Effect of Pressing Process on Metabolomics Profiling and Sensory Properties: A Comparative Study of Fu Brick Tea Versus Fu Loose Tea from Identical Raw Dark Tea
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection
2.3. Sensory Evaluation
2.4. Determination of Main Active Compounds
2.5. Untargeted Metabolomics Analysis
2.6. Quantification of Targeted Compounds
2.7. Method Validation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation and Main Active Compounds
3.2. Untargeted Metabolomic Analysis of Non-Volatile Metabolites
3.2.1. Global Metabolite Profiles
3.2.2. PCA
3.2.3. OPLS-DA Analysis
3.2.4. Marker Metabolites
3.2.5. Quantitative Analysis of Characteristic Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Provan, G.J.; Helliwell, K. Tea flavonoids: Their functions, utilisation and analysis. Trends Food Sci. Technol. 2000, 11, 152–160. [Google Scholar] [CrossRef]
- Luo, Z.M.; Ling, T.J.; Li, L.X.; Zhang, Z.Z.; Zhu, H.T.; Zhang, Y.J.; Wan, X.C. A new norisoprenoid and other compounds from fuzhuan Brick tea. Molecules 2012, 17, 3539–3546. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, G.; Chen, D.; Ye, H.; Liu, Z. Purified fraction of polysaccharides from fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro. Int. J. Biol. Macromol. 2019, 140, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Wang, Y.; Wen, J.; Liu, P.; Liu, Z.; Li, Z. Fungal community associated with fermentation and storage of Fuzhuan brick-tea. Int. J. Food Microbiol. 2011, 146, 14–22. [Google Scholar] [CrossRef]
- Tan, Z.W.; Yu, P.L.; Zhu, H.Y.; Gao, J.B.; Han, N.; Yang, C.C.; Shen, Z.; Gao, C.; Yang, X.B. Differential characteristics of chemical composition, fermentation metabolites and antioxidant effects of polysaccharides from Eurotium cristatum and Fu-brick tea. Food Chem. 2024, 461, 140934. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; Zhu, Y.; Chen, Z. Microbial fermented tea–a potential source of natural food preservatives. Trends Food Sci. Technol. 2008, 19, 124–130. [Google Scholar] [CrossRef]
- Lv, H.P.; Zhang, Y.; Shi, J.; Lin, Z. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Res. Int. 2017, 100, 486–493. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Zhang, N.; Chen, S.; Tian, J.; Zhang, Y.; Wang, Z. Extrusion treatment for improved physicochemical and antioxidant properties of high-molecular weight polysaccharides isolated from coarse tea. Food Res. Int. 2013, 53, 726–731. [Google Scholar] [CrossRef]
- Du, Y.; Yang, W.R.; Yang, C.C.; Yang, X.B. A comprehensive review on microbiome, aromas and flavors, chemical composition, nutrition and future prospects of Fuzhuan brick tea. Trends Food Sci. Technol. 2022, 119, 452–466. [Google Scholar] [CrossRef]
- Zheng, W.J.; Wan, X.C.; Bao, G.H. Brick dark tea: A review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochem. Rev. 2015, 14, 499–523. [Google Scholar] [CrossRef]
- Li, T.T.; Liu, Z.J.; Liu, S.Q.; Li, J.; Zheng, Y.J.; Liu, Z.H.; Ling, P.X. High-Value Utilization of Tea Forest Resources: Breeding Eurotium cristatum Strains to Enhance Lovastatin Yields in Anhua Dark Tea. Forests 2023, 14, 2365. [Google Scholar] [CrossRef]
- GB/T 32719.5-2018; Black Tea-Part 5: Fu Tea. National Standards of the People’s Republic of China: Beijing, China, 2018.
- Li, Q.; Li, Y.; Luo, Y.; Xiao, L.; Wang, K.; Huang, J.; Liu, Z. Characterization of the key aroma compounds and microorganisms during the manufacturing process of Fu brick tea. Lebensm.-Wiss.-Technol. 2020, 127, 109355. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, A.; Liu, P.; Li, Z. Effects of Fuzhuan Brick-tea water extract on mice infected with E. coli O157:H7. Nutrients 2015, 7, 5309–5326. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xie, M.; Wan, P.; Chen, D.; Ye, H.; Chen, L.; Zeng, X.; Liu, Z. Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chem. 2018, 244, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; He, C.; Chen, Y.L.; Ho, C.Y.; Wu, X.; Huang, Y.X.; Gao, Y.; Hou, A.X.; Li, Z.J.; Wang, Y.L.; et al. UPLC–QQQ–MS/MS-based widely targeted metabolomic analysis reveals the effect of solid-state fermentation with Eurotium cristatum on the dynamic changes in the metabolite profile of dark tea. Food Chem. 2022, 378, 131999. [Google Scholar] [CrossRef]
- Long, P.; Wen, M.; Granato, D.; Zhou, J.; Wu, Y.; Hou, Y.; Zhang, L. Untargeted and targeted metabolomics reveal the chemical characteristic of Pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem. 2020, 311, 125895. [Google Scholar] [CrossRef]
- Lv, C.; Chen, C.; Ge, F.; Liu, D.; Zhao, S.; Chen, D. A preliminary metagenomic study of Pu-erh tea during pile fermentation. J. Sci. Food Agric. 2013, 93, 3165–3174. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhou, H.; Tian, T.; Hou, Y.H.; Chen, D.; Zhou, J.; Liu, S.Y.; Yu, Y.B.; Dai, W.D.; Zhou, T.S. Nontargeted and targeted metabolomics analysis for evaluating the effect of “golden flora” amount on the sensory quality, metabolites, and the alpha-amylase and lipase inhibitory activities of Fu brick tea. Food Chem. 2023, 416, 135795. [Google Scholar] [CrossRef]
- Shen, S.S.; Huang, J.L.; Li, T.H.; Wei, Y.M.; Xu, S.S.; Wang, Y.J.; Ning, J.J. Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. LWT-Food Sci. Technol. 2022, 154, 112791. [Google Scholar] [CrossRef]
- Yue, W.; Sun, W.; Rao, R.S.P.; Ye, N.; Yang, Z.; Chen, M. Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea. Food Chem. 2019, 277, 289–297. [Google Scholar] [CrossRef]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.T.; Li, D.; Wan, X. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Feng, Z.; Li, Y.; Li, M.; Wang, Y.; Zhang, L.; Wan, X.; Yang, X. Tea aroma formation from six model manufacturing processes. Food Chem. 2019, 285, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Jin, Y.; Jiang, R.; Xu, Y.; Zhang, Y.; Luo, Y.; Liu, Z.H. Dynamic changes in the metabolite profile and taste characteristics of Fu brick tea during the manufacturing process. Food Chem. 2021, 344, 128576. [Google Scholar] [CrossRef] [PubMed]
- GH/T 1246-2019; Technology Regulations for Fu Tea Processing. Industry Standard of All China Federation of Supply and Marketing Cooperatives: Beijing China, 2018.
- GB/T 23776-2018; Methodology for Sensory Evaluation of Tea. National Standard of the People’s Republic of China: Beijing China, 2018.
- GBT 14487-2017; Tea Vocabulary for Sensory Evaluation. National Standard of the People’s Republic of China: Beijing China, 2017.
- GB/T 8312-2013; Tea-Determination of Caffeine Content. National Standard of the People’s Republic of China: Beijing China, 2013.
- GB/T 8313-2018; Determination of Total Polyphenols and Catechins Content in Tea. National Standard of the People’s Republic of China: Beijing China, 2018.
- GB/T 8314-2013; Tea-Determination of Free Amino Acids Content. National Standard of the People’s Republic of China: Beijing China, 2013.
- GB 4789.15-2016; Microbiological Examination of Food-Method for Counting Fungi and Yeasts. National Standard of the People’s Republic of China: Beijing China, 2016.
- Liang, Y.; Wu, F.; Wu, D.; Zhu, X.; Gao, X.; Hu, X.; Xu, F.; Ma, T.; Zhao, H.; Cao, W. Fu Loose Tea Administration Ameliorates Obesity in High-Fat Diet-Fed C57BL/6J Mice: A Comparison with Fu Brick Tea and Orlistat. Foods 2024, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Doppler, M.; Kluger, B.; Bueschl, C.; Schneider, C.; Schuhmacher, R. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. Int. J. Mol. Sci. 2016, 17, 1017. [Google Scholar] [CrossRef]
- Brittain, H.G. Profiles of drug substances, excipients, and related methodology. In Analytical Profiles of Drug Substances and Excipients; Elsevier: Amsterdam, The Netherlands, 2002; Volume 29, pp. 1–5. [Google Scholar] [CrossRef]
- Gao, S.; Jennings, E.K.; Han, L.; Koch, B.P.; Herzsprung, P.; Lechtenfeld, O.J. Detection and Exclusion of False-Positive Molecular Formula Assignments via Mass Error Distributions in UHR Mass Spectra of Natural Organic Matter. Anal. Chem. 2024, 96, 10210–10218. [Google Scholar] [CrossRef]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, M.; Zhang, H.; Yin, Y.; Cai, Y.; Zhu, Z.J. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat. Commun. 2022, 13, 6656. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2010, 16, 119–128. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.J.; Zhang, S.H.; Hou, R. Use of headspace GC/MScombined with chemometric analysis to identify the geographic origins of black tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shi, Y.; Ma, L.; Yi, X.; Ruan, J. Metabolomic analysis using ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS) uncovers the effects of light intensity and temperature under shading treatments on the metabolites in tea. PLoS ONE 2014, 9, e112572. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Pozzo, T.; Liu, J.Y.; Kazi Zubaida, G.A.; Charlotta, T.; Nordberg Karlsson, E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 2014, 62, 3321–3333. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Jiang, F.; Jiang, H.; Wu, K.L.; Zheng, X.G.; Cai, Y.Z.; Katakowski, M.; Chopp, M.; To, S.T. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur. J. Pharmacol. 2010, 641, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.F.; Lu, Q.; Liu, R. Widely targeted metabolomicsanalysis reveals the effect of fermentation on the chemicalcomposition of bee pollen. Food Chem. 2022, 375, 31908. [Google Scholar] [CrossRef]
- Ouyang, M.; Xiong, C.; Tu, Y.Y.; Cheng, L.; Shu, H.; Wen, T. Effects of Eurotium cristatum on tea quality and antioxidant activity. Mygosystema 2011, 30, 343–348. [Google Scholar] [CrossRef]
- Yao, Y.N.; Wu, M.Y.; Huang, Y.J.; Li, C.K.; Pan, X.; Zhu, W.; Huang, Y.Y. Appropriately raising fermentation temperature beneficial to the increase of antioxidant activity and gallic acid content in Eurotium cristatum-fermented loose tea. LWT-Food Sci. Technol. 2017, 82, 248–254. [Google Scholar] [CrossRef]
Evaluation Factor | FBT | FLT |
---|---|---|
Shape | brick-shaped, clean and tight, black auburn, flourishing golden flora | tight and heavy, black auburn, flourishing golden flora |
Infusion color | deep yellow and bright | orange red and bright |
Fragrance | pure, sharp “fungal flower” aroma | pure, sharp “fungal flower” aroma, comparatively long-lasting |
Taste | mellow, fungus flavor | mellow and comparatively thick, fungus flavor |
Tea Polyphenols (%) | Caffeine (%) | Free Amino Acids (%) | Total Flavonoids (%) | Soluble Sugars (%) | Eurotium cristatum (CFU/g) | |
---|---|---|---|---|---|---|
FBT | 11.46 ± 0.20 a | 3.26 ± 0.05 a | 1.40 ± 0.01 a | 2.29 ± 0.15 a | 6.43 ± 0.01 a | 16.67 ± 0.58 × 105 a |
FLT | 11.91 ± 0.11 a | 3.41 ± 0.06 a | 1.31 ± 0.01 a | 2.28 ± 0.05 a | 6.55 ± 0.08 a | 26.0 ± 2.00 × 105 b |
No | Tentative Identification | Rt (min) | Formula | Ion | m/z | HMDBID | VIP | p< | FC (FBT/FLT) | Classification |
---|---|---|---|---|---|---|---|---|---|---|
1 | Gallic acid | 0.62 | C7H6O5 | [M-H]− | 169.0136 | HMDB0005807 | 16.22820 | 0.01 | 0.43489 | phenolic acid and their derivatives |
2 | Cichoriin | 2.33 | C15H16O9 | [M-H2O-H]− | 321.0618 | HMDB0030821 | 5.96479 | 0.05 | 0.64073 | coumarins and derivatives |
3 | Esculin | 2.33 | C15H16O9 | [M-H2O-H]− | 321.0618 | HMDB0030820 | 5.96479 | 0.05 | 0.64073 | coumarins and derivatives |
4 | Cryptochlorogenic acid | 2.39 | C16H18O9 | [M-H]− | 352.0883 | HMDB0030653 | 3.63898 | 0.05 | 2.89865 | phenolic acid and their derivatives |
5 | Scopolin | 2.39 | C16H18O9 | [M-H]− | 353.0883 | HMDB0303366 | 3.63898 | 0.05 | 2.89865 | coumarins and derivatives |
6 | Skimmin | 2.46 | C15H16O8 | [M-OH]− | 307.0817 | HMDB0258334 | 7.04588 | 0.01 | 0.67728 | coumarins and derivatives |
7 | Leucocyanidin | 2.48 | C15H14O7 | [M-H]− | 305.0668 | HMDB0303660 | 7.59678 | 0.01 | 0.76114 | flavonoids and their glycosides |
8 | Corilagin | 2.51 | C27H22O18 | [M-H]− | 633.0752 | HMDB0031457 | 4.87622 | 0.01 | 3.72539 | phenolic acid and their derivatives |
9 | 4-O-p-Coumaroylquinic acid | 2.64 | C16H18O8 | [M-H]− | 337.0926 | HMDB0302093 | 7.32125 | 0.01 | 2.59944 | phenylpropanoids |
10 | Epicatechin | 2.70 | C15H14O6 | [M-H]− | 288.0869 | HMDB0001871 | 6.98214 | 0.01 | 0.65723 | catechins |
11 | Catechin | 2.70 | C15H14O6 | [M-H]− | 288.0712 | HMDB0002780 | 8.54179 | 0.01 | 0.61807 | catechins |
12 | Myricetin | 3.24 | C15H10O8 | [M-H]− | 317.0302 | HMDB0002755 | 2.58384 | 0.05 | 0.75458 | flavonoids and their glycosides |
Metabolite Name | FBT (mg/g) | FLT (mg/g) | Linear Regressive Equation | R2 | LOD (μg/mL) | LOQ (μg/mL) | RSD (%) | Recovery Rate (%) |
---|---|---|---|---|---|---|---|---|
Gallic acid | 4.0331 | 10.8335 | Y = 4.1650 × 104 × X + 4.5101 × 105 | 0.9941 | 0.3116 | 1.0387 | 0.91 | 97.12 |
Catechin | 0.4982 | 0.7418 | Y = 3.1856 × 105 × X + 2.9830 × 105 | 0.9916 | 0.4455 | 1.4850 | 3.56 | 97.96 |
Cryptochlorogenic acid | 1.1350 | 1.0725 | Y = 3.0857 × 104 × X − 2.1402 × 105 | 0.9945 | 0.0067 | 0.0222 | 3.64 | 95.91 |
Epicatechin | 4.0772 | 5.5228 | Y = 5.1177 × 104 × X − 5.6633 × 104 | 0.9907 | 0.2266 | 0.7553 | 1.87 | 93.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Zou, J.; Wu, F.; Zhu, X.; Hu, X.; Zhao, H.; Cao, W. Effect of Pressing Process on Metabolomics Profiling and Sensory Properties: A Comparative Study of Fu Brick Tea Versus Fu Loose Tea from Identical Raw Dark Tea. Foods 2025, 14, 3053. https://doi.org/10.3390/foods14173053
Liang Y, Zou J, Wu F, Zhu X, Hu X, Zhao H, Cao W. Effect of Pressing Process on Metabolomics Profiling and Sensory Properties: A Comparative Study of Fu Brick Tea Versus Fu Loose Tea from Identical Raw Dark Tea. Foods. 2025; 14(17):3053. https://doi.org/10.3390/foods14173053
Chicago/Turabian StyleLiang, Yan, Jialin Zou, Fanhua Wu, Xiaofang Zhu, Xin Hu, Haoan Zhao, and Wei Cao. 2025. "Effect of Pressing Process on Metabolomics Profiling and Sensory Properties: A Comparative Study of Fu Brick Tea Versus Fu Loose Tea from Identical Raw Dark Tea" Foods 14, no. 17: 3053. https://doi.org/10.3390/foods14173053
APA StyleLiang, Y., Zou, J., Wu, F., Zhu, X., Hu, X., Zhao, H., & Cao, W. (2025). Effect of Pressing Process on Metabolomics Profiling and Sensory Properties: A Comparative Study of Fu Brick Tea Versus Fu Loose Tea from Identical Raw Dark Tea. Foods, 14(17), 3053. https://doi.org/10.3390/foods14173053