Integrated Transcriptomic and Proteomic Analyses Revealed the Mechanism of the Osmotic Stress Response in Lacticaseibacillus rhamnosus ATCC 53103
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Sample Collection, Pretreatment, and Storage
2.3. Transcriptomics Analysis by RNA Sequencing (RNA-Seq)
2.3.1. RNA Extraction and Preprocessing
2.3.2. Library Construction, Quality Control, and Sequencing
2.3.3. Analysis of Differentially Expressed Genes in RNA-Seq Datasets
2.4. Proteomics
2.4.1. Protein Extraction and Pretreatment
2.4.2. Data Independent Acquisition (DIA) Acquisition
2.4.3. Data Analysis
3. Results and Discussion
3.1. Transcriptomic Analysis of Lbs. rhamnosus ATCC 53103 Under Osmotic Stress
3.2. Proteomic Analysis of Lbs. rhamnosus ATCC 53103 Under Osmotic Stress
3.3. Integrated Transcriptomic and Proteomic Analysis of Lbs. rhamnosus ATCC 53103 Gene/Protein Expression Under Osmotic Stress
3.3.1. Effect of Osmotic Stress on Fatty Acid Metabolism of Lbs. rhamnosus ATCC 53103
3.3.2. Effect of Osmotic Stress on Amino Acid Metabolism of Lbs. rhamnosus ATCC 53103
3.3.3. Effect of Osmotic Stress on Carbohydrate Metabolism of Lbs. rhamnosus ATCC 53103
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Hao, L.Y.; Jin, Y.; Huang, J.; Zhou, R.Q.; Wu, C.D. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol. Adv. 2024, 74, 108397. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Cen, Q.Y.; Cui, Y.R.; Hu, X.M.; Li, M.; Wang, L.J.; Wei, J.F.; Sun, N.Y.; Wang, J.Y.; Zhang, A.R. Lactobacillus rhamnosus: An emerging probiotic with therapeutic potential for depression. Pharmacol. Res. 2025, 211, 107541. [Google Scholar] [CrossRef]
- Mantegazza, C.; Molinari, P.; D’Auria, E.; Sonnino, M.; Morelli, L.; Zuccotti, G.V. Probiotics and antibiotic-associated diarrhea in children: A review and new evidence on Lactobacillus rhamnosus GG during and after antibiotic treatment. Pharmacol. Res. 2018, 128, 63–72. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Gao, J.T.; Yu, C.W.; Zhao, W.; Chen, N.; Valencak, T.G.; Ren, D.X. Lactobacillus rhamnosus ZJUIDS07 ameliorates type 2 diabetes in mice through the microbiome-gut-pancreas axis. Food Biosci. 2024, 62, 105297. [Google Scholar] [CrossRef]
- Li, Z.Z.; Liu, M.Y.; Zhou, Q.L.; Sun, C.X.; Zheng, X.C.; Chen, J.M.; Liu, B.; Liu, S.J.; Liu, S.L.; Wang, A.M. Synbiotic effects of Lactobacillus rhamnosus fermented with different prebiotics on the digestive enzyme activities, SCFAs and intestinal flora of Macrobrachium rosenbergii in vitro. Aquacult. Rep. 2024, 38, 102303. [Google Scholar] [CrossRef]
- Ma, Y.H.; Sheng, Y.D.; Zhang, D.; Liu, J.T.; Tian, Y.; Li, H.; Li, X.F.; Li, N.; Sun, P.; Siddiqui, S.A.; et al. Acanthopanax senticosus cultures fermented by Lactobacillus rhamnosus enhanced immune response through improvement of antioxidant activity and inflammation in crucian carp (Carassius auratus). Microb. Pathogen. 2024, 190, 106614. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.K.; Jin, Y.; Zhou, R.Q.; Huang, J.; Wu, C.D. Arginine deiminase pathway of Tetragenococcus halophilus contributes to improve the acid tolerance of lactic acid bacteria. Food Microbiol. 2023, 113, 104281. [Google Scholar] [CrossRef]
- Guan, N.Z.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Q.Q.; Song, X.F.; Guo, J.J.; Wu, J.R.; Wu, R.N. iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance. Ann. Microbiol. 2019, 69, 377–394. [Google Scholar] [CrossRef]
- Bao, Q.H.; Yuan, B.Y.; Ma, X.B.; Zhao, X.; Gao, R.; Jianan Li, J.N.; Kwok, L.Y. Osmotic and cold stress-induced viable but non-culturable state in Lacticaseibacillus paracasei Zhang: A transcriptome analysis. Int. Dairy J. 2025, 166, 106228. [Google Scholar] [CrossRef]
- Morawska, L.P.; Detert Oude Weme, R.G.J.; Frenzel, E.; Dirkzwager, M.; Hoffmann, T.; Bremer, E.; Kuipers, O.P. Stress-induced activation of the proline biosynthetic pathway in Bacillus subtilis: A population-wide and single-cell study of the osmotically controlled proHJ promoter. Microb. Biotechnol. 2022, 15, 2411–2425. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, L.; Shi, Y.; Liu, D.H.; Zhang, P.C.; Chen, Q.H. A multi-omics analysis reveals the response mechanism of Weissella confusa ZJU.2 to gastric acid and bile salts. Food Biosci. 2025, 63, 105667. [Google Scholar] [CrossRef]
- Luo, W.; Zhuang, Y.L.; Sun, L.P.; Gu, Y.; Ding, Y.Y.; Fan, X.J. Regulation of proline on Lacticaseibacillus rhamnosus cells under sodium lactate mediated osmotic stress: Resistance and underlying mechanisms. Food Res. Int. 2025, 221, 117356. [Google Scholar] [CrossRef]
- Zhao, J.N.; Kwok, L.Y.; Fan, H.; Liu, X.F.; Chen, Y.F. Analyses of cellular responses of phorate-incubated Lactiplantibacillus plantarum by transcriptomics and proteomics. Lwt-Food Sci. Technol. 2023, 189, 115443. [Google Scholar] [CrossRef]
- Jia, J.; Duan, J.Y.; Bao, S.H.; Zhang, X.X.; Jia, X.; Ye, J.Z.; Liu, Y.J.; Liu, X.B.; Duan, X. Metabolomic and proteomic profiling reveals the formation mechanism of volatile flavor in egg whites during fermentation by Streptococcus thermophilus. Food Chem. 2025, 466, 142219. [Google Scholar] [CrossRef] [PubMed]
- Suo, K.K.; Yi, J.J.; Zhu, J.Q.; Shi, Y.L.; Lu, L.Z.; Kang, Q.Z.; Liu, X.; Lu, J.K. Transcriptomics and proteomics analyses reveal the role of LlrG in ionizing radiation stress resistance of Lactococcus lactis subsp. lactis IL1403. Food Biosci. 2025, 68, 106579. [Google Scholar] [CrossRef]
- Jing, E.J.; Ma, L.L.; Chen, Z.C.; Ma, R.Z.; Zhang, Q.L.; Sun, R.Y.; He, Z.B.; Wang, J.G. Effects of buffer salts on the freeze-drying survival rate of Lactobacillus plantarum LIP-1 based on transcriptome and proteome analyses. Food Chem. 2020, 326, 126849. [Google Scholar] [CrossRef]
- Yan, N.N.; Luo, T.; Wang, Y.W.; Zhou, H.; Luo, J.; Liu, Y.L.; Ma, X.Y. Transcriptomic and biochemical analyses reveal the cell membrane defense regulated by LiaFSR-LiaX system in Lacticaseibacillus paracasei L9 under bile salt stress. Food Biosci. 2024, 62, 105145. [Google Scholar] [CrossRef]
- Li, L.; Yang, M.J.; Zhu, W.C.; Liu, X.J.; Peng, X.X.; Li, H. Functionally ampicillin-stressed proteomics reveals that AdhE regulates alcohol metabolism for antibiotic resistance in Escherichia coli. Process Biochem. 2021, 104, 132–141. [Google Scholar] [CrossRef]
- Jing, E.J.; Chen, J.; Chen, Z.C.; Ma, R.Z.; Zhang, J.Y.; Yao, C.Q.; Wang, R.X.; Zhang, Q.L.; Yang, Y.; Li, J.; et al. Effects of different initial pH values on freeze-drying resistance of Lactiplantibacillus plantarum LIP-1 based on transcriptomics and proteomics. Food Rev. Int. 2021, 149, 110694. [Google Scholar]
- Chen, J.M.; Li, K.N.; Zhang, W.Y.; Menghe, B. The antifungal activity of Lactiplantibacillus plantarum P9 relates to fatty acid synthesis and purine metabolism-related genes. Food Biosci. 2024, 59, 103987. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.Y.; Addo, K.A.; Huang, Z.X.; Yu, Y.G.; Xiao, X.L. Transcriptomic and proteomic analysis of Staphylococcus aureus response to cuminaldehyde stress. Int. J. Food Microbiol. 2020, 382, 109930. [Google Scholar] [CrossRef]
- Feng, Y.; Gu, D.Z.; Wang, Z.Y.; Lu, C.Y.; Fan, J.F.; Zhou, J.; Wang, R.X.; Su, X.R. Comprehensive evaluation and analysis of the salinity stress response mechanisms based on transcriptome and metabolome of Staphylococcus aureus. Arch. Microbiol. 2021, 204, 28. [Google Scholar] [CrossRef]
- Kobayashi, J. d-Amino Acids and Lactic Acid Bacteria. Microorganism 2019, 7, 690. [Google Scholar] [CrossRef]
- Belew, G.D.; Silva, J.; Rito, J.; Tavares, L.; Viegas, I.; Teixeira, J.; Oliveira, P.J.; Macedo, M.P.; Jones, J.G. Transfer of glucose hydrogens via acetyl-CoA, malonyl-CoA, and NADPH to fatty acids during de novo lipogenesis. J. Lipid Res. 2019, 60, 2050–2056. [Google Scholar] [CrossRef]
- Wang, R.X.; Jing, E.J.; Yang, Y.; Yang, Y.X.; He, Y.C.; Gong, X.J.; Zheng, Y.J.; Zhang, Q.L.; Wang, J.G. Trehalose enhances the resistance of Lactiplantibacillus plantarum LIP-1 to spray- and freeze-drying treatments by regulating amino acid metabolism. Food Biosci. 2024, 60, 104256. [Google Scholar] [CrossRef]
- Zheng, S.S.; Zhang, W.D.; Tan, L.J.; Zou, L.F.; Hu, Y.Y.; Yang, L.; Xu, B.C. The effect of uracil on the freeze-drying survival rate of Lactiplantibacillus plantarum YR07 based on transcriptome analysis. Food Microbiol. 2025, 31, 104803. [Google Scholar] [CrossRef] [PubMed]
- Chai, Y.M.; Ma, Q.W.; He, J.Z.; Wei, G.Q.; Huang, A.X. Rapid Revealing of Quorum Sensing (QS)-Regulated PLA, Biofilm and Lysine Targets of Lactiplantibacillus plantarum L3. Curr. Microbiol. 2024, 81, 303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, Y.J.; Zeng, X.Q.; Wu, Z.; Pan, D.D.; Luo, H.B.; Tao, M.X.; Guo, Y.X. Protective mechanism of milk fat globule membrane proteins on Lactobacillus acidophilus CICC 6074 under acid stress based on proteomic analysis. Food Chem. 2024, 434, 137297. [Google Scholar] [CrossRef]
- Yang, H.W.; Yu, M.H.; Liu, J.; Khan, A.; Zhao, Y.F. Characterization of genes involved in (p)ppGpp precursor biosynthesis in Erwinia amylovora. J. Plant Pathol. 2021, 103, 79–88. [Google Scholar] [CrossRef]
- Kierans, S.J.; Taylor, C.T. Glycolysis: A multifaceted metabolic pathway and signaling hub. J. Biol. Chem. 2024, 300, 107906. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, G.; Ahmad, F.; Kaur, B.; Hakeem, K.R. Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. J. Microbiol. Methods 2020, 170, 105862. [Google Scholar] [CrossRef]
- Zhao, N.; Jiao, L.X.; Xu, J.N.; Zhang, J.; Qi, Y.M.; Qiu, M.Z.; Wei, X.Y.; Fan, M.T. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Rev. Int. 2020, 151, 110859. [Google Scholar] [CrossRef]
- Huang, J.Q.; Wang, L.; Li, X.; Zhang, Y.; Dong, B.; Hu, S.; Liu, C.L.; Fu, D.W.; Shen, L.C.; Liu, G.X. Unveiling the mechanism of fermentation induced antioxidant activity enhancement in asparagus juice: Metabolomic and transcriptomic insights into the functional role of Lactiplantibacillus plantarum JGS 49. Food Biosci. 2025, 69, 106907. [Google Scholar] [CrossRef]
- Zhong, Z.; Hu, R.C.; Zhao, J.; Liu, W.J.; Kwok, L.Y.; Sun, Z.H.; Zhang, H.P.; Chen, Y.F. Acetate kinase and peptidases are associated with the proteolytic activity of Lactobacillus helveticus isolated from fermented food. Food Microbiol. 2021, 94, 103651. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Xiong, D.; Yuan, L.Y.; Fan, P.F.; Xiao, Y.; Chen, J.P.; Feng, W. Transcriptome and protein networks to elucidate the mechanism underlying nitrite degradation by Lactiplantibacillus plantarum. Food Rev. Int. 2022, 156, 111319. [Google Scholar] [CrossRef]
- Li, M.X.; Deng, M.F.; Chen, Y.R.; Fan, H.W.; Huang, Y.X.; Huang, Y.H.; Wan, Y.; Fu, G.M. Exploring the stress mechanism of tannic acid on Saccharomyces cerevisiae based on transcriptomics. Food Biosci. 2023, 56, 103365. [Google Scholar] [CrossRef]
- Mudtham, N.A.; Promariya, A.; Duangsri, C.; Maneeruttanarungroj, C.; Ngamkala, S.; Akrimajirachoote, N.; Powtongsook, S.; Salminen, T.A.; Raksajit, W. Exogenous Trehalose Improves Growth, Glycogen and Poly-3-Hydroxybutyrate (PHB) Contents in Photoautotrophically Grown Arthrospira platensis under Nitrogen Deprivation. Biology 2024, 13, 127. [Google Scholar] [CrossRef]
Gene ID | Symbol | Description | Log2 (FC) |
---|---|---|---|
FG342_RS11585 | FG342_RS11585 | acetyl-CoA C-acyltransferase | 1.10 |
FG342_RS13065 | accA | ACP S-malonyltransferase | −1.70 |
FG342_RS13075 | FG342_RS13075 | carboxyltransferase subunit alpha | −2.18 |
FG342_RS13080 | FG342_RS13080 | acetyl-CoA carboxylase biotin carboxyl carrier protein | −1.87 |
FG342_RS13085 | fabZ | nitronate monooxygenase | −1.89 |
FG342_RS13090 | accB | beta-ketoacyl-ACP synthase II | −1.49 |
FG342_RS13095 | fabF | ACP S-malonyltransferase | −2.22 |
FG342_RS13100 | FG342_RS13100 | acetyl-CoA carboxylase biotin carboxylase subunit | −2.25 |
FG342_RS13105 | FG342_RS13105 | acetyl-CoA carboxylase carboxyltransferase subunit beta | −1.87 |
FG342_RS13110 | FG342_RS13110 | nitronate monooxygenase | −1.41 |
FG342_RS13120 | FG342_RS13120 | 3-hydroxyacyl-ACP dehydratase FabZ family protein | −2.50 |
FG342_RS13130 | FG342_RS13130 | beta-ketoacyl-ACP synthase II | −3.10 |
Gene ID | Symbol | Description | Log2 (FC) |
---|---|---|---|
Histidine metabolism | |||
FG342_RS09740 | hisE | phosphoribosyl-ATP diphosphatase | −1.46 |
FG342_RS09745 | hisI | phosphoribosyl-AMP cyclohydrolase | −1.63 |
FG342_RS09750 | hisF | imidazole glycerol phosphate synthase subunit HisF | −1.22 |
FG342_RS09755 | FG342_RS09755 | 1-(5-phosphoribosyl)-5-[(5- phosphoribosylamino)methylideneamino] imidazole-4-carboxamide isomerase | −1.28 |
FG342_RS09760 | hisH | imidazole glycerol phosphate synthase subunit HisH | −1.07 |
FG342_RS09780 | hisG | ATP phosphoribosyltransferase | −1.81 |
FG342_RS09785 | FG342_RS09785 | ATP phosphoribosyltransferase regulatory subunit | −2.17 |
D-Amino acid metabolism | |||
FG342_RS03230 | FG342_RS03230 | D-alanine--D-alanine ligase | 3.26 |
FG342_RS04925 | FG342_RS04925 | dipeptide epimerase | −1.87 |
FG342_RS06120 | dltA | D-alanine--poly(phosphoribitol) ligase subunit DltA | 3.09 |
FG342_RS06130 | dltC | D-alanine--poly(phosphoribitol) ligase subunit 2 | 2.96 |
FG342_RS11445 | purQ | phosphoribosylformylglycinamidine synthase subunit PurQ | 3.61 |
Lysine degradation | |||
FG342_RS11585 | FG342_RS11585 | acetyl-CoA C-acyltransferase | 1.10 |
FG342_RS13925 | FG342_RS13925 | NAD-dependent succinate-semialdehyde dehydrogenase | −1.10 |
Tryptophan metabolism | |||
FG342_RS11585 | FG342_RS11585 | acetyl-CoA C-acyltransferase | 1.10 |
FG342_RS13950 | FG342_RS13950 | amidase | −1.25 |
Valine, leucine, and isoleucine degradation | |||
FG342_RS03840 | FG342_RS03840 | NAD(P)-dependent oxidoreductase | −1.41 |
FG342_RS11575 | FG342_RS11575 | hydroxymethylglutaryl-CoA synthase | 1.01 |
FG342_RS11585 | FG342_RS11585 | acetyl-CoA C-acyltransferase | 1.10 |
Cysteine and methionine metabolism | |||
FG342_RS00425 | FG342_RS00425 | L-lactate dehydrogenase | −1.43 |
FG342_RS00780 | FG342_RS00780 | L-2-hydroxyisocaproate dehydrogenase | −1.51 |
FG342_RS02445 | FG342_RS02445 | pyridoxal phosphate-dependent aminotransferase | 2.28 |
FG342_RS02865 | FG342_RS02865 | amidohydrolase family protein | 2.29 |
FG342_RS05985 | FG342_RS05985 | S-ribosylhomocysteine lyase | −1.63 |
FG342_RS08580 | FG342_RS08580 | hypothetical protein | −1.22 |
FG342_RS08810 | FG342_RS08810 | GAF domain-containing protein | 1.39 |
FG342_RS09060 | FG342_RS09060 | 5′-methylthioadenosine/adenosylhomocysteine nucleosidase | 1.52 |
FG342_RS13295 | FG342_RS13295 | homoserine dehydrogenase | −1.01 |
Arginine and proline metabolism | |||
FG342_RS11720 | proC | pyrroline-5-carboxylate reductase | 1.00 |
FG342_RS12380 | FG342_RS12380 | proline-specific peptidase family protein | −1.53 |
FG342_RS13950 | FG342_RS13950 | amidase | −1.25 |
Arginine biosynthesis | |||
FG342_RS04950 | FG342_RS04950 | glutamine synthetase family protein | −1.87 |
FG342_RS11445 | purQ | phosphoribosylformylglycinamidine synthase subunit PurQ | 3.61 |
Phenylalanine, tyrosine, and tryptophan biosynthesis | |||
FG342_RS02965 | trpC | indole-3-glycerol phosphate synthase TrpC | 1.81 |
FG342_RS02970 | trpD | anthranilate phosphoribosyltransferase | 1.78 |
Alanine, aspartate, and glutamate metabolism | |||
FG342_RS02450 | FG342_RS02450 | carbon-nitrogen family hydrolase | 2.63 |
FG342_RS04950 | FG342_RS04950 | glutamine synthetase family protein | −1.87 |
FG342_RS11435 | purF | amidophosphoribosyltransferase | 3.48 |
FG342_RS11445 | purQ | phosphoribosylformylglycinamidine synthase subunit PurQ | 3.61 |
FG342_RS13925 | FG342_RS13925 | NAD-dependent succinate-semialdehyde dehydrogenase | −1.10 |
Tyrosine metabolism | |||
FG342_RS13925 | FG342_RS13925 | NAD-dependent succinate-semialdehyde dehydrogenase | −1.10 |
Phenylalanine metabolism | |||
FG342_RS13950 | FG342_RS13950 | amidase | −1.25 |
Lysine biosynthesis | |||
FG342_RS01040 | FG342_RS01040 | PLP-dependent aminotransferase family protein | −2.01 |
FG342_RS06475 | FG342_RS06475 | pyridoxal phosphate-dependent aminotransferase | 1.12 |
FG342_RS13295 | FG342_RS13295 | homoserine dehydrogenase | −1.01 |
Glycine, serine, and threonine metabolism | |||
FG342_RS13295 | FG342_RS13295 | homoserine dehydrogenase | −1.01 |
Gene ID | Symbol | Description | Log2 (FC) |
---|---|---|---|
Glycolysis/Gluconeogenesis | |||
FG342_RS00425 | FG342_RS00425 | L-lactate dehydrogenase | −1.43 |
FG342_RS00780 | FG342_RS00780 | L-2-hydroxyisocaproate dehydrogenase | −1.51 |
FG342_RS01195 | FG342_RS01195 | glycoside hydrolase family 1 protein | 2.22 |
FG342_RS01430 | FG342_RS01430 | PTS transporter subunit EIIC | 1.25 |
FG342_RS01450 | FG342_RS01450 | PTS glucose transporter subunit IIA | 2.38 |
FG342_RS03410 | FG342_RS03410 | class II fructose-bisphosphate aldolase | −1.71 |
FG342_RS12670 | FG342_RS12670 | fructose-bisphosphatase class III | 2.51 |
FG342_RS13435 | FG342_RS13435 | 6-phospho-beta-glucosidase | 3.79 |
Pyruvate metabolism | |||
FG342_RS00425 | FG342_RS00425 | L-lactate dehydrogenase | −1.43 |
FG342_RS00780 | FG342_RS00780 | L-2-hydroxyisocaproate dehydrogenase | −1.51 |
FG342_RS03270 | FG342_RS03270 | D-2-hydroxyisocaproate dehydrogenase | 1.28 |
FG342_RS04910 | FG342_RS04910 | pyruvate oxidase | −2.73 |
FG342_RS05860 | FG342_RS05860 | malolactic enzyme | 1.45 |
FG342_RS11565 | spxB | pyruvate oxidase | −1.32 |
FG342_RS11585 | FG342_RS11585 | acetyl-CoA C-acyltransferase | 1.10 |
FG342_RS12000 | FG342_RS12000 | oxaloacetate decarboxylase subunit alpha | 1.34 |
FG342_RS12035 | FG342_RS12035 | sodium ion-translocating decarboxylase subunit beta | 1.70 |
FG342_RS13065 | accA | carboxyltransferase subunit alpha | −1.70 |
FG342_RS13075 | FG342_RS13075 | acetyl-CoA carboxylase carboxyltransferase subunit beta | −2.18 |
FG342_RS13080 | FG342_RS13080 | acetyl-CoA carboxylase biotin carboxylase subunit | −1.87 |
FG342_RS13090 | accB | acetyl-CoA carboxylase biotin carboxyl carrier protein | −1.49 |
FG342_RS13235 | spxB | pyruvate oxidase | −2.74 |
FG342_RS13400 | FG342_RS13400 | acetate kinase | 1.34 |
Pentose phosphate pathway | |||
FG342_RS01380 | rpiA | ribose-5-phosphate isomerase RpiA | −1.39 |
FG342_RS01655 | FG342_RS01655 | PTS mannose/fructose/sorbose family transporter subunit IID | −1.22 |
FG342_RS03410 | FG342_RS03410 | class II fructose-bisphosphate aldolase | −1.71 |
FG342_RS03465 | FG342_RS03465 | phosphoketolase family protein | −2.28 |
FG342_RS03800 | gnd | phosphogluconate dehydrogenase (NAD(+)-dependent, decarboxylating) | −1.10 |
FG342_RS03990 | deoC | deoxyribose-phosphate aldolase | −1.44 |
FG342_RS03995 | FG342_RS03995 | phosphopentomutase | −1.10 |
FG342_RS06695 | FG342_RS06695 | lactonase family protein | −1.43 |
FG342_RS12670 | FG342_RS12670 | fructose-bisphosphatase class III | 2.51 |
Phosphotransferase system (PTS) | |||
FG342_RS01125 | FG342_RS01125 | PTS mannose/fructose/sorbose transporter subunit IIAB | 1.72 |
FG342_RS01130 | FG342_RS01130 | PTS sugar transporter subunit IIC | 1.43 |
FG342_RS01135 | FG342_RS01135 | PTS mannose/fructose/sorbose family transporter subunit IID | 1.30 |
FG342_RS01185 | FG342_RS01185 | PTS lactose/cellobiose transporter subunit IIA | 1.79 |
FG342_RS01215 | FG342_RS01215 | PTS transporter subunit EIIC | 2.91 |
FG342_RS01430 | FG342_RS01430 | PTS transporter subunit EIIC | 1.25 |
FG342_RS01450 | FG342_RS01450 | PTS glucose transporter subunit IIA | 2.38 |
FG342_RS01520 | FG342_RS01520 | PTS glucitol/sorbitol transporter subunit IIA | −1.42 |
FG342_RS01525 | FG342_RS01525 | PTS glucitol/sorbitol transporter subunit IIB | −1.02 |
FG342_RS01655 | FG342_RS01655 | PTS mannose/fructose/sorbose family transporter subunit IID | −1.22 |
FG342_RS01660 | FG342_RS01660 | PTS sugar transporter subunit IIC | −1.14 |
FG342_RS01670 | FG342_RS01670 | PTS sugar transporter subunit IIA | −1.72 |
FG342_RS02040 | FG342_RS02040 | PTS sugar transporter subunit IIB | 1.01 |
FG342_RS02045 | FG342_RS02045 | PTS lactose/cellobiose transporter subunit IIA | 1.21 |
FG342_RS03115 | FG342_RS03115 | glucose PTS transporter subunit IIA | 3.72 |
FG342_RS03280 | FG342_RS03280 | PTS lactose/cellobiose transporter subunit IIA | 1.29 |
FG342_RS04130 | FG342_RS04130 | PTS transporter subunit EIIC | 1.38 |
FG342_RS05260 | FG342_RS05260 | PTS glucose transporter subunit IIABC | 5.05 |
FG342_RS05450 | FG342_RS05450 | lactose-specific PTS transporter subunit EIIC | 1.36 |
FG342_RS05515 | FG342_RS05515 | PTS transporter subunit IIC | 1.62 |
FG342_RS09350 | FG342_RS09350 | fructose-specific PTS transporter subunit EIIC | 2.13 |
FG342_RS09355 | pfkB | 1-phosphofructokinase | 1.56 |
FG342_RS12905 | FG342_RS12905 | PTS sugar transporter subunit IIC | 1.11 |
FG342_RS13440 | FG342_RS13440 | beta-glucoside-specific PTS transporter subunit IIABC | 2.17 |
Carbon fixation by Calvin cycle | |||
FG342_RS01380 | rpiA | ribose-5-phosphate isomerase RpiA | −1.39 |
FG342_RS03410 | FG342_RS03410 | class II fructose-bisphosphate aldolase | −1.71 |
FG342_RS12670 | FG342_RS12670 | fructose-bisphosphatase class III | 2.51 |
Starch and sucrose metabolism | |||
FG342_RS01185 | FG342_RS01185 | PTS lactose/cellobiose transporter subunit IIA | 1.79 |
FG342_RS01195 | FG342_RS01195 | glycoside hydrolase family 1 protein | 2.22 |
FG342_RS01215 | FG342_RS01215 | PTS transporter subunit EIIC | 2.91 |
FG342_RS01300 | FG342_RS01300 | alpha-glucosidase | −1.14 |
FG342_RS01425 | FG342_RS01425 | 6-phospho-alpha-glucosidase | 1.70 |
FG342_RS01430 | FG342_RS01430 | PTS transporter subunit EIIC | 1.25 |
FG342_RS01450 | FG342_RS01450 | PTS glucose transporter subunit IIA | 2.38 |
FG342_RS02040 | FG342_RS02040 | PTS sugar transporter subunit IIB | 1.01 |
FG342_RS02045 | FG342_RS02045 | PTS lactose/cellobiose transporter subunit IIA | 1.21 |
FG342_RS03115 | FG342_RS03115 | glucose PTS transporter subunit IIA | 3.72 |
FG342_RS03280 | FG342_RS03280 | PTS lactose/cellobiose transporter subunit IIA | 1.29 |
FG342_RS04130 | FG342_RS04130 | PTS transporter subunit EIIC | 1.38 |
FG342_RS05255 | treC | alpha,alpha-phosphotrehalase | 5.29 |
FG342_RS07070 | FG342_RS07070 | glycoside hydrolase family 13 protein | −1.79 |
FG342_RS07075 | FG342_RS07075 | glycoside hydrolase family 65 protein | −1.80 |
FG342_RS07080 | pgmB | beta-phosphoglucomutase | −1.11 |
FG342_RS12630 | FG342_RS12630 | glycogen/starch/alpha-glucan phosphorylase | −1.79 |
FG342_RS12635 | glgA | glycogen synthase GlgA | −1.91 |
FG342_RS12640 | glgD | glucose-1-phosphate adenylyltransferase subunit GlgD | −1.24 |
FG342_RS12905 | FG342_RS12905 | PTS sugar transporter subunit IIC | 1.11 |
FG342_RS13435 | FG342_RS13435 | 6-phospho-beta-glucosidase | 3.79 |
Fructose and mannose metabolism | |||
FG342_RS01125 | FG342_RS01125 | PTS mannose/fructose/sorbose transporter subunit IIAB | 1.72 |
FG342_RS01130 | FG342_RS01130 | PTS sugar transporter subunit IIC | 1.43 |
FG342_RS01135 | FG342_RS01135 | PTS mannose/fructose/sorbose family transporter subunit IID | 1.30 |
FG342_RS01270 | rhaB | rhamnulokinase | 1.27 |
FG342_RS01520 | FG342_RS01520 | PTS glucitol/sorbitol transporter subunit IIA | −1.42 |
FG342_RS01525 | FG342_RS01525 | PTS glucitol/sorbitol transporter subunit IIB | −1.02 |
FG342_RS01545 | FG342_RS01545 | SDR family oxidoreductase | −1.16 |
FG342_RS01660 | FG342_RS01660 | PTS sugar transporter subunit IIC | −1.14 |
FG342_RS01670 | FG342_RS01670 | PTS sugar transporter subunit IIA | −1.72 |
FG342_RS03410 | FG342_RS03410 | class II fructose-bisphosphate aldolase | −1.71 |
FG342_RS09350 | FG342_RS09350 | fructose-specific PTS transporter subunit EIIC | 2.13 |
FG342_RS09355 | pfkB | 1-phosphofructokinase | 1.56 |
FG342_RS12670 | FG342_RS12670 | fructose-bisphosphatase class III | 2.51 |
Galactose metabolism | |||
FG342_RS00705 | FG342_RS00705 | tagatose 1,6-diphosphate aldolase | −1.70 |
FG342_RS01300 | FG342_RS01300 | alpha-glucosidase | −1.14 |
FG342_RS05450 | FG342_RS05450 | lactose-specific PTS transporter subunit EIIC | 1.36 |
FG342_RS07355 | FG342_RS07355 | alpha-galactosidase | −3.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; He, X.; Chen, Y.; Xu, Y.; Zhuang, Y.; Ding, Y.; Fan, X. Integrated Transcriptomic and Proteomic Analyses Revealed the Mechanism of the Osmotic Stress Response in Lacticaseibacillus rhamnosus ATCC 53103. Foods 2025, 14, 3112. https://doi.org/10.3390/foods14173112
Luo W, He X, Chen Y, Xu Y, Zhuang Y, Ding Y, Fan X. Integrated Transcriptomic and Proteomic Analyses Revealed the Mechanism of the Osmotic Stress Response in Lacticaseibacillus rhamnosus ATCC 53103. Foods. 2025; 14(17):3112. https://doi.org/10.3390/foods14173112
Chicago/Turabian StyleLuo, Wei, Xiaona He, Yuxue Chen, Yewen Xu, Yongliang Zhuang, Yangyue Ding, and Xuejing Fan. 2025. "Integrated Transcriptomic and Proteomic Analyses Revealed the Mechanism of the Osmotic Stress Response in Lacticaseibacillus rhamnosus ATCC 53103" Foods 14, no. 17: 3112. https://doi.org/10.3390/foods14173112
APA StyleLuo, W., He, X., Chen, Y., Xu, Y., Zhuang, Y., Ding, Y., & Fan, X. (2025). Integrated Transcriptomic and Proteomic Analyses Revealed the Mechanism of the Osmotic Stress Response in Lacticaseibacillus rhamnosus ATCC 53103. Foods, 14(17), 3112. https://doi.org/10.3390/foods14173112