A Sensitive and Selective Electrochemical Sensor Based on an Iron-Based Nanocomposite-Modified Electrode for the Detection of Dopamine in Pork
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Instrument
2.2. Synthesis of the Fe@(C-S-N) Nanocomposites
2.3. Preparation of Fe@(C-S-N)/GCE and Electrochemical Test
2.4. Detection of DA in Meat Sample
3. Results and Discussion
3.1. Characterization of the Synthesized Fe@(C-S-N) Nanocomposites
3.2. Electrochemical Behavior
3.3. Optimized Experimental Conditions
3.4. Study of the Reaction Mechanism
3.5. DPV Determination of DA
3.6. Effect of Interferences, Repeatability, Reproducibility, and Stability
3.7. Real-Time Analysis of DA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, H.; Chen, K.; Ma, H.; He, J.; Li, H.; Yang, Z.; Wu, Q.; Zhang, C.; Zhang, S.; Huang, T.; et al. Carbon footprints in pork production and consumption in China from 2005 to 2020. J. Clean. Prod. 2023, 419, 138252. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, T.; Chen, S.; Wu, Z.; Guo, Y.; Pan, D.; Gan, N. A novel colorimetric immunosensor based on platinum colloid nanoparticles immobilized on PowerVision as signal probes and Fe3O4@β-cyclodextrin as capture probes for ractopamine detection in pork. J. Sci. Food Agric. 2019, 99, 2818–2825. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Huang, X.; Zou, X.; Shi, J.; Xu, Y.; Hu, X.; Sun, Y.; Zhai, X. Hypha-templated synthesis of carbon/ZnO microfiber for dopamine sensing in pork. Food Chem. 2021, 335, 127646. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Sun, Y.; Wei, Y. Development of an Analytical Method for the Determination of β2-Agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with On-line Electrogenerated [Cu(HIO6)2]5−-Luminol Chemiluminescence Detection. J. Agric. Food Chem. 2007, 55, 4949–4956. [Google Scholar] [CrossRef] [PubMed]
- Lapa-Guimarães, J.; Pickova, J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J. Chromatogr. A 2004, 1045, 223–232. [Google Scholar] [CrossRef]
- Cinquina, A.L.; Calì, A.; Longo, F.; Santis, L.D.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. A 2004, 1032, 73–77. [Google Scholar] [CrossRef]
- García-Villar, N.; Saurina, J.; Hernández-Cassou, S. Capillary electrophoresis determination of biogenic amines by field-amplified sample stacking and in-capillary derivatization. Electrophoresis 2006, 27, 474–483. [Google Scholar] [CrossRef]
- Zhang, J.; Seyfried, A. Empirical Characteristics of Different Types of Pedestrian Streams. Procedia Eng. 2013, 62, 655–662. [Google Scholar] [CrossRef]
- Yan, K.; Zhang, H.; Hui, W.; Zhu, H.; Li, X.; Zhong, F.; Tong, X.; Chen, C. Rapid screening of toxic salbutamol, ractopamine, and clenbuterol in pork sample by high-performance liquid chromatography-UV method. J. Food Drug Anal. 2016, 24, 277–283. [Google Scholar] [CrossRef]
- Jouyban, A.; Farajzadeh, M.A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Afshar Mogaddam, M.R. Derivatization and deep eutectic solvent-based air–assisted liquid–liquid microextraction of salbutamol in exhaled breath condensate samples followed by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2020, 191, 113572. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, C.; An, J.; Yang, L.; Yang, Y.; Liu, X. Ultra-fast synthesis of iron decorated multiwalled carbon nanotube composite materials: A sensitive electrochemical sensor for determining dopamine. J. Alloys Compd. 2022, 897, 163257. [Google Scholar] [CrossRef]
- Njagi, J.; Chernov, M.M.; Leiter, J.C.; Andreescu, S. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor. Anal. Chem. 2010, 82, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Florescu, M.; David, M. Tyrosinase-Based Biosensors for Selective Dopamine Detection. Sensors 2017, 17, 1314. [Google Scholar] [CrossRef]
- Deepika, J.; Sha, R.; Badhulika, S. A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine. Microchim. Acta 2019, 186, 480. [Google Scholar] [CrossRef]
- Ahmed, J.; Faisal, M.; Algethami, J.S.; Alsaiari, M.; Harraz, F.A. A novel In2O3-doped ZnO decorated mesoporous carbon nanocomposite as a sensitive and selective dopamine electrochemical sensor. J. Mater. Res. Technol. 2024, 29, 540–549. [Google Scholar] [CrossRef]
- Li, B.; Xue, H.; Pang, H.; Xu, Q. Porous phosphorus-rich CoP3/CoSnO2 hybrid nanocubes for high-performance Zn-air batteries. Sci. China Chem. 2020, 63, 475–482. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Li, B.; Meng, T.; Xie, X.; Guo, X.; Li, Q.; Du, W.; Zhang, X.; Meng, X.; Pang, H. Fe-based Composites-enabled electrochemical sensors for nitrite detection: A review. Mater. Today Chem. 2023, 33, 101747. [Google Scholar] [CrossRef]
- Chen, W.-H.; Maheshwaran, S.; Park, Y.-K.; Ong, H.C. Iron-based electrode material composites for electrochemical sensor application in the environment: A review. Sci. Total Environ. 2024, 953, 176128. [Google Scholar] [CrossRef]
- Kahlouche, K.; Jijie, R.; Hosu, I.; Barras, A.; Gharbi, T.; Yahiaoui, R.; Herlem, G.; Ferhat, M.; Szunerits, S.; Boukherroub, R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta 2018, 178, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.G.; Kim, Y.H.; Kim, C.W.; Kang, Y.S. Preparation of aqueous dispersion of colloidal α-Fe nanoparticle by phase transfer. Sens. Actuators B Chem. 2007, 126, 221–225. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, X.; Li, Y.; Zhao, G.; Xu, H.; Jin, Z. A carbon-coated shuttle-like Fe2O3/Fe1-xS heterostructure derived from metal-organic frameworks with high pseudocapacitance for ultrafast lithium storage. Nanoscale Adv. 2020, 2, 5201–5208. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X.; Russell, C.K.; Dyar, M.D.; Sklute, E.C.; Toan, S.; Fan, M.; Duan, L.; Xiang, W. Synergistic enhancement of chemical looping-based CO2 splitting with biomass cascade utilization using cyclic stabilized Ca2Fe2O5 aerogel. J. Mater. Chem. A 2019, 7, 1216–1226. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Wang, K.; Wang, Y. CTAB-Assisted Synthesis of N-Doped Fe3C Nanowires and Their Magnetic Properties. J. Supercond. Nov. Magn. 2019, 32, 3503–3508. [Google Scholar] [CrossRef]
- Hou, T.; Ding, J.; Zhang, H.; Chen, S.; Liu, Q.; Luo, J.; Liu, X. FeNi3 nanoparticles for electrocatalytic synthesis of urea from carbon dioxide and nitrate. Mater. Chem. Front. 2023, 7, 4952–4960. [Google Scholar] [CrossRef]
- Cai, X.-Q.; Huang, Y.; Luo, Y.-H.; Liu, Y.; Zhang, Q.-Y.; Zhao, Z.-A.; Zhu, Q.; Chen, F.-Y.; Zhang, D.-E. Facial synthesis of Fe/Fe3N@carbon nanocomposite for simultaneous electrochemical detection of dopamine and acetaminophen. Solid State Sci. 2022, 132, 106984. [Google Scholar] [CrossRef]
- Ma, Q.; Song, H.; Zhuang, Q.; Liu, J.; Zhang, Z.; Mao, C.; Peng, H.; Li, G.; Chen, K. Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@C nanorods as high rate anodes for lithium ion batteries. Chem. Eng. J. 2018, 338, 726–733. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Z.; Zeng, Y.; Li, P.; Zhang, H. High electrochemical performance of γ″-FeN thin film electrode for lithium ion batteries. J. Power Sources 2019, 423, 159–165. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, Y.; Wei, Y.; Wang, B.; Zhang, Y.; Wu, H.; Zhou, X.; Zhang, Y.; Wang, Q. Integrating conductivity and active sites: Fe/Fe3C@GNC as an trapping-catalyst interlayer and dendrite-free lithium host for the lithium-sulfur cell with outstanding rate performance. J. Mater. Chem. A 2020, 8, 18987–19000. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, K.; Huang, H.; Zhang, X.; Wang, Z.; Chen, S.; Liu, G.; Wen, Y.; Wang, P. A general strategy to prepare transition metal sulfide functionalized hierarchically porous carbons with multiple enzyme-like activities for simultaneous electrochemical sensing of ATP metabolites. Chem. Eng. J. 2023, 471, 144767. [Google Scholar] [CrossRef]
- Hou, L.; Yang, W.; Xu, X.; Deng, B.; Chen, Z.; Wang, S.; Tian, J.; Yang, F.; Li, Y. In-situ activation endows the integrated Fe3C/Fe@ nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chem. Eng. J. 2019, 375, 122061. [Google Scholar] [CrossRef]
- Balamurugan, J.; Thanh, T.D.; Kim, N.H.; Lee, J.H. Nitrogen-Doped Graphene Nanosheets with FeN Core-Shell Nanoparticles as High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells. Adv. Mater. Interfaces 2016, 3, 1500348. [Google Scholar] [CrossRef]
- Chen, W.; Xia, H.; Guo, K.; Jin, W.; Du, Y.; Yan, W.; Qu, G.; Zhang, J. Atomically Dispersed Fe-N4 Sites and Fe3C Particles Catalyzing Polysulfides Conversion in Li-S Batteries. Chem. Res. Chin. Univ. 2022, 38, 1232–1238. [Google Scholar] [CrossRef]
- Ibrahim, H.; Temerk, Y. Surface decoration of functionalized carbon black nanoparticles with nanosized gold particles for electrochemical sensing of diuretic spironolactone in patient plasma. Microchem. J. 2022, 178, 107425. [Google Scholar] [CrossRef]
- Devnani, H.; Ansari, S.; Satsangee, S.P.; Jain, R. ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater. Today Chem. 2017, 4, 17–25. [Google Scholar] [CrossRef]
- Ling, Y.-Y.; Huang, Q.-A.; Zhu, M.-S.; Feng, D.-X.; Li, X.-Z.; Wei, Y. A facile one-step electrochemical fabrication of reduced graphene oxide-mutilwall carbon nanotubes-phospotungstic acid composite for dopamine sensing. J. Electroanal. Chem. 2013, 693, 9–15. [Google Scholar] [CrossRef]
- Nicholson, R.S.; Shain, I. Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem. 2002, 36, 706–723. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Gao, S.; Li, M.; Xu, S.; Li, C.; Guo, W.; Qu, C.; Yang, B. MgO nanobelt-modified graphene-tantalum wire electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Electrochim. Acta 2015, 168, 191–198. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, T.; Liang, Y.; Xiao, D. Intercalation Lithium Cobalt Oxide for the Facile Fabrication of a Sensitive Dopamine Sensor. ChemElectroChem 2020, 7, 1193–1200. [Google Scholar] [CrossRef]
- Tang, J.; Huang, R.; Zheng, S.; Jiang, S.; Yu, H.; Li, Z.; Wang, J. A sensitive and selective electrochemical sensor based on graphene quantum dots/gold nanoparticles nanocomposite modified electrode for the determination of luteolin in peanut hulls. Microchem. J. 2019, 145, 899–907. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.-F.; Wang, A.-J.; Zhang, Q.-L.; Huang, H.; Feng, J.-J. Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Microchim. Acta 2019, 186, 660. [Google Scholar] [CrossRef]
- Fang, Z.; Li, X.; Zhang, H.; Nie, Q.; Xu, W.; Peng, J. Electrochemical sensor based on triazinyl covalent organic framework for detection of dopamine. J. Solid State Electrochem. 2023, 28, 2211–2222. [Google Scholar] [CrossRef]
- Shen, X.; Ju, F.; Li, G.; Ma, L. Smartphone-Based Electrochemical Potentiostat Detection System Using PEDOT: PSS/Chitosan/Graphene Modified Screen-Printed Electrodes for Dopamine Detection. Sensors 2020, 20, 2781. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Ren, H.; Wang, X.; Xu, Y.; Guo, Y.; Xiao, D. Facile fabrication of Fe-Fe3C nanoparticles decorated with carbon nanotubes for sensitive dopamine detection. J. Electroanal. Chem. 2023, 948, 117793. [Google Scholar] [CrossRef]
- Ranku, M.N.; Uwaya, G.E.; Fayemi, O.E. Electrochemical Detection of Dopamine at Fe3O4/SPEEK Modified Electrode. Molecules 2021, 26, 5357. [Google Scholar] [CrossRef] [PubMed]
- Paramparambath, S.; Shafath, S.; Maurya, M.R.; Cabibihan, J.-J.; Al-Ali, A.; Malik, R.A.; Sadasivuni, K.K. Nonenzymatic Electrochemical Sensor Based on CuO-MgO Composite for Dopamine Detection. IEEE Sens. J. 2021, 21, 25597–25605. [Google Scholar] [CrossRef]
- Choo, S.-S.; Kang, E.-S.; Song, I.; Lee, D.; Choi, J.-W.; Kim, T.-H. Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites. Sensors 2017, 17, 861. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Q.; Wu, C.; Zhang, Y.; Zeng, L. PtNi bimetallic nanoparticles loaded MoS2 nanosheets: Preparation and electrochemical sensing application for the detection of dopamine and uric acid. Anal. Chim. Acta 2019, 1055, 17–25. [Google Scholar] [CrossRef] [PubMed]
Electrode | Detection Method | Linear Range (μM) | LOD (μM) | Ref. |
---|---|---|---|---|
Fe3C@NGCSs/GCE | DPV | 1.2–120.8 | 0.34 | [41] |
Fe/Fe3N-900/GCE | DPV | 0.09–270; 297–455.5 | 0.97 | [26] |
COF-1/GCE | DPV | 1–500 | 0.5 | [42] |
LCO-G/GCE | DPV | 0.020–20 | 0.004 | [39] |
PSS/Chitosan/Graphene/SPE | DPV | 0.05–70 | 0.29 | [43] |
Fe/Fe3C@CNTs/GCE | DPV | 0.05–40 | 0.01 | [44] |
SPCE-Fe3O4/SPEEK | SWV | 5–50 | 7.1 | [45] |
CuO-MgO | I-t | 10–100 | 6.4 | [46] |
pGO-GNP-ITO | CV | 0.1–30 | 1.28 | [47] |
PtNi@MoS2/GCE | DPV | 0.5–150 | 0.1 | [48] |
Fe@(C-S-N)/GCE | DPV | 0.05–35; 35–100 | 0.046 | This work |
Sample | Labeled (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Sample 1 | 3 | 2.91 ± 0.08 | 96.89 ± 2.75 | 2.84 |
Sample 2 | 7 | 7.36 ± 0.09 | 105.19 ± 1.35 | 1.67 |
Sample 3 | 17 | 16.6 ± 0.31 | 97.67 ± 1.88 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, L.; Shi, J.; Wu, X.; Zhang, J.; Xu, Y.; Wang, X.; Li, X. A Sensitive and Selective Electrochemical Sensor Based on an Iron-Based Nanocomposite-Modified Electrode for the Detection of Dopamine in Pork. Foods 2025, 14, 3145. https://doi.org/10.3390/foods14183145
Li J, Wang L, Shi J, Wu X, Zhang J, Xu Y, Wang X, Li X. A Sensitive and Selective Electrochemical Sensor Based on an Iron-Based Nanocomposite-Modified Electrode for the Detection of Dopamine in Pork. Foods. 2025; 14(18):3145. https://doi.org/10.3390/foods14183145
Chicago/Turabian StyleLi, Jing, Luyao Wang, Jijie Shi, Xuelian Wu, Jing Zhang, Yuecheng Xu, Xinhui Wang, and Xiaoqin Li. 2025. "A Sensitive and Selective Electrochemical Sensor Based on an Iron-Based Nanocomposite-Modified Electrode for the Detection of Dopamine in Pork" Foods 14, no. 18: 3145. https://doi.org/10.3390/foods14183145
APA StyleLi, J., Wang, L., Shi, J., Wu, X., Zhang, J., Xu, Y., Wang, X., & Li, X. (2025). A Sensitive and Selective Electrochemical Sensor Based on an Iron-Based Nanocomposite-Modified Electrode for the Detection of Dopamine in Pork. Foods, 14(18), 3145. https://doi.org/10.3390/foods14183145