Optimized Method for Quantifying Bisphenols in Bottled Water and PET/rPET Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Standard Solutions and Reagents
2.2. Sample Preparation
2.3. BPs Analysis by UPLC-MS/MS
2.4. Method Quality Assurance
2.5. Bottled Natural Mineral Water and PET/rPET Samples
3. Results and Discussion
3.1. Analytical Optimization
3.2. Method Performance Verification
3.2.1. Linearity, LODs, and LOQs
3.2.2. Repeatability and Accuracy
3.3. BPs in vPET and rPET Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catenza, C.J.; Farooq, A.; Shubear, N.S.; Donkor, K.K. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. Chemosphere 2021, 268, 129273. [Google Scholar] [CrossRef]
- Gerassimidou, S.; Lanska, P.; Hahladakis, J.N.; Lovat, E.; Vanzetto, S.; Geueke, B.; Iacovidou, E. Unpacking the complexity of the PET drink bottles value chain: A chemicals perspective. J. Hazard. Mater. 2022, 430, 128410. [Google Scholar] [CrossRef]
- Khalili Sadrabad, E.; Hashemi, S.A.; Nadjarzadeh, A.; Askari, E.; Akrami Mohajeri, F.; Ramroudi, F. Bisphenol A release from food and beverage containers—A review. Food Sci. Nutr. 2023, 11, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Sirohi, R.; Balakumaran, P.A.; Reshmy, R.; Madhavan, A.; Sindhu, R.; Sim, S.J. The hazardous threat of Bisphenol A: Toxicity, detection and remediation. J. Hazard. Mater. 2022, 423, 127097. [Google Scholar] [CrossRef] [PubMed]
- Vilarinho, F.; Sendón, R.; Van der Kellen, A.; Vaz, M.F.; Silva, A.S. Bisphenol A in food as a result of its migration from food packaging. Trends Food Sci. Technol. 2019, 91, 33–65. [Google Scholar] [CrossRef]
- Moon, S.; Yu, S.H.; Lee, C.B.; Park, Y.J.; Yoo, H.J.; Kim, D.S. Effects of bisphenol A on cardiovascular disease: An epidemiological study using National Health and Nutrition Examination Survey 2003–2016 and meta-analysis. Sci. Total Environ. 2021, 763, 142941. [Google Scholar] [CrossRef]
- Lin, M.H.; Lee, C.Y.; Chuang, Y.S.; Shih, C.L. Exposure to bisphenol A associated with multiple health-related outcomes in humans: An umbrella review of systematic reviews with meta-analyses. Environ. Res. 2023, 237, 116900. [Google Scholar] [CrossRef]
- Kovačič, A.; Gys, C.; Gulin, M.R.; Kosjek, T.; Heath, D.; Covaci, A.; Heath, E. The migration of bisphenols from beverage cans and reusable sports bottles. Food Chem. 2020, 331, 127326. [Google Scholar] [CrossRef]
- den Braver-Sewradj, S.P.; van Spronsen, R.; Hessel, E.V. Substitution of bisphenol A: A review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef]
- Dreolin, N.; Aznar, M.; Moret, S.; Nerin, C. Development and validation of a LC–MS/MS method for the analysis of bisphenol a in polyethylene terephthalate. Food Chem. 2019, 274, 246–253. [Google Scholar] [CrossRef]
- DLG. DLG Expert Report 04/2016: Packaging Material Made from Polyethylene Terephthalate (PET). German Agricultural Society (DLG). 2016. Available online: https://www.dlg.org (accessed on 30 October 2024).
- Vinković, K.; Rožić, M.; Galić, N. Development and validation of an HPLC method for the determination of endocrine disruptors bisphenol A and benzophenone in thermochromic printing inks. J. Liq. Chromatogr. Relat. Technol. 2017, 40, 959–966. [Google Scholar] [CrossRef]
- Núñez, S.S.; Ortuño, N.; Fernández-Durán, S.; Moltó, J.; Conesa, J.A. Analysis and removal of bisphenols in recycled plastics using polyethylene glycol. Sci. Rep. 2024, 14, 12824. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- European Commission. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union. 2020, L 435, 1–62. Available online: https://eur-lex.europa.eu (accessed on 5 November 2024).
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text with EEA Relevance OJ L 12, 15.1.2011. pp. 1–89. Available online: http://data.europa.eu/eli/reg/2011/10/oj (accessed on 5 November 2024).
- German Federal Institute for Risk Assessment (BFR). Bisphenol a in Everyday Products: Answers to Frequently Asked Questions. 2022, pp. 1–13. Available online: https://www.bfr.bund.de/en/bisphenol_a_in_everyday_products__answers_to_frequently_asked_questions-60837.html (accessed on 5 November 2024).
- Commission Regulation (EU) 2022/1616 of 15 September 2022 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods, and Repealing Regulation (EC) No 282/2008 (Text with EEA Relevance) C/2022/6146 OJ L 243, 20.9.2022. pp. 3–46. Available online: http://data.europa.eu/eli/reg/2022/1616/oj (accessed on 16 September 2024).
- Food and Drug Administration (FDA). Bisphenol A (BPA): Use in Food Contact Application. 2018. Available online: https://www.fda.gov/food/food-packaging-other-substances-come-contact-food-information-consumers/bisphenol-bpa-use-food-contact-application#:~:text=It%20is%20also%20a%20component,food%20packaging%20since%20the%201960s.&text=Some%20of%20these%20studies%20have,food%20from%20food%20contact%20materials (accessed on 9 December 2024).
- Tumu, K.; Vorst, K.; Curtzwiler, G. Endocrine modulating chemicals in food packaging: A review of phthalates and bisphenols. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1337–1359. [Google Scholar] [CrossRef]
- Aigotti, R.; Giannone, N.; Asteggiano, A.; Mecarelli, E.; Dal Bello, F.; Medana, C. Release of selected non-intentionally added substances (NIAS) from PET food contact materials: A new online SPE-UHPLC-MS/MS multiresidue method. Separations 2022, 9, 188. [Google Scholar] [CrossRef]
- Ali, N.F.M.; Sajid, M.; Abd Halim, W.I.T.; Mohamed, A.H.; Zain, N.N.M.; Kamaruzaman, S.; Yahaya, N. Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchem. J. 2023, 184, 108158. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 2020/1245 of 2 September 2020 Amending and Correcting Regulation (EU) No 10/2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32020R1245 (accessed on 5 November 2024).
- Commission Staff Working Document Evaluation of The Legislation on Food Contact Materials—Regulation (EC) No 1935/2004. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022SC0163&qid=1706869853251 (accessed on 5 November 2024).
- Magnusson, B. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics 2014. Available online: www.eurachem.org (accessed on 9 December 2024).
- Mohamed, R.; Zainudin, B.H.; Yaakob, A.S. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chem. 2020, 303, 125392. [Google Scholar] [CrossRef]
- Di Duca, F.; Montuori, P.; De Rosa, E.; De Simone, B.; Scippa, S.; Dadà, G.; Triassi, M. Advancing Analytical Techniques in PET and rPET: Development of an ICP–MS Method for the Analysis of Trace Metals and Rare Earth Elements. Foods 2024, 13, 2716. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Linh, T.T.T.; Vo, T.K.; Nguyen, Q.H.; Van, T.K. Analytical techniques for determination of heavy metal migration from different types of locally made plastic food packaging materials using ICP-MS. Food Sci. Nutr. 2023, 11, 4030–4037. [Google Scholar] [CrossRef]
- Juric, M.; Franz, R.; Welle, F. Determination of Diffusion Coefficients of Bisphenol A (BPA) in Polyethylene Terephthalate (PET) to Estimate Migration of BPA from Recycled PET into Foods. Appl. Sci. 2024, 14, 7704. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. An overview of the occurrence, fate, and human risks of the bisphenol-A present in plastic materials, components, and products. Integr. Environ. Assess. Manag. 2023, 19, 45–62. [Google Scholar] [CrossRef]
- Kwan, C.S.; Takada, H. Release of additives and monomers from plastic wastes. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Springer: Cham, Switzerland, 2019; pp. 51–70. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Kurniawan, S.B.; Khongthaw, B.; Buhari, J.; Chauhan, P.K.; Georgin, J.; Franco, D.S.P. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv. 2024, 14, 35128–35162. [Google Scholar] [CrossRef] [PubMed]
- Steimel, K.G.; Hwang, R.; Dinh, D.; Donnell, M.T.; More, S.; Fung, E. Evaluation of chemicals leached from PET and recycled PET containers into beverages. Rev. Environ. Health 2024, 39, 251–260. [Google Scholar] [CrossRef]
- Bach, C.; Dauchy, X.; Chagnon, M.C.; Etienne, S. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. Water Res. 2012, 46, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.Y.; Zheng, J.L.; Ren, J.H.; Luo, J.; Cui, X.Y.; Ma, L.Q. Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environ. Pollut. 2014, 192, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.M.; Berrard, C.; Daoud, N.; Saillard, P.; Peyroux, J.; Vitrac, O. Assessment of chemical risks and circular economy implications of recycled PET in food packaging with functional barriers. Resour. Environ. Sustain. 2024, 17, 100163. [Google Scholar] [CrossRef]
- Legislative Decree No. 18 of 23 February 2023. Implementation of Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. O.J. n. 55 of 6 March 2023—General Series. Available online: https://www.gazzettaufficiale.it/eli/id/2023/03/06/23G00025/SG (accessed on 5 November 2024).
Analyte (Common/IUPAC Name) | Abbreviation | Molecular Formula | FCM No a | Authorized b | SML b (mg/kg) |
---|---|---|---|---|---|
Bisphenol A (4-[2-(4-hydroxyphenyl)propan-2-yl]phenol) | BPA | C15H16O2 | 151 | Not Authorized * | 0.05 |
Bisphenol S (4-(4-hydroxyphenyl)sulfonylphenol) | BPS | C12H10O4S | 154 | Not Authorized * | 0.05 |
Bisphenol F (4-[(4-hydroxyphenyl)methyl]phenol) | BPF | C13H12O | 90 | Not Authorized * | 60 |
Bisphenol B (4-[2-(4-hydroxyphenyl)butan-2-yl]phenol) | BPB | C16H18O2 | - | Not Authorized * | - |
Bisphenol AF (4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxyphenyl)propan-2-yl]phenol) | BPAF | C15H10F6O2 | - | Not Authorized * | - |
Bisphenol AP (4-[1-(4-hydroxyphenyl)-1-phenylethyl]phenol) | BPAP | C20H18O2 | - | Not Authorized * | - |
Bisphenol Z (4-[1-(4-hydroxyphenyl)cyclohexyl]phenol) | BPZ | C18H20O2 | - | Not Authorized * | - |
Bisphenol P (4-[2-[4-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol) | BPP | C24H26O2 | - | Not Authorized * | - |
Analyte | Calibration Range (µg/L) | Calibration Equation | R2 | Bottled Natural Mineral Water | PET/rPET | |||
---|---|---|---|---|---|---|---|---|
LOD (µg/L) | LOQ (µg/L) | LOD (mg/kg) | LOQ (mg/kg) | |||||
BPs | BPA | 0.10–10 | y = 0.210x + 0.025 | 0.993 | 0.030 | 0.10 | 0.00030 | 0.0010 |
BPS | 0.25–10 | y = 0.074x + 0.015 | 0.991 | 0.075 | 0.25 | 0.00075 | 0.0025 | |
BPF | 0.25–10 | y = 0.132x + 0.010 | 0.992 | 0.075 | 0.25 | 0.00075 | 0.0025 | |
BPB | 0.10–10 | y = 0.165x + 0.020 | 0.992 | 0.030 | 0.10 | 0.00030 | 0.0010 | |
BPAF | 0.25–10 | y = 0.105x + 0.020 | 0.993 | 0.075 | 0.25 | 0.00075 | 0.0025 | |
BPAP | 0.25–10 | y = 0.095x + 0.018 | 0.990 | 0.075 | 0.25 | 0.00075 | 0.0025 | |
BPZ | 0.25–10 | y = 0.160x + 0.022 | 0.994 | 0.075 | 0.25 | 0.00075 | 0.0025 | |
BPP | 0.25–10 | y = 0.100x + 0.012 | 0.992 | 0.075 | 0.25 | 0.00075 | 0.0025 |
Analyte | Cspiked (µg/L) | Bottled Natural Mineral Water | Cspiked (mg/kg) | PET | rPET | ||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD (µg/L) | RSD (%) | Mean ± SD (mg/kg) | RSD (%) | Mean ± SD (mg/kg) | RSD (%) | ||||
BPs | BPA | 0.1 | 0.091 ± 0.006 | 6.6 | 0.001 | 0.0010 ± 0.0001 | 8.1 | 0.0011 ± 0.0002 | 3.7 |
1 | 0.95 ± 0.09 | 9.1 | 0.01 | 0.0109 ± 0.0006 | 5.2 | 0.0112 ± 0.0003 | 2.7 | ||
10 | 9.67 ± 0.19 | 2.0 | 0.1 | 0.1074 ± 0.0041 | 3.8 | 0.1086 ± 0.0042 | 3.9 | ||
BPS | 0.25 | 0.24 ± 0.03 | 12.9 | 0.0025 | 0.0025 ± 0.0002 | 6.9 | 0.0027 ± 0.0001 | 4.0 | |
1 | 0.99 ± 0.10 | 9.7 | 0.01 | 0.0102 ± 0.0008 | 7.8 | 0.0109 ± 0.0003 | 2.3 | ||
10 | 10.20 ± 0.34 | 3.4 | 0.1 | 0.1039 ± 0.0027 | 2.6 | 0.1095 ± 0.0006 | 0.5 | ||
BPF | 0.25 | 0.23 ± 0.02 | 6.7 | 0.0025 | 0.0024 ± 0.0003 | 11.8 | 0.0028 ± 0.0001 | 3.3 | |
1 | 0.97 ± 0.05 | 4.9 | 0.01 | 0.0118 ± 0.0008 | 6.5 | 0.0110 ± 0.0004 | 3.3 | ||
10 | 10.09 ± 0.28 | 2.8 | 0.1 | 0.1045 ± 0.0020 | 1.9 | 0.1086 ± 0.0021 | 1.9 | ||
BPB | 0.1 | 0.09 ± 0.01 | 7.1 | 0.001 | 0.0010 ± 0.0001 | 9.8 | 0.0011 ± 0.0000 | 3.9 | |
1 | 0.96 ± 0.07 | 7.3 | 0.01 | 0.0113 ± 0.0006 | 5.5 | 0.0109 ± 0.0005 | 4.1 | ||
10 | 10.26 ± 0.59 | 5.7 | 0.1 | 0.1037 ± 0.0046 | 4.5 | 0.1058 ± 0.0026 | 2.4 | ||
BPAF | 0.25 | 0.23 ± 0.03 | 13.1 | 0.0025 | 0.0025 ± 0.0002 | 9.4 | 0.0027 ± 0.0001 | 4.3 | |
1 | 1.01 ± 0.09 | 8.7 | 0.01 | 0.0110 ± 0.0005 | 4.3 | 0.0110 ± 0.0005 | 4.3 | ||
10 | 10.21 ± 0.57 | 5.6 | 0.1 | 0.1066 ± 0.0036 | 3.3 | 0.1066 ± 0.0036 | 3.3 | ||
BPAP | 0.25 | 0.24 ± 0.03 | 11.0 | 0.0025 | 0.0023 ± 0.0003 | 12.3 | 0.0027 ± 0.0002 | 6.8 | |
1 | 1.01 ± 0.09 | 8.5 | 0.01 | 0.0117 ± 0.0004 | 3.7 | 0.0110 ± 0.0008 | 6.9 | ||
10 | 10.32 ± 0.26 | 2.5 | 0.1 | 0.1072 ± 0.0029 | 2.7 | 0.1083 ± 0.0022 | 2.0 | ||
BPZ | 0.25 | 0.22 ± 0.01 | 5.2 | 0.0025 | 0.0024 ± 0.0002 | 10.2 | 0.0027 ± 0.0001 | 4.0 | |
1 | 0.91 ± 0.05 | 5.2 | 0.01 | 0.0111 ± 0.0007 | 6.3 | 0.0113 ± 0.0004 | 3.3 | ||
10 | 9.84 ± 0.33 | 3.3 | 0.1 | 0.1005 ± 0.0027 | 2.7 | 0.1183 ± 0.0013 | 1.1 | ||
BPP | 0.25 | 0.26 ± 0.02 | 8.1 | 0.0025 | 0.0024 ± 0.0002 | 8.1 | 0.0028 ± 0.0001 | 3.3 | |
1 | 1.05 ± 0.10 | 9.7 | 0.01 | 0.0102 ± 0.0010 | 9.8 | 0.0114 ± 0.0004 | 3.3 | ||
10 | 10.87 ± 0.24 | 2.2 | 0.1 | 0.1100 ± 0.0030 | 2.7 | 0.1159 ± 0.0044 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Duca, F.; Montuori, P.; De Rosa, E.; Russo, I.; Palladino, R.; Scippa, S.; Dadà, G.; Triassi, M.; Díez, S. Optimized Method for Quantifying Bisphenols in Bottled Water and PET/rPET Matrices. Foods 2025, 14, 2968. https://doi.org/10.3390/foods14172968
Di Duca F, Montuori P, De Rosa E, Russo I, Palladino R, Scippa S, Dadà G, Triassi M, Díez S. Optimized Method for Quantifying Bisphenols in Bottled Water and PET/rPET Matrices. Foods. 2025; 14(17):2968. https://doi.org/10.3390/foods14172968
Chicago/Turabian StyleDi Duca, Fabiana, Paolo Montuori, Elvira De Rosa, Immacolata Russo, Raffaele Palladino, Stefano Scippa, Giuseppe Dadà, Maria Triassi, and Sergi Díez. 2025. "Optimized Method for Quantifying Bisphenols in Bottled Water and PET/rPET Matrices" Foods 14, no. 17: 2968. https://doi.org/10.3390/foods14172968
APA StyleDi Duca, F., Montuori, P., De Rosa, E., Russo, I., Palladino, R., Scippa, S., Dadà, G., Triassi, M., & Díez, S. (2025). Optimized Method for Quantifying Bisphenols in Bottled Water and PET/rPET Matrices. Foods, 14(17), 2968. https://doi.org/10.3390/foods14172968