, 100, 894–898. [Google Scholar] [CrossRef]
- Haskaraca, G.; Juneja, V.K.; Mukhopadhyay, S.; Kolsarici, N. The effects of grapefruit seed extract on the thermal inactivation of Listeria monocytogenes in sous-vide processed döner kebabs. Food Control 2019, 95, 71–76. [Google Scholar] [CrossRef]
- Kehlet, U.; Mitra, B.; Ruiz Carrascal, J.R.; Raben, A.; Aaslyng, M.D. The satiating properties of pork are not affected by cooking methods, sousvide holding time or mincing in healthy men—A randomized cross-over meal test study. Nutrients 2017, 9, 941. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Oey, I.; Bremer, P.; Silcock, P. Process optimisation of pulsed electric fields pre-treatment to reduce the sous vide processing time of beef briskets. Int. J. Food Sci. Technol. 2019, 54, 823–834. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. The Influence of cooking parameters and chilledstorage time on quality of sous-vide atlantic mackerel (Scomber scombrus). J. Aquat. Food Prod. Technol. 2019, 28, 505–518. [Google Scholar] [CrossRef]
- Haq, I.U.; Asghar, B.; Manzoor, A.; Ali, S.; Nauman, K.; Ahmad, S.; Hopkins, D.L.; Nasir, J. Investigating the impact of sous vide cooking on the eating quality of spent buffalo (Bubalus bubalis) meat. Meat Sci. 2024, 209, 109417. [Google Scholar] [CrossRef]
- Uttaro, B.; Zawadski, S.; Mcleod, B. Efficacy of multi-stage sous-vide cooking on tenderness of low value beef muscles. Meat Sci. 2019, 149, 40–46. [Google Scholar] [CrossRef]
- Alahakoon, A.U.; Oey, I.; Bremer, P.; Silcock, P. Optimisation of sous vide processing parameters for pulsed electric fields treated beef briskets. Food Bioprocess Technol. 2018, 11, 2055–2066. [Google Scholar] [CrossRef]
- Gawat, M.; Boland, M.; Chen, J.; Singh, J.; Kaur, L. Effects of microwave processing in comparison to sous vide cooking on meat quality, protein structural changes, and in vitro digestibility. Food Chem. 2024, 434, 137442. [Google Scholar] [CrossRef]
- Pino Hernandez, E.J.G.; Carvalho, R.N.D.; Joele, M.R.S.P.; Araujo, C.D.S.; Lourenco, L.D.F.H. Effects of modified atmosphere packing over the shelf life of sous vide from captive pirarucu (Arapaima gigas). Innov. Food Sci. Emerg. Technol. 2017, 39, 94–100. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Zhang, X.; Mason, S.L.; Bekhit, A.E.D.A. Sous-vide cooking improves the quality and in-vitro digestibility of Semitendinosus from culled dairy cows. Food Res. Int. 2020, 127, 108708. [Google Scholar] [CrossRef] [PubMed]
- Chian, F.M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effects of pulsed electric field processing and sous vide cooking on muscle structure and in vitro protein digestibility of beef brisket. Foods 2021, 10, 512. [Google Scholar] [CrossRef]
- Modzelewska-Kapituła, M.; Pietrzak-Fiećko, R.; Tkacz, K.; Draszanowska, A.; Więk, A. Influence of sous vide and steam cooking on mineral contents, fatty acid composition and tenderness of semimembranosus muscle from Holstein-Friesian bulls. Meat Sci. 2019, 157, 107877. [Google Scholar] [CrossRef] [PubMed]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Effect of different temperature and time combinations on quality characteristics of sous-vide cooked goat gluteus medius and biceps femoris. Food Bioprocess Technol. 2019, 12, 1000–1009. [Google Scholar] [CrossRef]
- Pino-Hernandez, E.; Junior, R.N.D.C.; Alves, R.C.B.; Joele, M.R.S.P.; Silva, N.D.S.E.; Silva, E.V.C.D.; Lourenço, L.D.F.H. Evaluation of muscle cuts of pirarucu (Arapaima gigas) and sous vide product characterization and quality parameters. Int. J. Gastron. Food Sci. 2020, 20, 100200. [Google Scholar] [CrossRef]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of different marination conditions on quality, microbiological properties, and sensory characteristics of pork hamcooked by the sous-vide method. Korean J. Food Sci. Anim. Resour. 2018, 38, 506. [Google Scholar]
- Jeong, K.; Hyeonbin, O.; Shin, S.Y.; Kim, Y.S. Effects of sous-vide method at different temperatures, times and vacuum degrees on the quality, structural, and microbiological properties of pork ham. Meat Sci. 2018, 143, 1–7. [Google Scholar] [CrossRef]
- Gámbaro, A.; Panizzolo, L.A.; Hodos, N.; Rosa, G.D.; Barrios, S.; Garmendia, G.; Gago, C.; Martínez-Monzó, J. Influence of temperature and time in sous-vide cooking on physicochemical and sensory parameters of beef shank cuts. Int. J. Gastron. Food Sci. 2023, 32, 100701. [Google Scholar] [CrossRef]
- Ramos, F.C.; Ribeiro, S.C.; Peixoto Joele, M.R.; Sousa, C.L.; Lourenço, L.F. Kinetic modeling to study the quality of tambaqui (Colossoma macropomum) sous vide during storage at different temperatures. J. Food Sci. Technol. 2017, 54, 2452–2463. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.L.D.; Lima, J.P.D.; Melo, L.S.; Silva, Y.S.D.; Gouveia, S.T.; Lopes, G.S.; Matos, W.O. Comparison between boiling and vacuum cooking (sous-vide) in the bioaccessibility of minerals in bovine liver samples. Food Res. Int. 2017, 100, 566–571. [Google Scholar] [CrossRef]
- Oz, F.; Seyyar, E. Formation of heterocyclic aromatic amines and migration level of bisphenol-A in sous-vide-cooked trout fllets at different cooking temperatures and cooking levels. J. Agric. Food Chem. 2016, 64, 3070–3082. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.B.; Kumari, N.; Senapati, S.R.; Lekshmi, M.; Nagalakshmi, K.; Balange, A.K.; Chouksey, M.K.; Venkatewarlu, G.; Martin Xavie, K.A. Sous vide processed ready-to-cook seerfish steaks: Process optimization by response surface methodology and its quality evaluation. LWT-Food Sci. Technol. 2016, 74, 62–69. [Google Scholar] [CrossRef]
- Zhu, X.J.; Kaur, L.; Staincliffe, M.; Boland, M. Actinidin pretreatment and sous vide cooking of beef brisket: Effects on meat microstructure, texture and in vitro protein digestibility. Meat Sci. 2018, 145, 256–265. [Google Scholar] [CrossRef]
- Perez-Palacios, T.; Caballero, D.; González-Mohíno, A.; Mir-Bel, J.; Antequera, T. Near Infrared Reflectance spectroscopy to analyse texture related characteristics of sous vide pork loin. J. Food Eng. 2019, 263, 417–423. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. Assessment of lipid oxidation in Atlantic mackerel (Scomber scombrus) subjected to different antioxidant and sous-vide cooking treatments by conventional and fluorescence microscopy methods. Food Control 2019, 104, 1–8. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass. Food Res. Int. 2017, 99, 630–640. [Google Scholar] [CrossRef]
- Stanisławczyk, R.; Żurek, J.; Rudy, M.; Gil, M.; Krajewska, A.; Dziki, D. Effect of various thermal processing methods on the sensory, textural, and physicochemical characteristics of foal meat. Molecules 2024, 29, 5464. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.Y.; Matsuoka, R.; Yanagisawa, T.; Xi, Y.C.; Zhang, L.; Wang, X.C. Effect of different drying methods on free amino acid and flavor nucleotides of scallop (Patinopecten yessoensis) adductor muscle. Food Chem. 2022, 396, 133620. [Google Scholar] [CrossRef]
- Zeng, J.P.; Fan, X.W.; Meng, N.; Liu, Y.J.; Song, Y.; Cong, P.X.; Jiang, X.M.; Xu, J.; Xue, C.H. Salting-induced lipid hydrolysis and oxidation in dried squid fillets: A mechanistic link to formaldehyde formation, color browning, and flavor alteration. Food Chem. 2025, 485, 144473. [Google Scholar] [CrossRef]
- Ye, Y.K.; Ye, S.S.; Wanyan, Z.X.; Ping, H.; Xu, Z.X.; He, S.D.; Cao, X.D.; Chen, X.Y.; Hu, W.W.; Wei, Z.J. Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chem. 2022, 378, 132119. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, M.F.; Fang, F.; Fu, C.C.; Xing, S.H.; Qian, C.L.; Liu, J.; Kan, J. Effect of sous vide cooking treatment on the quality, structural properties and flavor profile of duck meat. Int. J. Gastron. Food Sci. 2022, 29, 100565. [Google Scholar] [CrossRef]
- Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K.; Sałek, P.; Pakuła, K. Effect of heat treatment by the sous-vide method on the quality of poultry meat. Foods 2021, 10, 1610. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.Z.; Ling, Y.Z.; Chen, F.X.; Wang, C.; Qiao, Y.; Xiong, G.Q.; Wang, L.; Wu, W.J.; Shi, L.; Ding, A. Effect of high hydrostatic pressure combined with sous-vide treatment on the quality of largemouth bass during storage. Foods 2022, 11, 1931. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Yongsawatdigul, J.; Boonanuntanasarn, S.; Benjakul, S. Development of flavor and taste components of sous-vide-cooked nile tilapia (Oreochromis niloticus) fillet as affected by various conditions. Foods 2022, 11, 3681. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Bakhsh, A.; Lee, S.J.; Lee, E.Y.; Kim, C.J.; Joo, S.T. Control of sous-vide physicochemical, sensory, and microbial properties through the manipulation of cooking temperatures and times. Meat Sci. 2022, 188, 108787. [Google Scholar] [CrossRef]
- Bhargava, N.; Sharanagat, V.S.; Mor, R.S.; Kumar, K. Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review. Trends Food Sci. Technol. 2020, 105, 385–401. [Google Scholar] [CrossRef]
- Cedrowski, J.; Dąbrowa, K.; Przybylski, P.; Krogul-Sobczak, A.; Litwinienko, G. Antioxidant activity of two edible isothiocyanates: Sulforaphane and erucin is due to their thermal decomposition to sulfenic acids and methylsulfinyl radicals. Food Chem. 2021, 353, 129213. [Google Scholar] [CrossRef]
- Sohail, A.; Al-Dalali, S.; Wang, J.N.; Xie, J.C.; Shakoor, A.; Asimi, S.; Shah, H.; Patil, P. Aroma compounds identified in cooked meat: A review. Food Res. Int. 2022, 157, 111385. [Google Scholar] [CrossRef] [PubMed]
- Du, W.B.; Ma, Q.L.; Li, Y.; Bai, S.; Huang, Y.T.; Cui, W.Y.; Accoroni, C.; Fan, B.; Wang, F.Z. Effects of unsaturated C18 fatty acids on “glucose-glutathione” Maillard reaction: Comparison and formation pathways of initial stage and meaty flavor compounds. Food Res. Int. 2025, 201, 115645. [Google Scholar] [CrossRef]
- Ortuño, J.; Mateo, L.; Rodríguez-Estrada, M.T.; Bañón, S. Effects of sous vide vs grilling methods on lamb meat colour and lipid stability during cooking and heated display. Meat Sci. 2021, 171, 108287. [Google Scholar] [CrossRef]
- Tkacz, K.; Modzelewska-Kapituła, M.; Petracci, M.; Zduńczyk, W. Improving the quality of sous-vide beef from holstein-friesian bulls by different marinades. Meat Sci. 2021, 182, 108639. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.Q.; Tu, C.H.; Jiang, H.L.; Li, T.; Xu, N.; Shui, S.S.; Benjakui, S.; Zhang, B. Physicochemical characteristics and microbial diversity of sous vide scallops (Chlamys farreri) during chilled storage. LWT-Food Sci. Technol. 2024, 204, 116437. [Google Scholar] [CrossRef]
- King, N.J.; Whyte, R. Does it look cooked? A review of factors that influence cooked meat color. J. Food Sci. 2006, 71, R31–R40. [Google Scholar] [CrossRef]
- Vaudagna, S.R.; Pazos, A.A.; Guidi, S.M.; Sanchez, G.; Carp, D.J.; Gonzalez, C.B. Effect of salt addition on sous vide cooked whole beef muscles from argentina. Meat Sci. 2008, 79, 470–482. [Google Scholar] [CrossRef]
- Del Pulgar, J.S.; Gázquez, A.; Ruiz-Carrascal, J. Physico-chemical, textural and structural characteristics of sous-vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time. Meat Sci. 2012, 90, 828–835. [Google Scholar] [CrossRef]
- Jwa, S.H.; Kim, Y.A.; Hoa, V.B.; Hwang, I.H. A combination of postmortem ageing and sous vide cooking following by blowtorching and oven roasting for improving the eating quality and acceptance of low quality grade hanwoo striploin. Asian-Australas. J. Anim. Sci. 2020, 33, 1339–1351. [Google Scholar] [CrossRef]
- Karki, R.; Oey, I.; Bremer, P.; Silcock, P. Understanding the effect of meat electrical conductivity on Pulsed Electric Field (PEF) process parameters and the ability of PEF to enhance the quality and shorten sous vide processing for beef short ribs. Food Res. Int. 2023, 163, 112251. [Google Scholar] [CrossRef]
- Wei, J.L.; Chen, Y.W.; Dong, X.P.; He, F.Y.; Shi, Y.G.; Chai, T.T. Water holding capacity and microstructure of sturgeon (Acipenser gueldenstaedti) fillets as affected by low temperature vacuum heating. Int. J. Food Prop. 2021, 24, 1061–1073. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Interventions of two-stage thermal sous-vide cooking on the toughness of beef semitendinosus. Meat Sci. 2019, 157, 107882. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Wu, Z.Y.; Bian, T.J.; Zhao, X. Ultrasonic-Assisted tumbling improves water retention and tenderness of wooden breast chicken meat. Ultrason. Sonochem. 2025, 119, 107377. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, W.S.; Lin, H.X.; Huang, F.; Yang, P.; Liu, J.M.; Zhao, L.Y.; Zhang, C.H. Mechanism underlying the tenderness evolution of stir-fried pork slices with heating rate revealed by infrared thermal imaging assistance. Meat Sci. 2024, 213, 109478. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Niu, F.N.; Xiong, Y.T.; Wang, P.; Lyu, X.Y.; Yang, Z.Y. Ultrasound-assisted low-sodium salt curing to modify the quality characteristics of beef for aging. Ultrason. Sonochem. 2024, 111, 107134. [Google Scholar] [CrossRef]
- Botinestean, C.; Keenan, D.F.; Kerry, J.P.; Hamill, R.M. The effect of thermal treatments including sous-vide, blast freezing and their combinations on beef tenderness of M. semitendinosus steaks targeted at elderly consumers. LWT-Food Sci. Technol. 2016, 74, 154–159. [Google Scholar] [CrossRef]
- Li, Z.Q.; Ren, X.K.; Ding, C.; Yang, S.; Liu, L.N. Analysis of volatile profiles and taste characteristics in sous-vide cooked chicken breast based on HS-SPME-GC-MS and E-tongue. LWT-Food Sci. Technol. 2025, 215, 117222. [Google Scholar] [CrossRef]
- Ding, Z.X.; Chen, Y.H.; Zhang, J.N.; Wang, W.Y.; Zhang, X.R.; Sun, R.B.; Zhang, H.; Xie, M.; Song, H.P. Integration of human sensory evaluation, intelligent E-tongue/E-nose systems, microbiomics, and metabolomics to comprehensively analyze flavor characteristics and dietary improvement mechanisms of processed Buddha’s hand fruit. Food Biosci. 2025, 71, 107248. [Google Scholar] [CrossRef]
- Estévez, M. Protein carbonyls in meat systems: A review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Ghazala, S.; Aucoin, J.; Alkanani, T. Pasteurization effect on fatty acid stability in a sous vide product containing seal meat (Phoca groenlandica). J. Food Sci. 1996, 61, 520–523. [Google Scholar] [CrossRef]
- Broncano, J.M.; Petrón, M.J.; Parra, V.; Timón, M.L. Effect of different cooking methods on lipid oxidation and formation of free cholesterol oxidation products (COPs) in Latissimus dorsi muscle of Iberian pigs. Meat Sci. 2009, 83, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Roldán, M.; Antequera, T.; Martín, A.; Mayoral, A.I.; Ruiz, J. Effect of different temperature–time combinations on physicochemical, microbiological, textural and structural features of sous-vide cooked lamb loins. Meat Sci. 2013, 93, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Wazir, H.; Chay, S.Y.; Zarei, M.; Hussin, F.S.; Mustapha, N.A.; Ibadullah, W.Z.W.; Saari, N. Effects of storage time and temperature on lipid oxidation and protein co-oxidation of low-moisture shredded meat products. Antioxidants 2019, 8, 486. [Google Scholar] [CrossRef]
- Gao, Z.Q.; He, S.Q.; Zhu, W.H.; Bu, Y.; Li, X.P. Impact of thermal processing methods on physicochemical properties and flavor-related compounds of pearl gentian grouper with waterless preservation. Int. J. Gastron. Food Sci. 2024, 38, 101049. [Google Scholar] [CrossRef]
- Del Pulgar, J.S.; Roldan, M.; Ruiz-Carrascal, J. Volatile compounds profile of sous-vide cooked pork cheeks as affected by cooking conditions (vacuum packaging, temperature and time). Molecules 2013, 18, 12538–12547. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Chem. Soc. Rev. 2010, 39, 4067–4079. [Google Scholar] [CrossRef]
- Zamora, R.; Gallardo, E.; Hidalgo, F.J. Model studies on the degradation of phenylalanine initiated by lipid hydroperoxides and their secondary and tertiary oxidation products. J. Agric. Food Chem. 2008, 56, 7970–7975. [Google Scholar] [CrossRef]
- Cheng, L.J.; Li, X.; Li, X.F.; Wu, Y.M.; An, F.P.; Luo, Z.; Geng, F.; Huang, Q.; Liu, Z.D.; Tian, Y.T. The improvement mechanism of volatile for cooked Tibetan pork assisted with ultrasound at low-temperature: Based on the differences in oxidation of lipid and protein. Ultrason. Sonochem. 2024, 110, 107060. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.W.; Chen, Y.W.; Cai, W.Q.; Dong, X.P.; Wang, Y.R.; Zheng, L.L. Effects of sodium erythorbate and sodium tripolyphosphate on the lipid oxidation of Russian sturgeon with sous-vide cooking. J. Food Compos. Anal. 2022, 106, 104345. [Google Scholar] [CrossRef]
- Chen, J.W.; Su, Y.; Chen, Y.J.; Lin, Y.L.; Wang, S.Y.; Gatphayak, K.; Chen, Y.C. Appropriate sous-vide culinary condition for pork hams: Physicochemical and microstructural properties. LWT-Food Sci. Technol. 2025, 217, 117452. [Google Scholar] [CrossRef]
- Song, D.H.; Yang, N.E.; Seomoon, K.M.; Jiang, I.S.; Chin, K.B.; Kim, H.W. Sous-vide cooking as a practical strategy to improve quality attributes and shelf stability of reduced-salt chicken breast ham. Poult. Sci. 2023, 102, 102444. [Google Scholar] [CrossRef]
- Palamae, S.; Patil, U.; Saetang, J.; Detcharoen, M.; Suyapoh, W.; Ma, L.; Zhang, B.; Benjakul, S. Asian green mussel treated with sous vide and chitooligosaccharide-catechin conjugate: Chemical, physical, microbiological, histological properties and quality changes during refrigerated storage. Food Control 2025, 173, 111206. [Google Scholar] [CrossRef]
- Mohan, C.O.; Ravishankar, C.N.; Srinivasa Gopal, T.K. Effect of vacuum packaging and sous vide processing on the quality of indian white shrimp (Fenneropenaeus indicus) during chilled storage. J. Aquat. Food Prod. Technol. 2017, 26, 1280–1292. [Google Scholar] [CrossRef]
- Duma-Kocan, P.; Gil, M.; Stanisławczyk, R.; Rudy, M. The effect of selected methods of heat treatment on the chemical composition, colour and texture parameters of longissimus dorsi muscle of wild boars. CyTA J. Food. 2019, 17, 472–478. [Google Scholar] [CrossRef]
- Wu, F.Y.; Duston, T.R.; Smith, S.B. A scanning electron microscopic study of heat-induced alterations in bovine connective tissue. J. Food Sci. 1985, 50, 1041–1044. [Google Scholar] [CrossRef]
- Tornberg, E. Effects of heat on meat proteins—Implications on structure and quality of meat products. Meat Sci. 2005, 70, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, D.A.; Brewer, J.; Risbo, J.; Bagatolli, L. Second harmonic generation microscopy: A tool for spatially and temporally resolved studies of heat induced structural changes in meat. Food Biophys. 2010, 5, 1–8. [Google Scholar] [CrossRef]
- Promeyrat, A.; Daudin, J.D.; Gatellier, P. Kinetics of protein physicochemical changes induced by heating in meat using mimetic models: (1) Relative effects of heat and oxidants. Food Chem. 2013, 138, 581–589. [Google Scholar] [CrossRef]
- Gatellier, P.; Kondjoyan, A.; Portanguen, S.; Santé-Lhoutellier, V. Effect of cooking on protein oxidation in n-3 polyunsaturated fatty acids enriched beef. Implication on nutritional quality. Meat Sci. 2010, 85, 645–650. [Google Scholar] [CrossRef]
- Utrera, M.; Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Formation of lysine-derived oxidation products and loss of tryptophan during processing of porcine patties with added avocado byproducts. J. Agric. Food Chem. 2012, 60, 3917–3926. [Google Scholar] [CrossRef]
- Requena, J.R.; Levine, R.L.; Stadtman, E.R. Recent advances in the analysis of oxidized proteins. Amino Acids 2003, 25, 221–226. [Google Scholar] [CrossRef]
- Supaphon, P.; Kerdpiboon, S.; Venien, A.; Loison, O.; Sicard, J. Structural changes in local Thai beef during sous-vide cooking. Meat Sci. 2021, 175, 108442. [Google Scholar] [CrossRef]
- Purslow, P.P.; Oiseth, S.; Hughes, J.; Warner, R.D. The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Res. Int. 2016, 89, 739–748. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xia, C.L.; He, Y.X.; Pan, D.D.; Cao, J.X.; Sun, Y.Y. Proteomic responses to oxidative damage in meat from ducks exposed to heat stress. Food Chem. 2019, 295, 129–137. [Google Scholar] [CrossRef]
- Yu, T.Y.; Morton, J.D.; Clerens, S.; Dyer, J.M. Cooking-induced protein modifications in meat. Compr. Rev. Food Sci. Food Saf. 2017, 16, 141–159. [Google Scholar] [CrossRef]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poult. Sci. 2005, 84, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Li, C.B.; Zhou, G.H.; Xu, X.L. Dynamical changes of beef intramuscular connective tissue and muscle fiber during heating and their effects on beef shear force. Food Bioprocess Technol. 2010, 3, 521–527. [Google Scholar] [CrossRef]
- Xu, B.C.; Zhang, Q.W.; Zhang, Y.M.; Yang, X.Y.; Mao, Y.W.; Luo, X.; Hopkins, D.L.; Niu, L.B.; Liang, R.R. Sous vide cooking improved the physicochemical parameters of hot-boned bovine semimembranosus muscles. Meat Sci. 2023, 206, 109326. [Google Scholar] [CrossRef] [PubMed]
- Cruz, P.L.; Panno, P.H.C.; Giannotti, J.D.G.; Carvalho, R.V.D.; Roberto, C.D. Effect of proteases from ginger rhizome on the fragmentation of myofibrils and tenderness of chicken breast. LWT-Food Sci. Technol. 2020, 120, 108921. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Thomson, P.C.; Campbell, M.A.; Latif, S.; Legako, J.F.; McGill, D.M.; Wynn, P.C.; Friend, M.A.; Warner, R.D. Sensory and physical characteristics of M. biceps femoris from older cows using ginger powder (Zingibain) and sous vide cooking. Foods 2021, 10, 1936. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.S.; Lamballerie, M.D.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Chotigavin, N.; Kerr, W.L.; Klaypradit, W.; Kerdpiboon, S. Novel sous-vide pressure technique affecting properties of local beef muscle. LWT-Food Sci. Technol. 2023, 175, 114439. [Google Scholar] [CrossRef]
- Liu, H.Y.; Ling, X.C.; Li, F.; Kong, F.B.; Tang, J.M.; Shi, H.; Jiao, Y. Ultrasonic treatment improves the tenderness and retains organoleptic properties of squid (Illex argentinus) before and after high/low temperature cooking. Food Biosci. 2025, 20, 31. [Google Scholar] [CrossRef]
- Nyam, K.L.; Goh, K.M.; Chan, S.Q.; Tan, C.P.; Cheong, L.Z. Effect of sous vide cooking parameters on physicochemical properties and free amino acids profile of chicken breast meat. J. Food Compos. Anal. 2023, 115, 105010. [Google Scholar] [CrossRef]
- Kurp, L.; Danowska-Oziewicz, M.; Klebukowska, L. Sous Vide Cooking effects on physicochemical, microbiological and sensory characteristics of pork loin. Appl. Sci. 2022, 12, 2365. [Google Scholar] [CrossRef]
- Turner, B.E.; Larick, D.K. Palatability of sous vide processed chicken breast. Poult. Sci. 1996, 75, 1056–1063. [Google Scholar] [CrossRef]
- Sut, S.; Lacey, K.; Dhenge, R.; Ferrarese, I.; Santi, S.; Cacchioli, A.; Gazza, F.; Dall’Acqua, S.; Rinaldi, M. Effect of different atmospheric and subatmospheric cooking techniques on physical and chemical qualitative properties of pork loin. Meat Sci. 2023, 206, 109338. [Google Scholar] [CrossRef]
- Noh, S.W.; Song, D.H.; Ham, Y.K.; Yang, N.E.; Kim, H.W. Physicochemical properties of chicken breast and thigh as affected by sous-vide cooking conditions. Foods 2023, 12, 2592. [Google Scholar] [CrossRef]
- Macharácková, B.; Saláková, A.; Bogdanovicová, K.; Harustiaková, D. Changes in the concentrations of selected mineral elements in pork meat after sous-vide cooking. J. Food Compos. Anal. 2021, 96, 103752. [Google Scholar] [CrossRef]
Subject | Temperature | Time | Reference |
---|---|---|---|
Yellowfin tuna | 55, 60, 65 °C | 30 min | Yuan et al., 2025 [15] |
Pork loin | 50, 55, 60 °C | 12, 24 h | Hwang et al., 2019 [16] |
Beef | 55 °C | 45 min | Sun et al., 2019 [9] |
Beef | 55 °C | 2, 10, 30 h | Trbovich et al., 2017 [17] |
Beef | 55, 70 °C | 2, 8 h | Trbovich et al., 2017 [18] |
Goose meat | 60, 80 °C | 4, 6, 12 h | Wereńska, 2024 [6] |
Chicken breast | 55, 57.5, 60 °C | 1 h | Karyotis et al., 2017 [19] |
Döner kebabs | 57.5, 60, 62.5, 65 °C | 1 h | Haskaraca et al., 2019 [20] |
Pork | 58 °C | 60, 90 min | Kehlet et al., 2017 [21] |
Beef briskets | 60 °C | 12, 18, 24 h | Alahakoon et al., 2019 [22] |
Atlantic mackerel | 60, 75, 90 °C | 10, 15, 20 min | Cropotova et al., 2019 [23] |
Spent buffalo meat | 55, 65, 95 °C | 480, 300, 45 min | Haq et al., 2024 [24] |
Beef | 39, 49, 59, 70 °C | 1, 4 h | Uttaro et al., 2019 [25] |
Beef brisket | 60, 65, 70 °C | 24, 48, 72 h | Alahakoon et al., 2018 [26] |
Lamb and goat | 60 °C | 6, 8, 10, 12 h | Gawat et al., 2024 [27] |
Captive pirarucu | 60 °C | 9.48 min | Hernández et al., 2017 [28] |
Dairy cows | 60 °C | 4.5, 10 h | Bhat et al., 2020 [29] |
Beef | 60 °C | 24 h | Chian et al., 2021 [30] |
Beef | 60 °C | 4 h | Modzelewska-Kapituła et al., 2019 [31] |
Goat | 60, 65, 70 °C | 6, 12 h | Ismail et al., 2019 [32] |
Pirarucu | 60 °C | 9.48 min | Hernández et al., 2020 [33] |
Pork ham | 61 °C | 45 min | Jeong et al., 2018 [34] |
Pork ham | 61, 71 °C | 45, 90 min | Jeong et al., 2018 [35] |
Beef shank cuts | 55, 65, 75 °C | 2, 5, 8, 12, 24 h | Gámbaro et al., 2023 [36] |
Tambaqui | 65 °C | 12.5 min | Ramos et al., 2017 [37] |
Bovine live | 65 °C | 2 h | Da Silva et al., 2017 [38] |
Trout fillets | 65, 75, 85 °C | 60, 75, 90, 120, 135, 150 min | Oz, F., & Seyyar, E., 2016 [39] |
Seerfish | 70, 80, 90 °C | 5, 10, 15 min | Singh et al., 2016 [40] |
Beef brisket | 70 °C | 30 min | Zhu et al., 2018 [41] |
Pork loin | 70 °C | 1, 2, 4, 6, 8 h | Perez-Palacios et al., 2019 [42] |
Atlantic mackerel | 70, 80 °C | 10, 20 min | Cropotova et al., 2019 [43] |
European sea bass | 85 °C | 20 min | Nieva-Echevarría et al., 2017 [44] |
Material | Temperature | Time | Effect |
---|---|---|---|
Nile Tilapia | 50, 60 °C | 30, 45, 60 min | Compared with traditional steaming methods, lipid oxidation is lower, and lipid oxidation increases with increasing cooking temperature or processing time [52]. |
Russian sturgeon | 40, 50, 60 °C | 10 min | Treatment at 60 °C had an adverse effect on lipid oxidation in Russian sturgeon meat, resulting in increased peroxide values and accelerated changes in conjugated diene values, indicating a high degree of oxidation [84]. |
Atlantic mackerel | 70, 80 °C | 10, 20 min | Higher temperatures and cooking times typically accelerate lipid oxidation [43]. |
Lamb meat | 75 °C | 35 min | Compared with traditional barbecuing, vacuum low-temperature cooking prevents TBARS and oxysterols compared to grilled patties, sous-vide cooking inhibited (p < 0.05) the formation of malondialdehyde, and 7α- and 7β-hydroxycholesterol, and lowered the cholesterol oxidation ratio during heated display [58]. |
Pork hams | 55, 58, 60 °C | 3, 5, 8 h | Sous-vide cooking method at 58 °C for 5 h reduces lipid peroxidation [85]. |
Reduced-salt chicken breast ham | 60 °C | 2 h | Compared with traditional methods, sous-vide cooking can delay lipid oxidation [86]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Q.; Lv, R.; Zhai, P.; Wang, X.; Li, Y.; Yin, M. Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review. Foods 2025, 14, 2967. https://doi.org/10.3390/foods14172967
Jiang Q, Lv R, Zhai P, Wang X, Li Y, Yin M. Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review. Foods. 2025; 14(17):2967. https://doi.org/10.3390/foods14172967
Chicago/Turabian StyleJiang, Qingqing, Ruiying Lv, Panpan Zhai, Xichang Wang, Yuan Li, and Mingyu Yin. 2025. "Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review" Foods 14, no. 17: 2967. https://doi.org/10.3390/foods14172967
APA StyleJiang, Q., Lv, R., Zhai, P., Wang, X., Li, Y., & Yin, M. (2025). Molecular Mechanisms Underlying Sensory and Chemical Changes in Muscle Foods Induced by Sous-Vide Cooking: A Review. Foods, 14(17), 2967. https://doi.org/10.3390/foods14172967