Whey Valorization in Functional Jellies: A Nutritional and Technological Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Jelly Preparation
2.3. Determination of Physical–Chemical Parameters of Jellies
2.3.1. Determination of pH
2.3.2. Determination of Titrable Acidity (TA)
- V = volume of NaOH solution used in titration (mL).
- N = normality of NaOH solution (mol/L equivalents).
- f = conversion factor, specific to the reference acid (g acid/mmol equivalent).
- m = mass of the analyzed sample (g).
2.3.3. Determination of Water Content
2.3.4. Protein and Total Amino Acid Determination
2.3.5. Determination of Total Mineral Substances
2.4. Determination of Macro- and Microelements
2.5. Determination of Phytochemical Profile
2.5.1. Determination of the Total Phenolic Content (TPC)
2.5.2. Determination of Antioxidant Activity
2.6. Determination of Storage Stability
2.7. Determination of Color Parameters
2.8. Texture Profile Analysis
2.9. Fourier Transform Infrared Spectroscopy (FTIR)
2.10. Microscopic Evaluation
2.11. Statistical Analysis
3. Results and Discussion
3.1. Physical–Chemical Parameters of Whey Jellies
3.2. Macro- and Microelement Contents of Whey Jellies
3.3. Phytochemical Profile of Whey Jellies
3.4. Storage Stability of Whey Jellies
3.5. Color Analysis of Whey Jellies
3.6. Texture Analysis of Whey Jellies
3.7. FTIR Spectra Analysis of Whey Jellies
3.8. Microscopic Analysis of Whey Jellies
3.9. Correlation Between Parameters
3.9.1. Pearson Correlation
3.9.2. Principal Component Analysis and Cluster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smithers, G.W. Whey and Whey Proteins—From “Gutter-to-Gold”. Int. Dairy J. 2008, 18, 695–704. [Google Scholar] [CrossRef]
- Brandelli, A.; Daroit, D.J.; Corrêa, A.P.F. Whey as a Source of Peptides with Remarkable Biological Activities. Food Res. Int. 2015, 73, 149–161. [Google Scholar] [CrossRef]
- Pihlanto, A. Bioactive Peptides Derived from Bovine Whey Proteins: Opioid and ACE-Inhibitory Peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Shao, Y.; Yu, Q.; Tang, C.; Wang, W.; He, Z. The Effects of Fermentation Time and the Addition of Blueberry on the Texture Properties and In Vitro Digestion of Whey Protein Gel. Fermentation 2025, 11, 205. [Google Scholar] [CrossRef]
- Honaga, K.; Mori, N.; Akimoto, T.; Tsujikawa, M.; Kawakami, M.; Okamoto, T.; Sakata, Y.; Hamano, H.; Takeda, Y.; Kondo, K. Investigation of the Effect of Nutritional Supplementation with Whey Protein and Vitamin D on Muscle Mass and Muscle Quality in Subacute Post-Stroke Rehabilitation Patients: A Randomized, Single-Blinded, Placebo-Controlled Trial. Nutrients 2022, 14, 685. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.K.; Patel, A.R.; Tripathy, S.; Gupta, A.K.; Singh, S.; Shah, N.; Utama, G.L.; Chávez-González, M.L.; Zongo, K.; Banwo, K.; et al. Processing and Formulation Technology of Nutritional and Functional Food Products by Utilizing Cheese and/or Paneer Whey: A Critical Review. J. King Saud Univ. Sci. 2024, 36, 103508. [Google Scholar] [CrossRef]
- Vélez-Ruiz, J.; Hernández, T. Development, Characterization, and Stability of a Functional Beverage from Whey. MOJ Food Process. Technol. 2024, 12, 140–147. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, A.; Thakur, M. Valorization of Whey in Manufacturing of Functional Beverages: A Dairy Industry Perspective. In Whey Valorization; Poonia, A., Trajkovska Petkoska, A., Eds.; Springer: Singapore, 2023; pp. 305–322. [Google Scholar] [CrossRef]
- Buchanan, D.; Martindale, W.; Romeih, E.; Hebishy, E. Recent Advances in Whey Processing and Valorisation: Technological and Environmental Perspectives. Int. J. Dairy Technol. 2023, 76, 291–312. [Google Scholar] [CrossRef]
- Mulani, R. Preparation and Evaluation of Nutritional Jelly Candy. Int. J. Sci. Res. Eng. Dev. 2015, 2, 417–432. [Google Scholar] [CrossRef]
- Bulut Solak, B.; Akın, N. Functionality of Whey Protein. Int. J. Health Nutr. 2012, 3, 1–7. [Google Scholar]
- Wang, C.; Guo, M. Whey Protein Structure and Denaturation and Interactions with Other Food Components. In Whey Protein Production, Chemistry, Functionality, and Applications; Guo, M., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 73–99. [Google Scholar] [CrossRef]
- AOAC International. Official Method 981.12: Potentiometric pH in Food; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- AOAC International. Official Method 920.124: Ash in Cheese; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- ISO 8968-1:2014/IDF 20-1:2014; Milk and Milk Products—Determination of Nitrogen Content—Part 1: Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Verni, M. Determination of the Content of Free Amino Acids and Their Profiling. In Basic Methods and Protocols on Sourdough; Gobbetti, M., Rizzello, C.G., Eds.; Methods and Protocols in Food Science; Humana: New York, NY, USA, 2024; pp. 71–79. [Google Scholar] [CrossRef]
- Poitevin, E. Official Methods for the Determination of Minerals and Trace Elements in Infant Formula and Milk Products: A Review. J. AOAC Int. 2016, 99, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Ruja, A.; Cozma, A.; Cozma, B.; Horablaga, N.M.; Dinulescu, C.; Alexa, E.; Buzna, C.; Cocan, I.; Berbecea, A.; Dossa, S.; et al. Nutritional, Phytochemical, and Rheological Profiles of Different Oat Varieties and Their Potential in the Flour Industry. Agronomy 2024, 14, 1438. [Google Scholar] [CrossRef]
- Dragomir, C.; Misca, C.D.; Dossa, S.; Jianu, C.; Radulov, I.; Negrea, M.; Paven, L.; Alexa, E. Chemical Composition, Antibacterial Activity, and Food Application of Sprouts from Fabaceae and Brassicaceae Species. Appl. Sci. 2025, 15, 1896. [Google Scholar] [CrossRef]
- Moraru, D.; Alexa, E.; Cocan, I.; Obiștioiu, D.; Radulov, I.; Simiz, E.; Berbecea, A.; Grozea, A.; Dragomirescu, M.; Vintilă, T.; et al. Chemical Characterization and Antioxidant Activity of Apilarnil, Royal Jelly, and Propolis Collected in Banat Region, Romania. Appl. Sci. 2024, 14, 1242. [Google Scholar] [CrossRef]
- Lin, H.-T.V.; Tsai, J.-S.; Liao, H.-H.; Sung, W.-C. The Effect of Hydrocolloids on Penetration Tests and Syneresis of Binary Gum Gels and Modified Corn Starch–Gum Gels. Gels 2023, 9, 605. [Google Scholar] [CrossRef]
- Available online: https://www.konicaminolta.com/instruments/knowledge/color/pdf/color_communication.pdf (accessed on 12 June 2025).
- Păucean, A.; Șerban, L.-R.; Chiș, M.S.; Mureșan, V.; Pușcaș, A.; Man, S.M.; Pop, C.R.; Socaci, S.A.; Igual, M.; Ranga, F.; et al. Nutritional composition, in vitro carbohydrates digestibility, textural and sensory characteristics of bread as affected by ancient wheat flour type and sourdough fermentation time. Food Chem. X 2024, 22, 101298. [Google Scholar] [CrossRef]
- Måge, I.; Böcker, U.; Wubshet, S.G.; Lindberg, D.; Afseth, N.K. Fourier-Transform Infrared (FTIR) Fingerprinting for Quality Assessment of Protein Hydrolysates. LWT 2021, 152, 112339. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Liu, X.; Yu, Q. The Characteristics of Whey Protein and Blueberry Juice Mixed Fermentation Gels Formed by Lactic Acid Bacteria. Gels 2023, 9, 565. [Google Scholar] [CrossRef]
- Li, R.; Czaja, T.P.; Glover, Z.J.; Ipsen, R.; Jæger, T.C.; Rovers, T.A.M.; Simonsen, A.C.; Svensson, B.; van den Berg, F.; Hougaard, A.B. Water mobility and microstructure of acidified milk model gels with added whey protein ingredients. Food Hydrocoll. 2022, 127, 107548. [Google Scholar] [CrossRef]
- Song, D.-H.; Yang, N.-E.; Ham, Y.-K.; Kim, H.-W. Physicochemical Properties of Mixed Gelatine Gels with Soy and Whey Proteins. Gels 2024, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- González-Weller, D.; Paz-Montelongo, S.; Bethencourt-Barbuzano, E.; Niebla-Canelo, D.; Alejandro-Vega, S.; Gutiérrez, Á.J.; Hardisson, A.; Carrascosa, C.; Rubio, C. Proteins and Minerals in Whey Protein Supplements. Foods 2023, 12, 2238. [Google Scholar] [CrossRef]
- Daly, K.; Al-Rammahi, M.; Moran, A.; Marcello, M.; Ninomiya, Y.; Shirazi-Beechey, S.P. Sensing of amino acids by the gut-expressed taste receptor T1R1–T1R3 stimulates CCK secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G271–G282. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Oliveira, G.; Lila, M.A. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr. Rev. Food Sci. Food Saf. 2023, 22, 333–354. [Google Scholar] [CrossRef]
- Enomoto, H. Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Curr. Res. Food Sci. 2021, 4, 821–828. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, Z.; Qiu, C.; Wen, J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024, 13, 2453. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shrestha, K. Whey and whey-based fruit beverage. Bachelor’s Thesis, Department of Food Technology, National College of Food Science and Technology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal, 2021. [Google Scholar]
- Feng, Y.; Jin, C.; Lv, S.; Zhang, H.; Ren, F.; Wang, J. Molecular Mechanisms and Applications of Polyphenol-Protein Complexes with Antioxidant Properties: A Review. Antioxidants 2023, 12, 1577. [Google Scholar] [CrossRef]
- Chima, B.; Mathews, P.; Morgan, S.; Johnson, S.A.; Van Buiten, C.B. Physicochemical Characterization of Interactions between Blueberry Polyphenols and Food Proteins from Dairy and Plant Sources. Foods 2022, 11, 2846. [Google Scholar] [CrossRef] [PubMed]
- Benmeziane-Derradji, F.; Taguida, K.; Messadeg, F.Z.; Djermoune-Arkoub, L. Partial Substitution of Sugar by Honey in a Pumpkin-Based Jam: Impact on Physicochemical, Microbiological Quality and Sensory Attributes during Refrigerated Storage. J. Food Sci. Technol. 2022, 59, 4322–4331. [Google Scholar] [CrossRef]
- Rana, M.S.; Yeasmin, F.; Khan, M.J.; Riad, M.H. Evaluation of Quality Characteristics and Storage Stability of Mixed Fruit Jam. Food Res. 2021, 5, 225–231. [Google Scholar] [CrossRef]
- Brandão, T.M.; do Carmo, E.L.; Elias, H.E.S.; de Carvalho, E.E.N.; Borges, S.V.; Martins, G.A.S. Physicochemical and Microbiological Quality of Dietetic Functional Mixed Cerrado Fruit Jam during Storage. Sci. World J. 2018, 2018, 2878215. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, K.; Sulaxana, C.K.; Gokul, S.; Vijayalakshmi, S.; Shanmugam, N. Whey Proteins: A Potential Ingredient for Food Industry—A Review. Asian J. Dairy Food Res. 2018, 37, 283–290. [Google Scholar] [CrossRef]
- Miller, K.; Feucht, W.; Schmid, M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red Fruits Composition and Their Health Benefits—A Review. Foods 2022, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Kim, Y.-J.; Shin, Y. Assessment of Physicochemical Quality, Antioxidant Content and Activity, and Inhibition of Cholinesterase between Unripe and Ripe Blueberry Fruit. Foods 2020, 9, 690. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef] [PubMed]
- Banc, R.; Rusu, M.E.; Filip, L.; Popa, D.-S. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut–Brain Axis. Foods 2023, 12, 270. [Google Scholar] [CrossRef]
- Bunea, A.; Rugină, O.D.; Pintea, A.M.; Sconta, Z.; Bunea, C.I.; Socaciu, C. Comparative Polyphenolic Content and Antioxidant Activities of Some Wild and Cultivated Blueberries from Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 70–76. [Google Scholar] [CrossRef]
- Farjami, T.; Madadlou, A. An Overview on Preparation of Emulsion-Filled Gels and Emulsion Particulate Gels. Trends Food Sci. Technol. 2019, 86, 85–94. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioproc. Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Smith, D.E. Color Analysis. In Food Analysis; Springer: Boston, MA, USA, 2010. [Google Scholar] [CrossRef]
- Cortez, R.; Luna, D.A.; Margulis, D.; Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2016, 16, 180–198. [Google Scholar] [CrossRef]
- Ścibisz, I.; Ziarno, M. Effect of Fermented Matrix on the Color and Stability of Strawberry and Blueberry Anthocyanins during the Storage of Fruit Yogurts and Soy-Based and Bean-Based Fruit Yogurt Alternatives. Molecules 2023, 28, 6222. [Google Scholar] [CrossRef]
- Tobolka, A.; Škorpilová, T.; Beňo, F.; Podskalská, T.; Rajchl, A. Effect of Various Carbohydrates in Aqueous Solutions on Color Stability and Degradation Kinetics of Selected Anthocyanins during Storage. Foods 2024, 13, 3628. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Xue, H.; Zhao, J.; Wang, Y.; Shi, Z.; Xie, K.; Liao, X.; Tan, J. Factors Affecting the Stability of Anthocyanins and Strategies for Improving Their Stability: A Review. Food Chem. X 2024, 24, 101883. [Google Scholar] [CrossRef] [PubMed]
- Ersch, C.; Meinders, M.B.J.; Bouwman, W.G.; Nieuwland, M.; van der Linden, E.; Venema, P.; Martin, A.H. Microstructure and Rheology of Globular Protein Gels in the Presence of Gelatine. Food Hydrocoll. 2016, 55, 34–46. [Google Scholar] [CrossRef]
- Yan, C.; Zhu, X.; Chen, B.; Guan, H.; Gu, K.; Liu, H. Protein/Peptide–Polyphenol Interactions: Molecular Mechanisms, Functional Synergy, and Emerging Applications. Trends Food Sci. Technol. 2025, 163, 105194. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Y.; Wang, A.; Wang, J.; Wu, X.; Wu, Y.; Fu, Y.; Sun, H. Insights into Interactions between Food Polyphenols and Proteins: An Updated Overview. J. Food Process. Preserv. 2022, 46, e16597. [Google Scholar] [CrossRef]
- Zhou, H.X.; Pang, X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef]
- Casas-Forero, N.; Orellana-Palma, P.; Petzold, G. Comparative Study of the Structural Properties, Color, Bioactive Compounds Content and Antioxidant Capacity of Aerated Gelatin Gels Enriched with Cryoconcentrated Blueberry Juice during Storage. Polymers 2020, 12, 2769. [Google Scholar] [CrossRef]
- Spahn, G.; Baeza, R.; Santiago, L.G.; Pilosof, A.M.R. Whey Protein Concentrate/λ-Carrageenan Systems: Effect of Processing Parameters on the Dynamics of Gelation and Gel Properties. Food Hydrocoll. 2008, 22, 1504–1512. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin Hydrogels: Gel-Forming Behaviors, Mechanisms, and Food Applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, X.; Wu, W. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Sample Preparation: Material Characterization and Mechanism Investigation. Adv. Sample Prep. 2024, 11, 100122. [Google Scholar] [CrossRef]
- Salo, H.M.; Nguyen, N.; Alakärppä, E.; Klavins, L.; Hykkerud, A.L.; Karppinen, K.; Jaakola, L.; Klavins, M.; Häggman, H. Authentication of Berries and Berry-Based Food Products. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5197–5225. [Google Scholar] [CrossRef]
- Carrillo, C.; Tomasevic, I.B.; Barba, F.J.; Kamiloglu, S. Modern Analytical Techniques for Berry Authentication. Chemosensors 2023, 11, 500. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Wang, D.; Wan, X.; Wang, Y. Covalent polyphenols-proteins interactions in food processing: Formation mechanisms, quantification methods, bioactive effects, and applications. Front Nutr. 2024, 11, 1371401. [Google Scholar] [CrossRef]
- Leicht, K.; Okpala, C.O.R.; Nowicka, P.; Pérez-Alvarez, J.A.; Korzeniowska, M. Antioxidant, Polyphenol, Physical, and Sensory Changes in Myofibrillar Protein Gels Supplemented with Polyphenol-Rich Plant-Based Additives. Nutrients 2025, 17, 1232. [Google Scholar] [CrossRef]
- Tarhan, Ö.; Campanella, O. Microstructure and Rheology of Whey Protein Based Hydrogels. Hacet. J. Biol. Chem. 2020, 48, 301–307. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
Sample | Abbreviation | Berry Juice (mL) | Whey (mL) | Gelatin (g) | Sugar (g) | Water (mL) |
---|---|---|---|---|---|---|
Control | CJ | - | - | 10 | 80 | 550 |
Whey jelly | WhJ | - | 200 | 10 | 80 | 350 |
Whey strawberry jelly | WhSJ | 300 | 200 | 10 | 80 | 50 |
Whey raspberry jelly | WhRJ | 300 | 200 | 10 | 80 | 50 |
Whey blueberry jelly | WhBJ | 300 | 200 | 10 | 80 | 50 |
Samples | Moisture (%) | Protein (%) | Free Amino Acids (ppm) | Total Mineral Substances (%) |
---|---|---|---|---|
Raw Materials | ||||
Whey | 93.40 ± 0.10 A | 1.10 ± 0.15 C | 800.54 ± 4.50 | 0.120 ± 0.25 C |
BJ | 84.80 ± 2.34 C | 1.60 ± 0.04 B | 746.90 ± 2.50 | 0.134 ± 0.05 B |
SJ | 90.35 ± 1.50 B | 1.72 ± 0.01 A | 545 ± 1.05 | 0.205 ± 0.02 A |
RJ | 85.50 ± 2.50 C | 1.56 ± 0.02 B | 770 ± 3.05 | 0.130 ± 0.05 B |
Jellies | ||||
CJ | 70.48 ± 0.34 a | 4.18 ± 0.05 e | 230.78 ± 2.00 e | 0.346 ± 0.05 a,b |
WhJ | 62.34 ± 0.23 b | 4.30 ± 0.02 d | 1423.01 ± 2.51 b | 0.336 ± 0.01 b |
WhBJ | 63.22 ± 0.25 b | 4.44 ± 0.05 b | 1447.04 ± 1.64 b | 0.256 ± 0.02 c |
WhSJ | 62.86 ± 0.96 b | 4.51 ± 0.10 a | 1286.48 ±2.40 d | 0.353 ± 0.03 a |
WhRJ | 62.70 ± 0.83 b | 4.41 ± 0.05 c | 1513.12 ± 0.95 a | 0.256 ± 0.01 c |
Samples | Macro- and Microelements (ppm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
K | Ca | Mg | Zn | Fe | Mn | Cu | Na | Ni | Cr | |
Raw Materials | ||||||||||
Whey | 3877.90 ± 1.76 A | 1477.44 ± 2.44 A | 589.54 ± 1.00 A | 10.32 ± 0.14 A | 15.14 ± 0.20 A | 1.24 ± 0.10 B | 0.90 ± 0.10 B | 20.33 ± 1.22 D | nd | nd |
SJ | 843.20 ± 1.44 B | 121.52 ± 3.22 D | 518.68 ± 1.45 B | nd | nd | 2.76 ± 0.20 A | 1.79 ± 0.04 A | 66.67 ± 2.34 A | 1.24 ± 0.04 B | 1.63 ± 0.01 C |
BJ | 450.22 ± 4.40 C | 259.22 ± 2.44 B | 322.45 ± 0.20 C | nd | 7.91 ± 0.10 B | 1.21 ± 0.40 B | 0.62 ± 0.02 C | 53.29 ± 2.90 B | 1.18 ± 0.02 C | 1.98 ± 0.04 A |
RJ | 320.10 ± 2.23 D | 156 ± 1.33 C | 220 ± 1.22 D | nd | nd | 0.42 ± 0.01 C | 1.77 ± 0.04 A | 42.44 ± 0.55 C | 1.43 ± 0.01 A | 1.83 ± 0.04 B |
Jellies | ||||||||||
CJ | 372.67 ± 7.76 e | 128.67 ± 14.57 d | 181.66 ± 1.52 e | nd | nd | nd | nd | nd | 0.39 ± 0.10 b | nd |
WhJ | 4184.33 ± 0.58 a | 1693.33 ± 0.58 a | 696.51 ± 0.50 a | 16.36 ± 0.1 a | 16.16 ± 0.01 a | 1.44 ± 0.01 b | 1.24 ± 0.09 a | 23.34 ± 0.20 d | 0.01 ± 0.01 c | nd |
WhSJ | 2179.54 ± 0.71 b | 762.46 ± 0.75 c | 595.72 ± 0.41 b | 4.39 ± 0.46 b | 5.62 ± 0.44 c | 2.23 ± 0.31 a | 1.57 ± 0.25 a | 49.34 ± 0.46 a | 0.75 ± 0.11 a | 0.98 ± 0.12 a |
WhBJ | 751.35 ± 0.66 c | 832.86 ± 0.76 b | 472.16 ± 0.65 c | 4.66 ± 0.32 b | 11.21 ± 0.39 b | 1.60 ± 0.31 b | 0.87 ± 0.19 b | 41.31 ± 0.38 c | 0.71 ± 0.22 a | 1.19 ± 0.22 a |
WhRJ | 515.95 ± 0.43 d | 771.33 ± 0.42 c | 410.73 ± 0.55 d | 3.56 ± 0.31 c | 5.81 ± 0.34 c | 0.83 ± 0.23 c | 1.56 ± 0.28 a | 45.03 ± 0.38 b | 0.86 ± 0.17 a | 1.10 ± 0.22 a |
Samples | Total Polyphenol Content (TPC) (mg/100 g) | Antioxidant Activity (AA), DPPH (%) |
---|---|---|
Raw Materials | ||
Whey | 7.10 ± 0.25 D | 3.22 ± 0.10 C |
SJ | 193.54 ± 0.10 A | 39.74 ± 0.25 B |
BJ | 147.55 ± 0.33 B | 41.22 ± 0.22 A |
RJ | 139.44 ± 0.48 C | 2.97 ± 0.05 C |
Jellies | ||
CJ | nd | nd |
WhJ | 6.79 ± 0.15 d | 2.45 ± 0.70 d |
WhSJ | 196.48 ± 1.15 a | 25.86 ± 0.53 b |
WhBJ | 145.32 ± 0.57 b | 28.11 ± 0.15 a |
WhRJ | 136.7 ± 1.35 c | 3.20 ± 0.06 c |
Sample | L* | a* | b* | C* | h° |
---|---|---|---|---|---|
CJ | 46.14 ± 0.92 a | –1.70 ± 0.07 d | 4.53 ± 0.53 c | 4.84 ± 0.52 d | 110.57 ± 1.16 a |
WhJ | 32.8 ± 0.99 b | 19.5 ± 1.28 b | 6.66 ± 0.71 b | 20.61 ± 1.34 b | 18.86 ± 0.93 c |
WhBJ | 18.46 ± 0.64 d | 5.88 ± 0.66 c | 7.67 ± 0.54 b | 9.66 ± 0.52 c | 52.53 ± 1.64 b |
WhSJ | 32.16 ± 1.08 b,c | 23.22 ± 1.11 a | 8.88 ± 0.86 a | 24.86 ± 1.01 a | 20.93 ± 1.59 c |
WhRJ | 30.56 ± 1.11 c | 23.17 ± 1.02 a | 5.5 ± 0.4 c | 23.81 ± 1.01 a | 13.35 ± 1.64 d |
Mean | 32.02 | 14.41 | 6.65 | 16.36 | 43.65 |
SD | 9.43 | 10.65 | 1.48 | 8.55 | 41.17 |
Samples | Texture | |||||
---|---|---|---|---|---|---|
Hardness (N) | Adhesiveness (mJ) | Cohesiveness (-) | Springiness Index (-) | Guminess (N) | Chewiness (mJ) | |
CJ | 0.22 ± 0.01 b | 0.13 ± 0.06 c | 0.41 ± 0.03 a,b | 0.53 ± 0.13 c | 0.09 ± 0.01 b,c | 0.33 ± 0.15 c |
WhJ | 0.27 ± 0.04 a | 0.33 ± 0.15 b,c | 0.29 ± 0.07 c | 0.61 ± 0.25 b,c | 0.08 ± 0.02 c | 0.46 ± 0.32 c |
WhBJ | 0.32 ± 0.03 a | 0.66 ± 0.21 a | 0.47 ± 0.02 a,b | 0.93 ± 0.03 a | 0.15 ± 0.02 a | 1.7 ± 0.36 a |
WhSJ | 0.29 ± 0.01 a | 0.40 ± 0.10 b | 0.38 ± 0.06 b | 0.82 ± 0.10 a,b | 0.11 ± 0.02 b | 1.03 ± 0.29 b |
WhRJ | 0.31 ± 0.02 a | 0.40 ± 0.10 b | 0.49 ± 0.03 a | 0.88 ± 0.10 a | 0.15 ± 0.01 a | 1.7 ± 0.17 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fluerasu, D.; Negrea, M.; Neagu, C.; Dossa, S.; Jianu, C.; Lalescu, D.; Berbecea, A.; Cseh, L.; Cocan, I.; Misca, C.; et al. Whey Valorization in Functional Jellies: A Nutritional and Technological Approach. Foods 2025, 14, 3193. https://doi.org/10.3390/foods14183193
Fluerasu D, Negrea M, Neagu C, Dossa S, Jianu C, Lalescu D, Berbecea A, Cseh L, Cocan I, Misca C, et al. Whey Valorization in Functional Jellies: A Nutritional and Technological Approach. Foods. 2025; 14(18):3193. https://doi.org/10.3390/foods14183193
Chicago/Turabian StyleFluerasu (Bălțatu), Diana, Monica Negrea, Christine Neagu, Sylvestre Dossa, Călin Jianu, Dacian Lalescu, Adina Berbecea, Liliana Cseh, Ileana Cocan, Corina Misca, and et al. 2025. "Whey Valorization in Functional Jellies: A Nutritional and Technological Approach" Foods 14, no. 18: 3193. https://doi.org/10.3390/foods14183193
APA StyleFluerasu, D., Negrea, M., Neagu, C., Dossa, S., Jianu, C., Lalescu, D., Berbecea, A., Cseh, L., Cocan, I., Misca, C., Suba, M., Muresan, V., Tanislav, A., & Alexa, E. (2025). Whey Valorization in Functional Jellies: A Nutritional and Technological Approach. Foods, 14(18), 3193. https://doi.org/10.3390/foods14183193